首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genome sequencing of pathogenic fungi has revealed the presence of various effectors that aid pathogen invasion by the manipulation of plant immunity. Effectors are often individually dispensable because of duplication and functional redundancy as a result of the arms race between host plants and pathogens. To study effectors that have functional redundancy, multiple gene disruption is often required. However, the number of selection markers that can be used for gene targeting is limited. Here, we established a marker recycling system that allows the use of the same selection marker in successive transformations in the model fungal pathogen Colletotrichum orbiculare, a causal agent of anthracnose disease in plants belonging to the Cucurbitaceae. We identified two C. orbiculare homologues of yeast URA3/pyrG, designated as URA3A and URA3B, which can be used as selection markers on medium with no uridine. The gene can then be removed from the genome via homologous recombination when the fungus is grown in the presence of 5-fluoroorotic acid (5-FOA), a chemical that is converted into a toxin by URA3 activity. The ura3a/b double mutants showed auxotrophy for uridine and insensitivity to 5-FOA. Using the ura3a/b mutants, transformation with the URA3B marker and its removal were successfully applied to disrupt the virulence-related gene, PKS1. The pks1 mutants showed a reduction in virulence, demonstrating that the method can be used to study virulence-related genes in C. orbiculare. The establishment of a URA3-based marker recycling system in plant-pathogenic fungi enables the genetic analysis of multiple genes that have redundant functions, including effector genes.  相似文献   

2.
The introduction of several kinds of genes into the yeast chromosome is a powerful tool in many fields from fundamental study to industrial application. Here, we describe a general strategy for one-step gene integration and a marker recycling method. Forty base pairs of a short sequence derived from a region adjacent to the HIS3 locus were placed between cell surface displaying β-glucosidase (BGL) and URA3 marker genes. HIS3 deletion and BGL–URA3 fragment integration were achieved via a PCR fragment consisting of the BGL–URA3 fragment attached to homology sequences flanked by the HIS3 targeting locus. The obtained his3::URA3 disruptants were plated on a 5-FOA plate to select for the URA3 deletion due to repeated sequences at both sides of URA3 gene. In all selected colonies, BGL genes were integrated at the targeted HIS3 locus and URA3 was completely deleted. In addition, introduced BGL was efficiently expressed, and the transformants fermented cellobiose to ethanol effectively. As our strategy creates next transformation markers continuously together with gene integration, this method can serve as a simple and powerful tool for multiple genetic manipulations in yeast engineering.  相似文献   

3.
The hemibiotrophic ascomycete Colletotrichum higginsianum is the casual agent of anthracnose disease of cruciferous plants. High efficiency transformation by Agrobacterium tumefaciens-mediated gene transfer has been established for this fungus. However, targeted gene mutagenesis through homologous recombination rarely occurs in C. higginsianum. We have identified and disrupted the C. higginsianum homologue of the human Ku70 gene, ChKU70, which encodes a protein that plays a role in non-homologous end-joining for repair of DNA breaks. chku70 mutants showed a dramatic increase in the frequency of integration of introduced exogenous DNA fragments by homologous recombination without any detectable phenotypic defects. This result demonstrates that the chku70 mutant is an efficient recipient for targeted gene mutagenesis in C. higginsianum. We have also developed a novel approach [named direct repeat recombination-mediated gene targeting (DRGT)] for targeted gene disruption through Agrobacterium tumefaciens-mediated gene transfer. DRGT utilizes homologous recombination between repeated sequences on the T-DNA flanking a partial fragment of the target gene. Our results suggest that DRGT in the chku70 mutant background could be a useful tool for rapid isolation of targeted gene disruptants in C. higginsianum.  相似文献   

4.
Transformation-associated recombination (TAR) is a cloning technique that allows specific chromosomal regions or genes to be isolated directly from genomic DNA without prior construction of a genomic library. This technique involves homologous recombination during spheroplast transformation between genomic DNA and a TAR vector that has 5′ and 3′ gene targeting sequences (hooks). Typically, TAR cloning produces positive YAC recombinants at a frequency of ~0.5%; the positive clones are identified by PCR or colony hybridization. This paper describes a novel TAR cloning procedure that selects positive clones by positive and negative genetic selection. This system utilizes a TAR vector with two targeting hooks, HIS3 as a positive selectable marker, URA3 as a negative selectable marker and a gene-specific sequence called a loop sequence. The loop sequence lies distal to a targeting hook sequence in the chromosomal target, but proximal to the targeting hook and URA3 in the TAR vector. When this vector recombines with chromosomal DNA at the gene-specific targeting hook, the recombinant YAC product carries two copies of the loop sequence, therefore, the URA3 negative selectable marker becomes mitotically unstable and is lost at high frequency by direct repeat recombination involving the loop sequence. Positive clones are identified by selecting against URA3. This method produces positive YAC recombinants at a frequency of ~40%. This novel TAR cloning method provides a powerful tool for structural and functional analysis of complex genomes.  相似文献   

5.
6.
In eukaryotes from yeasts to human, DNA double-strand breaks are repaired by nonhomologous end-joining (NHEJ) or homologous integration (HI). In the human pathogenic yeast Cryptococcus neoformans, gene manipulation by HI does not occur frequently because ectopic integration by NHEJ is predominant, and it has been necessary to screen 30–100 transformants per experiment to obtain transformants with the desired genotypes. To overcome this problem, we constructed a strain in which one of the NHEJ-related genes, CnLIG4, was deleted. CnLIG4 encodes a homologue of the human DNA ligase IV involved in the last step of DNA repair by NHEJ. Gene targeting in the URA5 locus of a URA5-lacking strain TAD1 with URA5 gene fragments having 1-kb flanking sequences achieved 80% HI efficiency, which is higher than that of the wild-type control (50%). Growth phenotypes and virulence were not attenuated by deletion of the CnLIG4 gene. Such results suggest that the CnLIG4 knockout strain created in this study provides an additional alternative for the molecular genetics study of C. neoformans.  相似文献   

7.
In recent years, numerous outbreaks of multidrug-resistant Pseudomonas aeruginosa have been reported across the world. Once an outbreak occurs, besides routinely testing isolates for susceptibility to antimicrobials, it is required to check their virulence genotypes and clonality profiles. Replacing pulsed-field gel electrophoresis DNA fingerprinting are faster, easier-to-use, and less expensive polymerase chain reaction (PCR)-based methods for characterizing hospital isolates. P. aeruginosa possesses a mosaic genome structure and a highly conserved core genome displaying low sequence diversity and a highly variable accessory genome that communicates with other Pseudomonas species via horizontal gene transfer. Multiple-locus variable-number tandem-repeat analysis and multilocus sequence typing methods allow for phylogenetic analysis of isolates by PCR amplification of target genes with the support of Internet-based services. The target genes located in the core genome regions usually contain low-frequency mutations, allowing the resulting phylogenetic trees to infer evolutionary processes. The multiplex PCR-based open reading frame typing (POT) method, integron PCR, and exoenzyme genotyping can determine a genotype by PCR amplifying a specific insertion gene in the accessory genome region using a single or a multiple primer set. Thus, analyzing P. aeruginosa isolates for their clonality, virulence factors, and resistance characteristics is achievable by combining the clonality evaluation of the core genome based on multiple-locus targeting methods with other methods that can identify specific virulence and antimicrobial genes. Software packages such as eBURST, R, and Dendroscope, which are powerful tools for phylogenetic analyses, enable researchers and clinicians to visualize clonality associations in clinical isolates.  相似文献   

8.
The ability to generate isogenic sets of strains with mutations in a gene of interest but not in other genes by repeated use of the URA3 marker (Ura-blaster methodology) has advanced our understanding of the relationships between gene structure and function in Candida albicans. Common applications of Ura-blaster technology result in different genomic positions for the URA3 gene in strains complemented for the gene of interest compared with mutant strains. Studies using animal models of systemic candidiasis pointed to possible differences in URA3 gene expression, depending on its genomic location, which confounded interpretation of the role of the gene of interest in lethality. Positional effects on URA3 expression can be avoided by placement at a common locus in all strains used for comparison.  相似文献   

9.
URA5 genes encode orotidine-5′-monophosphate pyrophosphorylase (OMPpase), an enzyme involved in pyrimidine biosynthesis. We cloned the Histoplasma capsulatum URA5 gene (URA5Hc) by using a probe generated by PCR with inosine-rich primers based on relatively conserved sequences in OMPpases from other organisms. Transformation with this gene restored uracil prototrophy and OMPpase activity to UV-mutagenized ura5 strains of H. capsulatum. We attempted to target the genomic URA5 locus in this haploid organism to demonstrate homologous allelic replacement with transforming DNA, which has not been previously done in H. capsulatum and has been challenging in some other pathogenic fungi. Several strategies commonly used in Saccharomyces cerevisiae and other eukaryotes were unsuccessful, due to the frequent occurrence of ectopic integration, linear plasmid formation, and spontaneous resistance to 5-fluoroorotic acid, which is a selective agent for URA5 gene inactivation. Recent development of an efficient electrotransformation system and of a second selectable marker (hph, conferring hygromycin B resistance) for this fungus enabled us to achieve allelic replacement by using transformation with an insertionally inactivated Δura5Hc::hph plasmid, followed by dual selection with hygromycin B and 5-fluoroorotic acid, or by screening hygromycin B-resistant transformants for uracil auxotrophy. The relative frequency of homologous gene targeting was approximately one allelic replacement event per thousand transformants. This work demonstrates the feasibility but also the potential challenge of gene disruption in this organism. To our knowledge, it represents the first example of experimentally directed allelic replacement in H. capsulatum, or in any dimorphic systemic fungal pathogen of humans.  相似文献   

10.
11.
Sake yeast, a diploid Saccharomyces cerevisiae strain, is useful for industry but difficult to genetically engineer because it hardly sporulates. Until now, only a few recessive mutants of sake yeast have been obtained. To solve this problem, we developed the high-efficiency loss of heterozygosity (HELOH) method, which applies a two-step gene disruption. First, a heterozygous disruptant was constructed by gene replacement with URA3, followed by marker recycling on medium containing 5-fluoroorotic acid (5-FOA). Subsequently, spontaneous loss of heterozygosity (LOH) yielding a homozygous disruptant was selected for in a second round of gene integration. During this step, the wild-type allele of the heterozygous disruptant was marked by URA3 integration, and the resulting transformants were cultivated in non-selective medium to induce recombination and then grown on medium with 5-FOA to enrich for mutants that had undergone LOH. Although the frequency with which LOH occurs is extremely low, many homozygous disruptants were obtained with the HELOH method. Thus, we were able to efficiently construct homozygous disruptants of diploid sake yeast without sporulation, and sake yeast strains with multiple auxotrophies and a protease deficiency could be constructed. The HELOH method, therefore, facilitated the utilization of diploid sake yeast for genetic engineering purposes.  相似文献   

12.
13.
Colletotrichum higginsianum is a hemibiotrophic fungal pathogen that causes anthracnose disease on Arabidopsis and other crucifer hosts. By exploiting natural variation in Arabidopsis we identified a resistance locus that is shared by four geographically distinct accessions (Ws‐0, Kondara, Gifu‐2 and Can‐0). A combination of quantitative trait loci (QTL) and Mendelian mapping positioned this locus within the major recognition gene complex MRC‐J on chromosome 5 containing the Toll‐interleukin‐1 receptor/nucleotide‐binding site/leucine‐rich repeat (TIR‐NB‐LRR) genes RPS4 and RRS1 that confer dual resistance to C. higginsianum in Ws‐0 ( Narusaka et al., 2009 ). We find that the resistance shared by these diverse Arabidopsis accessions is expressed at an early stage of fungal invasion, at the level of appressorial penetration and establishment of intracellular biotrophic hyphae, and that this determines disease progression. Resistance is not associated with host hypersensitive cell death, an oxidative burst or callose deposition in epidermal cells but requires the defense regulator EDS1, highlighting new functions of TIR‐NB‐LRR genes and EDS1 in limiting early establishment of fungal biotrophy. While the Arabidopsis accession Ler‐0 is fully susceptible to C. higginsianum infection, Col‐0 displays intermediate resistance that also maps to MRC‐J. By analysis of null mutants of RPS4 and RRS1 in Col‐0 we show that these genes, individually, do not contribute strongly to C. higginsianum resistance but are both required for resistance to Pseudomonas syringae bacteria expressing the Type III effector, AvrRps4. We conclude that distinct allelic forms of RPS4 and RRS1 probably cooperate to confer resistance to different pathogens.  相似文献   

14.
15.
Cryptococcus gattii (Cg) is an emerging pathogen of both healthy and immunocompromised patients worldwide. Understanding the molecular genetic basis of virulence and physiology of this pathogen will be critical for defining its pathogenic mechanisms. The purine biosynthetic gene, URA5 encoding orate phosphorybosyltransferase (OPRTase), has been successfully used as a selectable marker for gene disruption by transformation and homologous recombination in Cg. Here, we report the characterization of ura5 auxotrophy and URA5 reversion phenomenon at the molecular, genetic, and structural levels, and use of ura5URA5 reversion as a tool for reconstitution of gene of interest and auxotrophic marker to their native loci. We identified a single mutation of GG128T→GAT with substitution of glycine to aspartic acid at amino acid position 43 resulting in ura5 auxotrophy. The ura5URA5 reversion on CSM lacking uracil (CSM-U) was found to be a rare phenomenon with a reversion frequency of 0.000002%, and sequence analysis of URA5 from all the reverted strains revealed mutation of GA128T→GGT back to its ancestral state. The URA5 allele in the reverted strains was fully functional, as demonstrated by the excellent growth of these strains on medium lacking uracil, as well as by the ability of this allele to efficiently transform ura5 mutant to restore prototrophy. The deduced Cg URA5 protein modeled on the known crystal structures of OPRTase from Salmonella typhimurium (1LH0_A, 1STO) and from Escherichia coli (1ORO_A) indicated that the glycine 43 of Cg URA5 was situated on a conserved loop, and it’s substitution to more globose aspartic acid may have resulted in URA5 inactivation in auxotrophic strain. The advantages of this approach for the generation of a reconstituted strain are (1) that it restores the functionality of the native URA5, (2) that it eliminates an additional biolistic delivery of exogenous URA5, and (3) that it allows easy selection of reconstituted strains with homologous integration. This strategy was successfully used for the generation of Cg can2+CAN2/URA5 homologous reconstituted strains, which grew in ambient air to the wild-type level while can2 mutant exhibited severe growth defect under similar conditions. Srinivas D. Narasipura and Ping Ren contributed equally to this work.  相似文献   

16.
Dias MV  Basso LR  Coelho PS 《Gene》2008,417(1-2):13-18
Transposon elements are important tools for gene function analysis, for example they can be used to easily create genome-wide collections of insertion mutants. Transposons may also carry sequences coding for an epitope or fluorescent marker useful for protein expression and localization analysis. We have developed three new Tn5-based transposons that incorporate a GFP (green fluorescent protein) coding sequence to generate fusion proteins in the important fungal pathogen Candida albicans. Each transposon also contains the URA3 and Kan(R) genes for yeast and bacterial selection, respectively. After in vitro transposition, the insertional allele is transferred to the chromosomal locus by homologous recombination. Transposons Tn5-CaGFP and Tn5-CaGFP-URA3::FLIP can generate C-terminal truncated GFP fusions. A URA3 flipper recycling cassette was incorporated into the transposon Tn5-CaGFP-URA3::FLIP. After the induction of Flip recombinase to excise the marker, the heterozygous strain is transformed again in order to obtain a GFP-tagged homozygous strains. In the Tn5-CaGFP-FL transposon the markers are flanked by a rare-cutting enzyme. After in vitro transposition into a plasmid-borne target gene, the markers are eliminated by restriction digestion and religation, resulting in a construct coding for full-length GFP-fusion proteins. This transposon can generate plasmid libraries of GFP insertions in proteins where N- or C-terminal tagging may alter localization. We tested our transposon system by mutagenizing the essential septin CDC3 gene. The results indicate that the Cdc3 C-terminal extension is important for correct septin filament assembly. The transposons described here provide a new system to obtain global gene expression and protein localization data in C. albicans.  相似文献   

17.
Candida albicans is the most common human fungal pathogen and causes significant morbidity and mortality worldwide. Nevertheless, the basic principles of C. albicans pathogenesis remain poorly understood. Of central importance to the study of this organism is the ability to generate homozygous knockout mutants and to analyze them in a mammalian model of pathogenesis. C. albicans is diploid, and current strategies for gene deletion typically involve repeated use of the URA3 selectable marker. These procedures are often time-consuming and inefficient. Moreover, URA3 expression levels-which are susceptible to chromosome position effects-can themselves affect virulence, thereby complicating analysis of strains constructed with URA3 as a selectable marker. Here, we describe a set of newly developed reference strains (leu2Delta/leu2Delta, his1Delta/his1Delta; arg4Delta/arg4Delta, his1Delta/his1Delta; and arg4Delta/arg4Delta, leu2Delta/leu2Delta, his1Delta/his1Delta) that exhibit wild-type or nearly wild-type virulence in a mouse model. We also describe new disruption marker cassettes and a fusion PCR protocol that permit rapid and highly efficient generation of homozygous knockout mutations in the new C. albicans strains. We demonstrate these procedures for two well-studied genes, TUP1 and EFG1, as well as a novel gene, RBD1. These tools should permit large-scale genetic analysis of this important human pathogen.  相似文献   

18.
To allow the regulated expression of cloned genes inCandida albicans, a plasmid was constructed using the inducible promoter of theC. albicans MAL2 gene. To demonstrate that theMAL2 promoter could regulate cloned genes placed under its control, a fusion construct was made with the coding sequence of theC. albicans URA3 gene. This plasmid was introduced into a Ura strain ofC. albicans using the process of restriction enzyme-mediated integration (REMI). This procedure involves the transformation of theBamHI-linearized plasmid in the presence ofBamHI enzyme. The majority of transformants generated contained insertions of the plasmid at chromosomalBamHI sites. All transformants examined were inducible forURA3 expression, which was determined by growth analysis and by measuring the level ofURA3 gene product activity. The Ura+ phenotype of the transformants was stable during growth under nonselective conditions. This system offers the advantages of stable transformation, easy recovery of integrated DNA, and inducible expression of genes inC. albicans.Deceased, December 15, 1995  相似文献   

19.
The red yeasts of the Pucciniomycotina have rarely been transformed with DNA molecules. Transformation methods were recently developed for a species of Sporobolomyces, based on selection using uracil auxotrophs and plasmids carrying the wild-type copies of the URA3 and URA5 genes. However, these plasmids were ineffective in the transformation of closely related species. Using the genome-sequenced strain of Rhodotorula graminis as a starting point, the URA3 and URA5 genes were cloned and tested for the transformation ability into different Pucciniomycotina species by biolistic and Agrobacterium-mediated transformations. Transformation success depended on the red yeast species and the origin of the URA3 or URA5 genes, which may be related to the high G?+?C DNA content found in several species. A new vector was generated to confer resistance to nourseothricin, using a native promoter from R. graminis and the naturally high G?+?C nourseothricin acetyltransferease gene. This provides a second selectable marker in these species. Targeted gene disruption was tested in Sporobolomyces sp. IAM 13481 using different lengths of homologous DNA with biolistic and Agrobacterium transformation methods. Both DNA delivery methods were effective for targeted replacement of a gene required for carotenoid pigment biosynthesis. The constructs also triggered transgene silencing. These developments open the way to identify and manipulate gene functions in a large group of basidiomycete fungi.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号