首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hao Hu  Haiyan Liu  Yunyu Shi 《Proteins》1997,27(4):545-555
Different pathways of the metal-induced isomerization of D-xylose to D-xylulose are investigated and compared in detail using energy minimization and molecular dynamics simulation. Two theoretical models are constructed for the reaction: in vacuum and in the enzyme D-xylose isomerase. The vacuum model is constructed based on the X-ray structure of the active site of D-xylose isomerase. It contains the atoms directly involved in the reaction and is studied using a semi-empirical molecular orbital method (PM3). The model in the enzyme includes the effects of the enzyme environment on the reaction using a combined quantum mechanical and molecular mechanical potential. For both models, the structures of the reactants, products, and intermediate complexes along the isomerization pathway are optimized. The effects of the position of the “catalytic Mg2+ ion” on the energies of the reactions are studied. The results indicate: 1) in vacuum, the isomerization reaction is favored when the catalytic metal cation is at site A, which is remote from the substrate; 2) in the enzyme, the catalytic metal cation, starting from site A, moves and stays at site B, which is close to the substrate; analysis of the charge redistribution of the active site during the catalytic process shows that the metal ion acts as a Lewis acid to polarize the substrate and catalyze the hydride shift; these results are consistent with previous experimental observations; and 3) Lys183 plays an important role in the isomerization reaction. The ϵ-NH3+ group of its side chain can provide a proton to the carboxide ion of the substrate to form a hydroxyl group after the hydride shift step. This role of Lys183 has not been suggested before. Based on our calculations, we believe that this is a reasonable mechanism and consistent with site-directed mutation experiments. © 1997 Wiley-Liss Inc.  相似文献   

2.
The rate-determining elementary reaction step, i.e. proton transfer from the chymotrypsin active centre to the scissile substrate bond has been studied in the present work. On the basis of our theoretical results a hypothesis was formulated to explain chymotrypsin enzymatic efficiency. After ES complex formation excited vibrational states are populated in the enzyme molecule. In the rate-determining elementary reaction step, the proton transfer takes place from the first excited vibrational state of the N-H bond in the imidazole group of His57. This proton transfer is realised by quantum mechanical tunneling mechanism.  相似文献   

3.
The catalytic mechanism of triosephosphate isomerase (TIM) was investigated with ab initio quantum mechanical calculations. Electrostatic interactions between the quantum mechanical active site and the protein and solvent environment were modeled using the finite difference Poission-Boltzman method. The complexes of TIM with the substrate dihydroxyacetone phosphate (DHAP), five possible intermediates and the product glyceraldehyde-3-phosphate (GAP) were optimized in the active-site model at the 3-21G(*) level and energy profile for the proton abstraction from DHAP by the active-site Glu167 was calculated at the MP2/3-21G(*)//3-21G(*) level. Calculated energetics of the enzyme reaction were found to be in reasonable agreement with the experimental findings. Calculations revealed that an enediol of the substrate is a probable intermediate in the enzyme reaction. It was suggested that the proton abstracted from the substrate by the active-site glutamate goes to the carbonyl oxygen of the substrate producing enediol intermediate either directly or after it is exchanged with solvent. © 1996 Wiley-Liss, Inc.  相似文献   

4.
The Bacillus fragment, belonging to a class of high‐fidelity polymerases, demonstrates high processivity (adding ~115 bases per DNA binding event) and exceptional accuracy (1 error in 106 nucleotide incorporations) during DNA replication. We present analysis of structural rearrangements and energetics just before and during the chemical step (phosphodiester bond formation) using a combination of classical molecular dynamics, mixed quantum mechanics molecular mechanics simulations, and free energy computations. We find that the reaction is associative, proceeding via the two‐metal‐ion mechanism, and requiring the proton on the terminal primer O3′ to transfer to the pyrophosphate tail of the incoming nucleotide before the formation of the pentacovalent transition state. Different protonation states for key active site residues direct the system to alternative pathways of catalysis and we estimate a free energy barrier of ~12 kcal/mol for the chemical step. We propose that the protonation of a highly conserved catalytic aspartic acid residue is essential for the high processivity demonstrated by the enzyme and suggest that global motions could be part of the reaction free energy landscape.  相似文献   

5.
Homoisocitrate dehydrogenase (HIcDH, 3-carboxy-2-hydroxyadipate dehydrogenase) catalyzes the fourth reaction of the alpha-aminoadipate pathway for lysine biosynthesis, the conversion of homoisocitrate to alpha-ketoadipate using NAD as an oxidizing agent. A chemical mechanism for HIcDH is proposed on the basis of the pH dependence of kinetic parameters, dissociation constants for competitive inhibitors, and isotope effects. According to the pH-rate profiles, two enzyme groups act as acid-base catalysts in the reaction. A group with a p K a of approximately 6.5-7 acts as a general base accepting a proton as the beta-hydroxy acid is oxidized to the beta-keto acid, and this residue participates in all three of the chemical steps, acting to shuttle a proton between the C2 hydroxyl and itself. The second group acts as a general acid with a p K a of 9.5 and likely catalyzes the tautomerization step by donating a proton to the enol to give the final product. The general acid is observed in only the V pH-rate profile with homoisocitrate as a substrate, but not with isocitrate as a substrate, because the oxidative decarboxylation portion of the isocitrate reaction is limiting overall. With isocitrate as the substrate, the observed primary deuterium and (13)C isotope effects indicate that hydride transfer and decarboxylation steps contribute to rate limitation, and that the decarboxylation step is the more rate-limiting of the two. The multiple-substrate deuterium/ (13)C isotope effects suggest a stepwise mechanism with hydride transfer preceding decarboxylation. With homoisocitrate as the substrate, no primary deuterium isotope effect was observed, and a small (13)C kinetic isotope effect (1.0057) indicates that the decarboxylation step contributes only slightly to rate limitation. Thus, the chemical steps do not contribute significantly to rate limitation with the native substrate. On the basis of data from solvent deuterium kinetic isotope effects, viscosity effects, and multiple-solvent deuterium/ (13)C kinetic isotope effects, the proton transfer step(s) is slow and likely reflects a conformational change prior to catalysis.  相似文献   

6.
Várnai P  Richards WG  Lyne PD 《Proteins》1999,37(2):218-227
Aldose reductase (ALR2) has received considerable attention due to its possible link to long-term diabetic complications. Although crystal structures and kinetic data reveal important aspects of the reaction mechanism, details of the catalytic step are still unclear. In this paper a computer simulation study is presented that utilizes the hybrid quantum mechanical and molecular mechanical (QM-MM) potential to elucidate the nature of the hydride and proton transfer steps in the reduction of D-glyceraldehyde by ALR2. Several reaction pathways were investigated in two models with either Tyr48 or protonated His110+ acting as the potential proton donor in the active site. Calculations show that the substrate binds to ALR2 through hydrogen bonds in an orientation that facilitates the stereospecific catalytic step in both models. It is established that in the case that His110 is present in the protonated form in the native complex, it is the energetically favored proton donor compared with Tyr48 in the active pocket with neutral His110. The reaction mechanisms in the different models are discussed based on structural and energetic considerations.  相似文献   

7.
β-Lactamases are bacterial enzymes that act as a bacterial defense system against β-lactam antibiotics. β-Lactamase cleaves the β-lactam ring of the antibiotic by a two step mechanism involving acylation and deacylation steps. Although class C β-lactamases have been investigated extensively, the details of their mechanism of action are not well understood at the molecular level. In this study, we investigated the mechanism of the acylation step of class C β-lactamase using pKa calculations, molecular dynamics (MD) simulations and quantum mechanical (QM) calculations. Serine64 (Ser64) is an active site residue that attacks the β-lactam ring. In this study, we considered three possible scenarios for activation of the nucleophile Ser64, where the activation base is (1) Tyrosine150 (Tyr150), (2) Lysine67 (Lys67), or (3) substrate. From the pKa calculation, we found that Tyr150 and Lys67 are likely to remain in their protonated states in the pre-covalent complex between the enzyme and substrate, although their role as activator would require them to be in the deprotonated state. It was found that the carboxylate group of the substrate remained close to Ser64 for most of the simulation. The energy barrier for hydrogen abstraction from Ser64 by the substrate was calculated quantum mechanically using a large truncated model of the enzyme active site and found to be close to the experimental energy barrier, which suggests that the substrate can initiate the acylation mechanism in class C β-lactamase.  相似文献   

8.
The proposed rate-limiting step of the glyoxalase I catalyzed reaction is the proton abstraction from the C1 carbon of the substrate by Glu(172). Here we examine primary kinetic isotope effects and the influence of quantum dynamics on this process by computer simulations. The calculations utilize the empirical valence bond method in combination with the molecular dynamics free energy perturbation technique and path integral simulations. For the enzyme-catalyzed reaction a H/D kinetic isotope effect of 5.0 +/- 1. 3 is predicted in reasonable agreement with the experimental result of about 3. Furthermore, the magnitude of quantum mechanical effects is found to be very similar for the enzyme reaction and the corresponding uncatalyzed process in solution, in agreement with other studies. The problems associated with attaining the required accuracy in order for the present approach to be useful as a diagnostic tool for the study of enzyme reactions are also discussed.  相似文献   

9.
Martin SF  Hergenrother PJ 《Biochemistry》1999,38(14):4403-4408
The phosphatidylcholine-preferring phospholipase C from Bacillus cereus (PLCBc) is a 28.5 kDa enzyme with three zinc ions in its active site. Although much is known about the roles that various PLCBc active site amino acids play in binding and catalysis, there is little information about the rate-determining step of the PLCBc-catalyzed hydrolysis of phospholipids and the catalytic cycle of the enzyme. To gain insight into these aspects of the hydrolysis, solvent viscosity variation experiments were conducted to determine whether an external step (substrate binding or product release) or an internal step (hydrolysis) is rate-limiting. The data indicate that the PLCBc-catalyzed reaction is unaffected by changes in solvent viscosity. This observation is inconsistent with the notion of substrate binding or product release being rate-determining and supports the hypothesis that a chemical step is rate-limiting. Furthermore, a deuterium isotope effect of 1.9 and a linear proton inventory plot indicate one proton is transferred in the rate-determining step. These data may be used to formulate a comprehensive catalytic cycle that is for the first time based on experimental evidence. In this mechanism, Asp55 of PLCBc activates an active site water molecule for attack on the phosphodiester bond, the hydrolysis of which is rate-limiting. The phosphorylcholine product is the first to leave the active site, followed by diacylglycerol.  相似文献   

10.
The proposed rate-limiting step of the reaction catalyzed by glyoxalase I is the proton abstraction from the C1 carbon atom of the substrate by a glutamate residue, resulting in a high-energy enolate intermediate. This proton transfer reaction was modelled using molecular dynamics and free energy perturbation simulations, with the empirical valence bond method describing the potential energy surface of the system. The calculated rate constant for the reaction is approximately 300-1500 s(-1) with Zn2+, Mg2+ or Ca2+ bound to the active site, which agrees well with observed kinetics of the enzyme. Furthermore, the results imply that the origin of the catalytic rate enhancement is mainly associated with enolate stabilization by the metal ion.  相似文献   

11.
Wong KY  Gao J 《The FEBS journal》2011,278(14):2579-2595
Molecular dynamics simulations employing a combined quantum mechanical and molecular mechanical potential have been carried out to elucidate the reaction mechanism of the hydrolysis of a cyclic nucleotide cAMP substrate by phosphodiesterase 4B (PDE4B). PDE4B is a member of the PDE superfamily of enzymes that play crucial roles in cellular signal transduction. We have determined a two-dimensional potential of mean force (PMF) for the coupled phosphoryl bond cleavage and proton transfer through a general acid catalysis mechanism in PDE4B. The results indicate that the ring-opening process takes place through an S(N)2 reaction mechanism, followed by a proton transfer to stabilize the leaving group. The computed free energy of activation for the PDE4B-catalyzed cAMP hydrolysis is about 13 kcal·mol(-1) and an overall reaction free energy is about -17 kcal·mol(-1), both in accord with experimental results. In comparison with the uncatalyzed reaction in water, the enzyme PDE4B provides a strong stabilization of the transition state, lowering the free energy barrier by 14 kcal·mol(-1). We found that the proton transfer from the general acid residue His234 to the O3' oxyanion of the ribosyl leaving group lags behind the nucleophilic attack, resulting in a shallow minimum on the free energy surface. A key contributing factor to transition state stabilization is the elongation of the distance between the divalent metal ions Zn(2+) and Mg(2+) in the active site as the reaction proceeds from the Michaelis complex to the transition state.  相似文献   

12.
Porphyromonas gingivalis peptidylarginine deiminase (PPAD) catalyzes the citrullination of peptidylarginine, which plays a critical role in the rheumatoid arthritis (RA) and gene regulation. For a better understanding of citrullination mechanism of PPAD, it is required to establish the protonation states of active site cysteine, which is still a controversial issue for the members of guanidino‐group‐modifying enzyme superfamily. In this work, we first explored the transformation between the two states: State N (both C351 and H236 are neutral) and State I (both residues exist as a thiolate–imidazolium ion pair), and then investigated the citrullination reaction of peptidylarginine, using a combined QM/MM approach. State N is calculated to be more stable than State I by 8.46 kcal/mol, and State N can transform to State I via two steps of substrate‐assisted proton transfer. Citrullination of the peptidylarginine contains deamination and hydrolysis. Starting from State N, the deamination reaction corresponds to an energy barrier of 18.82 kcal/mol. The deprotonated C351 initiates the nucleophilic attack to the substrate, which is the key step for deamination reaction. The hydrolysis reaction contains two chemical steps. Both the deprotonated D238 and H236 can act as the bases to activate the hydrolytic water, which correspond to similar energy barriers (~17 kcal/mol). On the basis of our calculations, C351, D238, and H236 constitute a catalytic triad, and their protonation states are critical for both the deamination and hydrolysis processes. In view of the sequence similarity, these findings may be shared with human PAD1–PAD4 and other guanidino‐group‐modifying enzymes. Proteins 2017; 85:1518–1528. © 2017 Wiley Periodicals, Inc.  相似文献   

13.
Hopmann KH  Himo F 《Biochemistry》2008,47(17):4973-4982
Haloalcohol dehalogenase HheC catalyzes the reversible dehalogenation of vicinal haloalcohols to form epoxides and free halides. In addition, HheC is able to catalyze the irreversible and highly regioselective ring-opening of epoxides with nonhalide nucleophiles, such as CN (-) and N 3 (-). For azidolysis of aromatic epoxides, the regioselectivity observed with HheC is opposite to the regioselectivity of the nonenzymatic epoxide-opening. This, together with a relatively broad substrate specificity, makes HheC a promising tool for biocatalytic applications. We have designed large quantum chemical models of the HheC active site and used density functional theory to study the reaction mechanism of the HheC-catalyzed ring-opening of ( R)-styrene oxide with the nucleophiles CN (-) and N 3 (-). Both the cyanolysis and the azidolysis reactions are shown to take place in a single concerted step. The results support the suggested role of the putative Ser132-Tyr145-Arg149 catalytic triad, where Tyr145 acts as a general acid, donating a proton to the substrate, and Arg149 interacts with Tyr145 and facilitates proton abstraction, while Ser132 positions the substrate and reduces the barrier for epoxide opening through interaction with the emerging oxyanion of the substrate. We have also studied the regioselectivity of ( R)-styrene oxide opening for both the cyanolysis and the azidolysis reactions. The employed active site model was shown to be able to reproduce the experimentally observed beta-regioselectivity of HheC. In silico mutations of various groups in the HheC active site model were performed to elucidate the important factors governing the regioselectivity.  相似文献   

14.
Williams L  Nguyen T  Li Y  Porter TN  Raushel FM 《Biochemistry》2006,45(24):7453-7462
Uronate isomerase, a member of the amidohydrolase superfamily, catalyzes the isomerization of D-glucuronate and D-fructuronate. During the interconversion of substrate and product the hydrogen at C2 of D-glucuronate is transferred to the pro-R position at C1 of the product, D-fructuronate. The exchange of the transferred hydrogen with solvent deuterium occurs at a rate that is 4 orders of magnitude slower than the interconversion of substrate and product. The enzyme catalyzes the elimination of fluoride from 3-deoxy-3-fluoro-D-glucuronate. These results have been interpreted to suggest a chemical reaction mechanism in which an active site base abstracts the proton from C2 of D-glucuronate to form a cis-enediol intermediate. The conjugate acid then transfers this proton to C1 of the cis-enediol intermediate to form D-fructuronate. The loss of fluoride from 3-deoxy-3-fluoro-D-glucuronate is consistent with a stabilized carbanion at C2 of the substrate during substrate turnover. The slow exchange of the transferred hydrogen with solvent water is consistent with a shielded conjugate acid after abstraction of the proton from either D-glucuronate or D-fructuronate during the isomerization reaction. This conclusion is supported by the competitive inhibition of the enzymatic reaction by D-arabinaric acid and the monohydroxamate derivative with Ki values of 13 and 670 nM, respectively. There is no evidence to support a hydride transfer mechanism for uronate isomerase. The wild type enzyme was found to contain 1 equiv of zinc per subunit. The divalent cation could be removed by dialysis against the metal chelator, dipicolinate. However, the apoenzyme has the same catalytic activity as the Zn-substituted enzyme and thus the divalent metal ion is not required for enzymatic activity. This is the only documented example of a member in the amidohydrolase superfamily that does not require one or two divalent cations for enzymatic activity.  相似文献   

15.
The glyoxalase system catalyzes the conversion of toxic methylglyoxal to nontoxic d-lactic acid using glutathione (GSH) as a coenzyme. Glyoxalase II (GlxII) is a binuclear Zn enzyme that catalyzes the second step of this conversion, namely the hydrolysis of S-d-lactoylglutathione, which is the product of the Glyoxalase I (GlxI) reaction. In this paper we use density functional theory method to investigate the reaction mechanism of GlxII. A model of the active site is constructed on the basis of the X-ray crystal structure of the native enzyme. Stationary points along the reaction pathway are optimized and the potential energy surface for the reaction is calculated. The calculations give strong support to the previously proposed mechanism. It is found that the bridging hydroxide is capable of performing nucleophilic attack at the substrate carbonyl to form a tetrahedral intermediate. This step is followed by a proton transfer from the bridging oxygen to Asp58 and finally C-S bond cleavage. The roles of the two zinc ions in the reaction mechanism are analyzed. Zn2 is found to stabilize the charge of tetrahedral intermediate thereby lowering the barrier for the nucleophilic attack, while Zn1 stabilizes the charge of the thiolate product, thereby facilitating the C-S bond cleavage. Finally, the energies involved in the product release and active-site regeneration are estimated and a new possible mechanism is suggested.  相似文献   

16.
The bacterial enzyme lipopolysaccharyl alpha-galactosyltransferase C (EC 2.4.1.x, LgtC) is involved in the synthesis of lipooligosaccharides displayed on the cell surfaces of Neisseria meningitidis. LgtC catalyzes the transfer of a galactosyl residue from UDP-Gal to the terminal galactose residue of glycoconjugates with an overall retention of stereochemistry at the anomeric center. Several hypothetical catalytic mechanisms of the LgtC enzyme were examined herein using DFT quantum chemical methods up to the B3LYP/6-311++G**//B3LYP/6-31G* level. The computational model used to follow the reaction is based on the crystallographic structure of LgtC in complex with both the nucleotide-galactose donor and the oligosaccharide-acceptor analogues. The 136 atoms included in this model represent fragments of residues critical for the substrate binding and catalysis. From our calculations, the preferred pathway is predicted to be a one step mechanism with the nucleophilic attack of the acceptor oxygen onto the anomeric carbon and the proton transfer to a phosphate oxygen occurring simultaneously. This mechanism has an A(N)D(N)A(H)D(H) character, with the unique transition state structure in which the attacking galactose group is more closely bound to the anomeric carbon than to the UDP leaving group and where the hydrogen bond between the nucleophile and the leaving group oxygens facilitates the attack of the acceptor O4(') from the same side of the transferred galactose.  相似文献   

17.
4-Hydroxybenzoate oligoprenyltransferase of E. coli, encoded in the gene ubiA, is an important key enzyme in the biosynthetic pathway to ubiquinone. It catalyzes the prenylation of 4-hydroxybenzoic acid in position 3 using an oligoprenyl diphosphate as a second substrate. Up to now, no X-ray structure of this oligoprenyltransferase or any structurally related enzyme is known. Knowledge of the tertiary structure and possible active sites is, however, essential for understanding the catalysis mechanism and the substrate specificity.With homology modeling techniques, secondary structure prediction tools, molecular dynamics simulations, and energy optimizations, a model with two putative active sites could be created and refined. One active site selected to be the most likely one for the docking of oligoprenyl diphosphate and 4-hydroxybenzoic acid is located near the N-terminus of the enzyme. It is widely accepted that residues forming an active site are usually evolutionary conserved within a family of enzymes. Multiple alignments of a multitude of related proteins clearly showed 100% conservation of the amino acid residues that form the first putative active site and therefore strongly support this hypothesis. However, an additional highly conserved region in the amino acid sequence of the ubiA enzyme could be detected, which also can be considered a putative (or rudimentary) active site. This site is characterized by a high sequence similarity to the aforementioned site and may give some hints regarding the evolutionary origin of the ubiA enzyme.Semiempirical quantum mechanical PM3 calculations have been performed to investigate the thermodynamics and kinetics of the catalysis mechanism. These results suggest a near SN1 mechanism for the cleavage of the diphosphate ion from the isoprenyl unit. The 4-hydroxybenzoic acid interestingly appears not to be activated as benzoate anion but rather as phenolate anion to allow attack of the isoprenyl cation to the phenolate, which appeared to be the rate limiting step of the whole process according to our quantum chemical calculations. Our models are a basis for developing inhibitors of this enzyme, which is crucial for bacterial aerobic metabolism. Figure Structure of the model of ubiA oligoprenyltransferase derived from the photosynthetic reaction center (1PRC). Putative active amino acid residues and substrates are shown as capped sticks to describe their location and geometry in the putative active sites. The violet spheres identify Mg2+.This revised version was published online in April 2005 with corrections to Table 3 and the page make-up.  相似文献   

18.
Trans-sialidase is a crucial enzyme for the infection of Trypanosoma cruzi, the protozoa responsible for Chagas' disease in humans. This enzyme catalyzes the transfer of sialic acids from mammalian host cells to parasitic cell surfaces in order to mask the infection from the host's immune system. It represents a promising target for the development of therapeutics to treat the disease and has been subject of extensive structural studies. Elaborate experiments suggested formation of a long-lived covalent intermediate in the catalytic mechanism and identified a Tyr/Glu pair as an unusual catalytic couple. This requires that the tyrosine hydroxyl proton is transferred to the carboxylate group of glutamate before the nucleophilic attack. Since the solution pK(a)s of tyrosine and glutamate are very different, this transfer can only be accomplished if the reaction environment selectively stabilizes the product state. We compute the free energy profile for the proton transfer in different environments, and our results indicate that it can take place in the active site of trans-sialidase, but only after substrate binding. By means of the energy decomposition method, we explain the influence that the active site residues exert on the reaction and how the pattern is changed when the substrate is present. This study represents an initial step that can shed light on our understanding of the catalytic mechanism of this reaction.  相似文献   

19.
Formaldehyde ferredoxin oxidoreductase from Pyrococcus furiosus is a tungsten-dependent enzyme that catalyzes the oxidation of formaldehyde to formic acid. In the present study, quantum chemical calculations are used to elucidate the reaction mechanism of this enzyme. Several possible mechanistic scenarios are investigated with a large model of the active site designed on the basis of the X-ray crystal structure of the native enzyme. Based on the calculations, we propose a new mechanism in which the formaldehyde substrate binds directly to the tungsten ion. WVI=O then performs a nucleophilic attack on the formaldehyde carbon to form a tetrahedral intermediate. In the second step, which is calculated to be rate limiting, a proton is transferred to the second-shell Glu308 residue, coupled with a two-electron reduction of the tungsten ion. The calculated barriers for the mechanism are energetically very feasible and in relatively good agreement with experimental rate constants. Three other second-shell mechanisms, including one previously proposed based on experimental findings, are considered but ruled out because of their high barriers.  相似文献   

20.
Fillgrove KL  Anderson VE 《Biochemistry》2001,40(41):12412-12421
The chemical mechanism of the 2,4-dienoyl-CoA reductase (EC 1.3.1.34) from rat liver mitochondria has been investigated. This enzyme catalyzes the NADPH-dependent reduction of 2,4-dienoyl-coenzyme A (CoA) thiolesters to the resulting trans-3-enoyl-CoA. Steady-state kinetic parameters for trans-2,trans-4-hexadienoyl-CoA and 5-phenyl-trans-2,trans-4-pentadienoyl-CoA were determined and demonstrated that the dienoyl-CoA and NADPH bind to the 2,4-dienoyl-CoA reductase via a sequential kinetic mechanism. Kinetic isotope effect studies and the transient kinetics of substrate binding support a random order of nucleotide and dienoyl-CoA addition. The large normal solvent isotope effects on V/K ((D)(2)(O)V/K) and V ((D)(2)(O)V) for trans-2,trans-4-hexadienoyl-CoA reduction indicate that a proton transfer step is rate limiting for this substrate. The stability gained by conjugating the phenyl ring to the diene in PPD-CoA results in the reversal of the rate-determining step, as evidenced by the normal isotope effects on V/K(CoA) ((D)V/K(CoA)) and V/K(NADPH) ((D)V/K(NADPH)). The reversal of the rate-determining step was supported by transient kinetics where a burst was observed for the reduction of trans-2,trans-4-hexadienoyl-CoA but not for 5-phenyl-trans-2,trans-4-pentadienoyl-CoA reduction. The chemical mechanism is stepwise where hydride transfer from NADPH occurs followed by protonation of the observable dienolate intermediate, which has an absorbance maximum at 286 nm. The exchange of the C alpha protons of trans-3-decenoyl-CoA, catalyzed by the 2,4-dienoyl-CoA reductase, in the presence of NADP(+) suggests that formation of the dienolate is catalyzed by the enzyme active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号