首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional and structural comparison of PXR and CAR   总被引:4,自引:0,他引:4  
The nuclear receptors pregnane X receptor (PXR, NR1I2) and constitutive active receptor (CAR, NR1I3) have both been proposed to function as xenosensors, but the details of their respective physiological roles are still being elucidated. We have contrasted these two receptors in a variety of experiments including gene expression assays, cell-based ligand profiling assays, and crystallographic/structural modeling analyses. These data highlight key differences between PXR and CAR.  相似文献   

2.
The NR1I subfamily of nuclear receptors contains a phylogenetically diverse array of receptors related to the mammalian pregnane X receptor (PXR) (NR1I2) and constitutive androstane receptor (CAR) (NR1I3). We have carried out an extensive comparative analysis of this subgroup with representatives from fish, birds, amphibians, and mammals. Four novel receptors were isolated from fish, dog, pig, and monkey for this study and combined with a previously reported set of related receptors including human PXR, rabbit PXR, mouse PXR, chicken CXR, frog benzoate X receptors (BXRalpha, BXRbeta), and human and mouse CAR. A broad range of xenobiotics, steroids, and bile acids were tested for their ability to activate the ligand binding domain of each receptor. Three distinct groups of receptors were identified based on their pharmacological profiles: 1) the PXRs were activated by a broad range of xenobiotics and, along with the mammalian PXRs, included the chicken and fish receptors; 2) the CARs were less promiscuous, had high basal activities, and were generally repressed rather than activated by those compounds that modulated their activity; and 3) the BXRs were selectively activated by a subset of benzoate analogs and are likely to be specialized receptors for this chemical class of ligands. The PXRs are differentiated from the other NR1I receptors by a stretch of amino acids between helices 1 and 3, which we designate the H1-3 insert. This insert was present in the mammalian, chicken, and fish PXRs but absent in the CARs and BXRs. Modeling studies suggest that the H1-3 insert contributes to the promiscuity of the PXRs by facilitating the unwinding of helices-6 and -7, thereby expanding the ligand binding pocket.  相似文献   

3.
4.
5.
Numerous chemicals increase the metabolic capability of organisms by their ability to activate genes encoding various xenochemical-metabolizing enzymes, such as cytochromes P450 (CYPs), transferases and transporters. For example, natural and synthetic glucocorticoids (agonists and antagonists) as well as other clinically important drugs induce the hepatic CYP2B, CYP2C and CYP3A subfamilies in man, and these inductions might lead to clinically important drug-drug interactions. Only recently, the key cellular receptors that mediate such inductions have been identified. They include nuclear receptors, such as the constitutive androstane receptor (CAR, NR1I3), the retinoid X receptor (RXR, NR2B1), the pregnane X receptor (PXR, NR1I2), and the vitamin D receptor (VDR, NR1I1) and steroid receptors such as the glucocorticoid receptor (GR, NR3C1). There is a wide promiscuity of these receptors in the induction of CYPs in response to xenobiotics. Indeed, this adaptive system appears now as a tangle of networks, where receptors share partners, ligands, DNA response elements and target genes. Moreover, they influence mutually their relative expression. This review is focused on these different pathways controlling human CYP2B6, CYP2C9 and CYP3A4 gene expression, and the cross-talk between these pathways.  相似文献   

6.
During the last three years there have been a plethora of publications on the liver X-activated receptors (LXRalpha, NR1H3, and LXRbeta, NR1H2), the farnesoid X-activated receptor (FXR, NR1H4), and the pregnane X receptor (PXR, NR1I2) and the role these nuclear receptors play in controlling cholesterol, bile acid, lipoprotein and drug metabolism. The current interest in these nuclear receptors is high, in part, because they appear to be promising therapeutic targets for new drugs that have the potential to control lipid homeostasis.In this review we emphasize i) the role of LXR in controlling many aspects of cholesterol and fatty acid metabolism, ii) the expanded role of FXR in regulating genes that control not only bile acid metabolism but also lipoprotein metabolism, and iii) the regulation of bile acid transport/metabolism in response to bile acid-activated PXR.  相似文献   

7.
The xenosensing constitutive androstane receptor (CAR) is widely considered to have arisen in early mammals via duplication of the pregnane X receptor (PXR). We report that CAR emerged together with PXR and the vitamin D receptor from an ancestral NR1I gene already in early vertebrates, as a result of whole-genome duplications. CAR genes were subsequently lost from the fish lineage, but they are conserved in all taxa of land vertebrates. This contrasts with PXR, which is found in most fish species, whereas it is lost from Sauropsida (reptiles and birds) and plays a role unrelated to xenosensing in Xenopus. This role is fulfilled in Xenopus by CAR, which exhibits low basal activity and pronounced responsiveness to activators such as drugs and steroids, altogether resembling mammalian PXR. The constitutive activity typical for mammalian CAR emerged first in Sauropsida, and it is thus common to all fully terrestrial land vertebrates (Amniota). The constitutive activity can be achieved by humanizing just two amino acids of the Xenopus CAR. Taken together, our results provide a comprehensive reconstruction of the evolutionary history of the NR1I subfamily of nuclear receptors. They identify CAR as the more conserved and remarkably plastic NR1I xenosensor in land vertebrates. Nonmammalian CAR should help to dissect the specific functions of PXR and CAR in the metabolism of xeno- and endobiotics in humans. Xenopus CAR is a first reported amphibian xenosensor, which opens the way to toxicogenomic and bioaugmentation studies in this critically endangered taxon of land vertebrates.  相似文献   

8.
9.
Decreased drug metabolism, hyperbilirubinemia and intrahepatic cholestasis are frequently observed during inflammation. Additionally, it has long been appreciated that exposure to drug metabolism-inducing xenobiotics can impair immune function. The nuclear receptor CAR (constitutive androstane receptor or NR1I3) and PXR (pregnane X receptor, NR1I2) control phase I (cytochrome P450 2B and 3A), phase II (GSTA, UGT1A1), and transporter (MDR1, SLC21A6, MRP2) genes involved in drugs metabolism, bile acids and bilirubin clearance in response to xenobiotics. It is well known that inflammation, through the activation of NF-kappaB pathway, leads to a decrease of CAR, PXR and RXRalpha expression and the expression of their target genes. In addition, a new study reveals the mutual repression between PXR and NF-kappaB signaling pathways, providing a molecular mechanism linking xenobiotic metabolism and inflammation.  相似文献   

10.
A double null mouse line (2XENKO) lacking the xenobiotic receptors CAR (constitutive androstane receptor) (NR1I3) and PXR (pregnane X receptor) (NR1I2) was generated to study their functions in response to potentially toxic xenobiotic and endobiotic stimuli. Like the single knockouts, the 2XENKO mice are viable and fertile and show no overt phenotypes under normal conditions. As expected, they are completely insensitive to broad range xenobiotic inducers able to activate both receptors, such as clotrimazole and dieldrin. Comparisons of the single and double knockouts reveal specific roles for the two receptors. Thus, PXR does not contribute to the process of acetaminophen hepatotoxicity mediated by CAR, but both receptors contribute to the protective response to the hydrophobic bile acid lithocholic acid (LCA). As previously observed with PXR (Xie, W., Radominska-Pandya, A., Shi, Y., Simon, C. M., Nelson, M. C., Ong, E. S., Waxman, D. J., and Evans, R. M. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 3375-3380), pharmacologic activation of CAR induces multiple LCA detoxifying enzymes and provides strong protection against LCA toxicity. Comparison of their responses to LCA treatment demonstrates that CAR predominantly mediates induction of the cytochrome p450 CYP3A11 and the multidrug resistance-associated protein 3 transporter, whereas PXR is the major regulator of the Na+-dependent organic anion transporter 2. These differential responses may account for the significant sensitivity of the CAR knockouts, but not the PXR knockouts, to an acute LCA dose. Because this sensitivity is not further increased in the 2XENKO mice, CAR may play a primary role in acute responses to this toxic endobiotic. These results define a central role for CAR in LCA detoxification and show that CAR and PXR function coordinately to regulate both xenobiotic and bile acid metabolism.  相似文献   

11.
Pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are two nuclear receptors that are well-known for their roles in xenobiotic detoxification by regulating the expression of drug-metabolizing enzymes and transporters. In addition to metabolizing drugs and other xenobiotics, the same enzymes and transporters are also responsible for the production and elimination of numerous endogenous chemicals, or endobiotics. Moreover, both PXR and CAR are highly expressed in the liver. As such, it is conceivable that PXR and CAR have major potentials to affect the pathophysiology of the liver by regulating the homeostasis of endobiotics. In recent years, the physiological functions of PXR and CAR in the liver have been extensively studied. Emerging evidence has suggested the roles of PXR and CAR in energy metabolism, bile acid homeostasis, cell proliferation, to name a few. This review summarizes the recent progress in our understanding of the roles of PXR and CAR in liver physiology.  相似文献   

12.
The nuclear receptors and xenosensors constitutive androstane receptor (CAR, NR1I3) and pregnane X receptor (PXR, NR1I2) induce the expression of xenobiotic metabolizing enzymes and transporters, which also affects various endobiotics. While human and mouse CAR feature a high basal activity and low induction upon ligand exposure, we recently identified two constitutive androstane receptors in Xenopus laevis (xlCARα and β) that possess PXR-like characteristics such as low basal activity and activation in response to structurally diverse compounds. Using a set of complementary computational and biochemical approaches we provide evidence for xlCARα being the structural and functional counterpart of mammalian PXR. A three-dimensional model of the xlCARα ligand-binding domain (LBD) reveals a human PXR-like L-shaped ligand binding pocket with a larger volume than the binding pockets in human and murine CAR. The shape and amino acid composition of the ligand-binding pocket of xlCAR suggests PXR-like binding of chemically diverse ligands which was confirmed by biochemical methods. Similarly to PXR, xlCARα possesses a flexible helix 11’. Modest increase in the recruitment of coactivator PGC-1α may contribute to the enhanced basal activity of three gain-of-function xlCARα mutants humanizing key LBD amino acid residues. xlCARα and PXR appear to constitute an example of convergent evolution.  相似文献   

13.
14.
Timsit YE  Negishi M 《Steroids》2007,72(3):231-246
The xenobiotic receptors CAR and PXR constitute two important members of the NR1I nuclear receptor family. They function as sensors of toxic byproducts derived from endogenous metabolism and of exogenous chemicals, in order to enhance their elimination. This unique function of CAR and PXR sets them apart from the steroid hormone receptors. In contrast, the steroid receptors, exemplified by the estrogen receptor (ER) and glucocorticoid receptor (GR), are the sensors that tightly monitor and respond to changes in circulating steroid hormone levels to maintain body homeostasis. This divergence of the chemical- and steroid-sensing functions has evolved to ensure the fidelity of the steroid hormone endocrine regulation while allowing development of metabolic elimination pathways for xenobiotics. The development of the xenobiotic receptors CAR and PXR also reflect the increasing complexity of metabolism in higher organisms, which necessitate novel mechanisms for handling and eliminating metabolic by-products and foreign compounds from the body. The purpose of this review is to discuss similarities and differences between the xenobiotic receptors CAR and PXR with the prototypical steroid hormone receptors ER and GR. Interesting differences in structure explain in part the divergence in function and activation mechanisms of CAR/PXR from ER/GR. In addition, the physiological roles of CAR and PXR will be reviewed, with discussion of interactions of CAR and PXR with endocrine signaling pathways.  相似文献   

15.

Background

The nuclear hormone receptor (NR) superfamily complement in humans is composed of 48 genes with diverse roles in metabolic homeostasis, development, and detoxification. In general, NRs are strongly conserved between vertebrate species, and few examples of molecular adaptation (positive selection) within this superfamily have been demonstrated. Previous studies utilizing two-species comparisons reveal strong purifying (negative) selection of most NR genes, with two possible exceptions being the ligand-binding domains (LBDs) of the pregnane X receptor (PXR, NR1I2) and the constitutive androstane receptor (CAR, NR1I3), two proteins involved in the regulation of toxic compound metabolism and elimination. The aim of this study was to apply detailed phylogenetic analysis using maximum likelihood methods to the entire complement of genes in the vertebrate NR superfamily. Analyses were carried out both across all vertebrates and limited to mammals and also separately for the two major domains of NRs, the DNA-binding domain (DBD) and LBD, in addition to the full-length sequences. Additional functional data is also reported for activation of PXR and the vitamin D receptor (VDR; NR1I1) to gain further insight into the evolution of the NR1I subfamily.

Results

The NR genes appear to be subject to strong purifying selection, particularly in the DBDs. Estimates of the ratio of the non-synonymous to synonymous nucleotide substitution rates (the ω ratio) revealed that only the PXR LBD had a sub-population of codons with an estimated ω ratio greater than 1. CAR was also unusual in showing high relative ω ratios in both the DBD and LBD, a finding that may relate to the recent appearance of the CAR gene (presumably by duplication of a pre-mammalian PXR gene) just prior to the evolution of mammals. Functional analyses of the NR1I subfamily show that human and zebrafish PXRs show similar activation by steroid hormones and early bile salts, properties not shared by sea lamprey, mouse, or human VDRs, or by Xenopus laevis PXRs.

Conclusion

NR genes generally show strong sequence conservation and little evidence for positive selection. The main exceptions are PXR and CAR, genes that may have adapted to cross-species differences in toxic compound exposure.
  相似文献   

16.
Defining complete sets of gene family members from diverse species provides the foundation for comparative studies. Using a bioinformatic approach, we have defined the entire nuclear receptor complement within the first available complete sequence of a non-human vertebrate (the teleost fish Fugu rubripes). In contrast to the human set (48 total nuclear receptors), we found 68 nuclear receptors in the Fugu genome. All 68 Fugu receptors had a clear human homolog, thus defining no new nuclear receptor subgroups. A reciprocal analysis showed that each human receptor had one or more Fugu orthologs, excepting CAR (NR1I3) and LXRβ (NR1H2). These 68 receptors add striking diversity to the known nuclear receptor superfamily and provide important comparators to human nuclear receptors. We have compared several pharmacologically relevant human nuclear receptors (FXR, LXRα/β, CAR, PXR, VDR and PPARα/γ/δ) to their Fugu orthologs. This comparison included expression analysis across five Fugu tissue types. All of the Fugu receptors that were analyzed by PCR in this study were expressed, indicating that the majority of the additional Fugu receptors are likely to be functional.  相似文献   

17.
18.
SHP (small heterodimer partner, NR1I0) is an atypical orphan member of the nuclear receptor subfamily in that it lacks a DNA-binding domain. It is mostly expressed in the liver, where it binds to and inhibits the function of nuclear receptors. SHP is up-regulated by primary bile acids, through the activation of their receptor farnesoid X receptor, leading to the repression of cholesterol 7alpha-hydroxylase (CYP7alpha) expression, the rate-limiting enzyme in bile acid production from cholesterol. PXR (pregnane X receptor, NR1I2) is a broad-specificity sensor that recognizes a wide variety of synthetic drugs as well as endogenous compounds such as bile acid precursors. Upon activation, PXR induces CYP3A and inhibits CYP7alpha, suggesting that PXR can act on both bile acid synthesis and elimination. Indeed, CYP7alpha and CYP3A are involved in biochemical pathways leading to cholesterol conversion into primary bile acids, whereas CYP3A is also involved in the detoxification of toxic secondary bile acid derivatives. Here, we show that PXR is a target for SHP. Using pull-down assays, we show that SHP interacts with both murine and human PXR in a ligand-dependent manner. From transient transfection assays, SHP is shown to be a potent repressor of PXR transactivation. Furthermore, we report that chenodeoxycholic acid and cholic acid, two farnesoid X receptor ligands, induce up-regulation of SHP and provoke a repression of PXR-mediated CYP3A induction in human hepatocytes as well as in vivo in mice. These results reveal an elaborate regulatory cascade, tightly controlled by SHP, for both the maintenance of bile acid production and detoxification in the liver.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号