共查询到20条相似文献,搜索用时 0 毫秒
1.
It seems now, mainly from the results of the experiments carried out in the Department of Human Anatomy and Physiology of the University of Turin, Italy, that there is an active myogenic response in the coronary vessels. In response to changes in the transmural pressure, both increases and decreases, in the coronary vessels transient contractions and relaxations (respectively) of the smooth muscle wall can be demonstrated. Although this suggested mechanism can not be fully integrated into a hypothesis explaining autoregulation of blood flow in the coronary vessels it does seem a strong possibility that it takes part; but further investigation will be necessary to clarify all aspects of this kind of regulation. 相似文献
2.
Rita Rezzani Luigi Fabrizio Rodella Sandra Tengattini Francesca Bonomini Olga Pechánová Stanislava Kojsová Ramaroson Andriantsitohaina Rossella Bianchi 《The journal of histochemistry and cytochemistry》2006,54(8):923-932
The aim of this study was to evaluate the adverse effects of cyclosporine A (CsA) toward renal morphogenesis and to test the renoprotective natural antioxidants such as provinol (PV). Pregnant rats were divided into four groups. Group I was injected SC with olive oil. Group II was treated with oral administration of PV and was used as control. Group III animals were injected SC daily with CsA, and group IV animals were injected daily with CsA and PV for 21 days of pregnancy. Five pups per litter were killed and the kidneys removed and treated by morphological and immunohistochemical (IHC) methods. IHC analysis considered two proteins responsible for nephrotoxicity in adult rats: inducible nitric oxide (iNOS) and matrix metalloproteinase-2 (MMP2). Pregnancy outcomes among CsA-treated rats demonstrated a reduced number of pups. Pups that were exposed antenatally to CsA presented several pathologic findings in all immature parenchyma and an increase in iNOS and MMP2 expression. These side effects were not observed in kidney of litters born from CsA + PV-treated mothers. Our study indicates that CsA induces morphological alterations in renal parenchyma of neonates and that PV plays a protective role against these side effects. 相似文献
3.
A mathematical model of the renal vascular and tubular systems was used to examine the possibility that synergistic interactions might occur between the tubuloglomerular feedback (TGF) and myogenic autoregulatory mechanisms in the kidney. To simulate the myogenic mechanism, the renal vasculature was modelled with a resistance network where the total preglomerular resistance varies with intravascular pressure. In addition, a steady-state model of glomerular filtration, proximal and Henle's loop reabsorption, and TGF-modulation of afferent arteriolar resistance was derived. The results show that, if TGF acts on the distal portion of the preglomerular vasculature, then any TGF-induced vasoconstriction should raise upstream intravascular pressure and, thereby, trigger a myogenic response in the more proximal vascular segments, a phenomenon referred to as an ascending myogenic (AMYO) response. The model further predicts that the magnitude of the AMYO response can be similar in magnitude to the TGF-induced increment in afferent resistance. Hence, the effects of TGF excitation on whole kidney hemodynamics may be much greater than pedicted from measurements in single nephrons. Moreover, a significant fraction of the intrinsic myogenic autoregulatory response to increased renal perfusion pressure may result from a synergistic interaction between the TGF and myogenic mechanisms. 相似文献
4.
Positive autoregulation of the myogenic determination gene MyoD1 总被引:83,自引:0,他引:83
Transfection of cDNA expression vectors encoding either MyoD1 or myogenin into 10T1/2 cells converts them to myogenic cells. We show that transfection of 10T1/2 cells with the MyoD1 cDNA activates expression of endogenous MyoD1 mRNA, indicating that MyoD1 is subject to positive autoregulation. This activation of endogenous MyoD1 mRNA was also observed in Swiss 3T6 cells, but not in several other fibroblast or adipoblast cell lines transfected with the MyoD1 cDNA. In addition, transfection of the MyoD1 cDNA leads to activation of myogenin expression, and transfection of the myogenin cDNA leads to activation of MyoD1 expression. Thus, MyoD1 and myogenin appear to function in a positive autoregulatory loop that could either: account for or contribute to the stability of myogenic commitment; or amplify the level of expression of both MyoD1 and myogenin above a critical threshold that is required for activation of the myogenic program. 相似文献
5.
R.F. Spurney S.D. Mayros D. Collins P. Ruiz P.E. Klotman T. Coffman 《Prostaglandins & other lipid mediators》1990,39(2)
Cyclosporine A (CyA) nephorotoxicity is associated with impaired renal hemodynamic funtion and increased production of the vasoconstrictor eicosanoid thromboxane A2 (TxA2). In CyA toxic rats, renal dysfunction cna be partially reversed by inhibitors of thromoboxane sysnthase. However, interpretation of these results is complicated since inhibitance of thromboxane synthase may cause accumulation of prostaglandin endoperoxides that can act as partial agonists at the TxA2 receptor and may blunt the efficacy of treatment. Furthermore, these endoperoxides may be used as substrate for production of vasodilator prostaglandins causing beneficial effects on hemodynamics which are independent of thromboxane inhibition. To more specially examine the role of TxA2 in CyA toxicity, we investigated the effects of the thromboxane receptor antagonist GR32191 on renal hemodynamics in a rat model of CyA nephrotoxicity. In this model, administration of CyA resulted in a significant decrease in glomerular filtration rate (GFR) 2.85±0.26 [CyA] vs 6.82±0.96 ml/min/kg [vehicle]; p<0.0005) and renal blood flow (RBF) (21.6±2.31 [CyA] vs 31.8±3.60 ml/min/kg [vehicle]; p<0.025). Renal vascular resistance (RVR) was significantly higher in rats given CyA compared to animals treated with CyA vehicle (5.32±0.55 [cyCyA] vs 3.54±0.24 mm Hg/min/ml/kg [vehicle]; p<0.05). These hemodynamic alterations were associated with a significant increase in urinary excretion of unmetabolized, “native” thromboxane B2 (TxB2 (103±18 [CyA] vs 60±16 pg/hour [vehicle]; p<0.05). Only minimal histomorphologic changes were apparent by light microscopic examination of kidneys from both CyA and vehicle treated animals. However, with immunoperoxidase staining, a significantly greater number of cells experssing the rat common leukocyte antigen was found in the renal interstitium of rats given CyA*. There was no detectable increase in monocytes/macrophages in the kidneys of CyA toxic animals. In rats treated with CyA, intraarterial infusion of GR32191 at maximally tolerated doses significanlty increased GFR and RBD, and decreased RVR. Although both RBF and RVR were restored to levels not different from controls, GFR remained significantly reduced following administration of GR32191. These data suggest that the potent vasoconstrictor TxA2 plays an important role in mediating renal dysfunction in CyA nephrotoxicity. However, other factors may be important in producing nephrotoxicity associated with CyA. 相似文献
6.
Wang X Loutzenhiser RD Cupples WA 《American journal of physiology. Regulatory, integrative and comparative physiology》2007,293(3):R1199-R1204
Recent studies of renal autoregulation have shown modulation of the faster myogenic mechanism by the slower tubuloglomerular feedback and that the modulation can be detected in the dynamics of the myogenic mechanism. Conceptual and empirical considerations suggest that perfusion pressure may modulate the myogenic mechanism, although this has not been tested to date. Here we present data showing that the myogenic operating frequency, assessed by transfer-function analysis, varied directly as a function of perfusion pressure in the hydronephrotic kidney perfused in vitro over the range from 80 to 140 mmHg. A similar result was obtained in intact kidneys in vivo when renal perfusion pressure was altered by systemic injection of N(G)-nitro-L-arginine methyl ester (L-NAME). When perfusion pressure was not allowed to increase, L-NAME did not affect the myogenic operating frequency despite equivalent reduction of renal vascular conductance. Blood-flow dynamics were assessed in the superior mesenteric artery before and after L-NAME. In this vascular bed, the operating frequency of the myogenic mechanism was not affected by perfusion pressure. Thus the operating frequency of the renal myogenic mechanism is modulated by perfusion pressure independently of tubuloglomerular feedback, and the data suggest some degree of renal specificity of this response. 相似文献
7.
Cyclosporine A (CyA) nephrotoxicity is associated with impaired renal hemodynamic function and increased production of the vasoconstrictor eicosanoid thromboxane A2 (TxA2). In CyA toxic rats, renal dysfunction can be partially reversed by inhibitors of thromboxane synthase. However, interpretation of these results is complicated since inhibition of thromboxane synthase may cause accumulation of prostaglandin endoperoxides that can act as partial agonists at the TxA2 receptor and may blunt the efficacy of treatment. Furthermore, these endoperoxides may be used as substrate for production of vasodilator prostaglandins causing beneficial effects on hemodynamics which are independent of thromboxane inhibition. To more specifically examine the role of TxA2 in CyA toxicity, we investigated the effects of the thromboxane receptor antagonist GR32191 on renal hemodynamics in a rat model of CyA nephrotoxicity. In this model, administration of CyA resulted in a significant decrease in glomerular filtration rate (GFR) (2.85 +/- 0.26 [CyA] vs 6.82 +/- 0.96 ml/min/kg [vehicle]; p less than 0.0005) and renal blood flow (RBF) (21.65 +/- 2.31 [CyA] vs 31.87 +/- 3.60 ml/min/kg [vehicle]; p less than 0.025). Renal vascular resistance (RVR) was significantly higher in rats given CyA compared to animals treated with CyA vehicle (5.32 +/- 0.55 [CyA] vs. 3.54 +/- 0.24 mm Hg/min/ml/kg [vehicle]; p less than 0.05). These renal hemodynamic alterations were associated with a significant increase in urinary excretion of unmetabolized, "native" thromboxane B2 (TxB2) (103 +/- 18 [CyA] vs 60 +/- 16 pg/hour [vehicle]; p less than 0.05). Only minimal histomorphologic changes were apparent by light microscopic examination of kidneys from both CyA and vehicle treated animals. However, with immunoperoxidase staining, a significantly greater number of cells expressing the rat common leukocyte antigen was found in the renal interstitium of rats given CyA. There was no detectable increase in monocytes/macrophages in the kidneys of CyA toxic animals. In rats treated with CyA, intraarterial infusion of GR32191 at maximally tolerated doses significantly increased GFR and RBF, and decreased RVR. Although both RBF and RVR were restored to levels not different from controls, GFR remained significantly reduced following administration of GR32191. These data suggest that the potent vasoconstrictor TxA2 plays an important role in mediating renal dysfunction in CyA nephrotoxicity. However, other factors may be important in producing nephrotoxicity associated with CyA. 相似文献
8.
Shi Y Wang X Chon KH Cupples WA 《American journal of physiology. Regulatory, integrative and comparative physiology》2006,290(4):R982-R991
Nonselective inhibition of nitric oxide (NO) synthase (NOS) augments myogenic autoregulation, an action that implies enhancement of pressure-induced constriction and dilatation. This pattern is not explained solely by interaction with a vasoconstrictor pathway. To test involvement of the Rho-Rho kinase pathway in modulation of autoregulation by NO, the selective Rho kinase inhibitor Y-27632 and/or the NOS inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME) were infused into the left renal artery of anesthetized rats. Y-27632 and l-NAME were also infused into isolated, perfused hydronephrotic kidneys to assess myogenic autoregulation over a wide range of perfusion pressure. In vivo, l-NAME reduced renal vascular conductance and augmented myogenic autoregulation, as shown by increased slope of gain reduction and associated phase peak in the pressure-flow transfer function. Y-27632 (10 mumol/l) strongly dilated the renal vasculature and profoundly inhibited autoregulation in the absence or presence of l-NAME in vivo and in vitro. Afferent arteriolar constriction induced by 30 mmol/l KCl was reversed (-92 +/- 3%) by Y-27632. Phenylephrine caused strong renal vasoconstriction but did not affect autoregulation. Inhibition of neuronal NOS by N(5)-(1-imino-3-butenyl)-l-ornithine (l-VNIO) did not cause significant vasoconstriction but did augment myogenic autoregulation. Thus vasoconstriction is neither necessary (l-VNIO) nor sufficient (phenylephrine) to explain the augmented myogenic autoregulation induced by l-NAME. The effect of l-VNIO implicates tubuloglomerular feedback (TGF) and neuronal NOS at the macula densa in regulation of the myogenic mechanism. This conclusion was confirmed by the demonstration that systemic furosemide removed the TGF signature from the pressure-flow transfer function and significantly inhibited myogenic autoregulation. In the presence of furosemide, augmentation of myogenic autoregulation by l-NAME was significantly reduced. These results provide a potential mechanism to explain interaction between myogenic and TGF-mediated autoregulation. 相似文献
9.
Nishino Y Takemura S Minamiyama Y Hirohashi K Tanaka H Inoue M Okada S Kinoshita H 《Redox report : communications in free radical research》2002,7(5):317-319
Vancomycin, a glycopeptide antibiotic, has a broad spectrum against methicillin-resistant Staphylococcus aureus (MRSA). Because vancomycin induces renal dysfunction, the dose and the duration of its administration are limited. The mechanism of vancomycin-induced renal dysfunction is not known. We recently synthesized a hexamethylenediamine-conjugated cationic superoxide dismutase (AH-SOD) which rapidly accumulates in renal proximal tubule cells and inhibits oxidative injury of the kidney. The present work reports the protective effects of AH-SOD against vancomycin-induced renal dysfunction. Male Wistar rats (200-210 g) were intraperitoneally administered with either 200 or 400 mg/kg of vancomycin twice a day for 7 days. Either 5 mg/kg/day AH-SOD or saline was subcutaneously injected 5 min before every vancomycin injection. Biochemical analysis revealed that plasma levels of blood urea nitrogen and creatinine increased significantly in vancomycin-treated group by an AH-SOD-inhibitable mechanism. Histological examination revealed that vancomycin also elicited a marked destruction of glomeruli and necrosis of proximal tubule by an AH-SOD inhibitable mechanism. These results suggest that oxidative stress underlies the pathogenesis of vancomycin-induced nephrotoxicity and that targeting SOD and/or related antioxidants to renal proximal tubule cells might permit the administration of higher doses of vancomycin sufficient for eradication of MRSA without causing renal injury. 相似文献
10.
目的:探讨芸香甙(Rutoside,Ru)对环孢素A(cyciosporine A,CsA)肾毒性防护作用及其机制.方法:取雄性SD大鼠20只,随机分为4组(n=5):正常对照组、Ru组、CsA模型组、CsA+Ru治疗组.CsA模型组和CsA+Ru治疗组均用CsA 50mg/kg灌胃,Ru组与CsA+Ru组分别腹腔注射NS 10ml/kg+Ru 20mg/kg.以上各组每天给药一次,连续给药15天.各组大鼠于给药第14天后置代谢笼中收集24h尿液,测定尿Cr、尿蛋白含量.末次给药5个小时后,取血检测血清Cr、BUN含量和肾组织中丙二醛(MDA)含量、内皮素(ET)含量和超氧化物歧化酶(SOD)活性;肾组织用10%甲醛溶液固定,石蜡包埋,HE染色,光镜观察肾组织其形态学变化.结果:Ru对CsA所致的尿蛋白、BUN、Cr、肾组织MDA、ET含量的升高均有显著降低作用,并明显增加肾组织SOD活性,对CsA引起的肾小球与肾小管的病理性损伤有较好的保护作用.结论:Ru对CsA所致的肾脏毒性具有明显的保护作用. 相似文献
11.
Blood pressure fluctuates continuously throughout life and autoregulation is the primary mechanism that isolates the kidney from this fluctuation. Compared with Wistar rats, Brown Norway (B-N) rats display impaired renal myogenic autoregulation when blood pressure fluctuation is increased. They also are very susceptible to hypertension-induced renal injury. Because blockade of nitric oxide augments myogenic autoregulation in Wistar rats, we compared the response of the myogenic system in B-N rats to nitric oxide blockade with that of other strains [Wistar, Sprague-Dawley, Long-Evans, spontaneously hypertensive (SHR)]. Renal blood flow dynamics were assessed in isoflurane anesthetized rats before and after inhibition of nitric oxide synthase by Lomega-nitro-arginine methyl-ester (L-NAME, 10 mg/kg, iv). Under control conditions, myogenic autoregulation in the B-N rats was weaker than in the other strains. Myogenic autoregulation was not augmented after L-NAME administration in the SHR, but was augmented in all the normotensive rats. The enhancement was significantly greater in B-N rats so that after L-NAME the efficiency of autoregulation did not differ among the strains. The data suggest that nitric oxide is involved in the impaired myogenic autoregulation seen in B-N rats. Furthermore, the similarity of response in Wistar, Long-Evans, and Sprague-Dawley rats suggests that modulation by nitric oxide is a fundamental property of renal myogenic autoregulation. 相似文献
12.
Harder DR Narayanan J Gebremedhin D 《American journal of physiology. Heart and circulatory physiology》2011,300(5):H1557-H1565
While myogenic force in response to a changing arterial pressure has been described early in the 20th century, it was not until 1984 that the effect of a sequential increase in intraluminal pressure on cannulated cerebral arterial preparations was found to result in pressure-dependent membrane depolarization associated with spike generation and reduction in lumen diameter. Despite a great deal of effort by different laboratories and investigators, the identification of the existence of a mediator of the pressure-induced myogenic constriction in arterial muscle remained a challenge. It was the original finding by our laboratory that demonstrated the capacity of cerebral arterial muscle cells to express the cytochrome P-450 4A enzyme that catalyzes the formation of the potent vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE) from arachidonic acid, the production of which in cerebral arterial muscle cells increases with the elevation in intravascular pressure. 20-HETE activates protein kinase C and causes the inhibition of Ca(2+)-activated K(+) channels, depolarizes arterial muscle cell membrane, and activates L-type Ca(2+) channel to increase intracellular Ca(2+) levels and evoke vasoconstriction. The inhibition of 20-HETE formation attenuates pressure-induced arterial myogenic constriction in vitro and blunts the autoregulation of cerebral blood flow in vivo. We suggest that the formation and action of cytochrome P-450-derived 20-HETE in cerebral arterial muscle could play a critically important role in the control of cerebral arterial tone and the autoregulation of cerebral blood flow under physiological conditions. 相似文献
13.
14.
Ito I Jarajapu YP Grant MB Knot HJ 《American journal of physiology. Heart and circulatory physiology》2007,292(1):H360-H368
The pressure-induced constriction in the rat ophthalmic artery was characterized. Ophthalmic arteries were isolated, cannulated in an arteriograph, and pressurized. Arteries developed 25% constriction at 70 mmHg of intraluminal pressure. Arteries maintained almost similar diameter over the range of pressures 50-210 mmHg, and forced dilatation was observed at pressures >210 mmHg. Denudation of endothelium increased the sensitivity of arteries to pressure-induced constriction, and significantly higher myogenic tone was observed in the pressure range of 10-100 mmHg. Indomethacin and cyclooxygenase-2 inhibition by SC-236 decreased myogenic tone, whereas cyclooxygenase-1 inhibition by SC-560 potentiated myogenic tone in a lower concentration range and decreased at a higher concentration. Pressure-induced constriction was completely blocked by 1 microM nifedipine. Phospholipase C inhibition by 6 microM U-73122 decreased myogenic tone by 39%, whereas PKC inhibitor GF-109203X (3 microM) had no effect. Constriction to phenylephrine was significantly decreased by U-73122 (1 microM) and GF-109203X (3 microM) at an intraluminal pressure of 10 mmHg. Rho-kinase inhibition by Y-27632 (30 microM) and HA-1077 (30 microM) decreased myogenic tone by 75% and 73%, respectively, and 1 microM Y-27632 significantly decreased myogenic tone developed in response to graded increases in pressure. These results suggest that rat ophthalmic artery has an efficient pressure-dependent autoregulatory function that is modulated by endothelium. Contribution of phospholipase C-activation to myogenic tone is minimal, whereas Rho-kinase activation plays a predominant role in the myogenic reactivity in this artery. 相似文献
15.
Improved biomarkers of acute nephrotoxicity are coveted by the drug development industry, regulatory agencies, and clinicians. In an effort to identify such biomarkers, urinary peptide profiles of rats treated with two different nephrotoxins were investigated. 493 marker candidates were defined that showed a significant response to cis-platin comparing a cis-platin treated cohort to controls. Next, urine samples from rats that received three consecutive daily doses of 150 or 300 mg/kg gentamicin were examined. 557 potential biomarkers were initially identified; 108 of these gentamicin-response markers showed a clear temporal response to treatment. 39 of the cisplatin-response markers also displayed a clear response to gentamicin. Of the combined 147 peptides, 101 were similarly regulated by gentamicin or cis-platin and 54 could be identified by tandem mass spectrometry. Most were collagen type I and type III fragments up-regulated in response to gentamicin treatment. Based on these peptides, classification models were generated and validated in a longitudinal study. In agreement with histopathology, the observed changes in classification scores were transient, initiated after the first dose, and generally persistent over a period of 10-20 days before returning to control levels. The data support the hypothesis that gentamicin-induced renal toxicity up-regulates protease activity, resulting in an increase in several specific urinary collagen fragments. Urinary proteomic biomarkers identified here, especially those common to both nephrotoxins, may serve as a valuable tool to investigate potential new drug candidates for the risk of nephrotoxicity. 相似文献
16.
Ledeganck KJ Boulet GA Horvath CA Vinckx M Bogers JJ Van Den Bossche R Verpooten GA De Winter BY 《American journal of physiology. Renal physiology》2011,301(3):F486-F493
Renal magnesium (Mg(2+)) and sodium (Na(+)) loss are well-known side effects of cyclosporine (CsA) treatment in humans, but the underlying mechanisms still remain unclear. Recently, it was shown that epidermal growth factor (EGF) stimulates Mg(2+) reabsorption in the distal convoluted tubule (DCT) via TRPM6 (Thébault S, Alexander RT, Tiel Groenestege WM, Hoenderop JG, Bindels RJ. J Am Soc Nephrol 20: 78-85, 2009). In the DCT, the final adjustment of renal sodium excretion is regulated by the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC), which is activated by the renin-angiotensin-aldosterone system (RAAS). The aim of this study was to gain more insight into the molecular mechanisms of CsA-induced hypomagnesemia and hyponatremia. Therefore, the renal expression of TRPM6, TRPM7, EGF, EGF receptor, claudin-16, claudin-19, and the NCC, and the effect of the RAAS on NCC expression, were analyzed in vivo in a rat model of CsA nephrotoxicity. Also, the effect of EGF administration on these parameters was studied. CsA significantly decreased the renal expression of TRPM6, TRPM7, NCC, and EGF, but not that of claudin-16 and claudin-19. Serum aldosterone was significantly lower in CsA-treated rats. In control rats treated with EGF, an increased renal expression of TRPM6 together with a decreased fractional excretion of Mg(2+) (FE Mg(2+)) was demonstrated. EGF did not show this beneficial effect on TRPM6 and FE Mg(2+) in CsA-treated rats. These data suggest that CsA treatment affects Mg(2+) homeostasis via the downregulation of TRPM6 in the DCT. Furthermore, CsA downregulates the NCC in the DCT, associated with an inactivation of the RAAS, resulting in renal sodium loss. 相似文献
17.
We have shown that, in addition to inhibition of the succinate-supported energy pathway (5), CS inhibition of mitochondrial Complex II activity also limits fatty acid oxidation. These results are consistent with the participation of altered lipid metabolism in CS nephrotoxicity. 相似文献
18.
Carlson BE Arciero JC Secomb TW 《American journal of physiology. Heart and circulatory physiology》2008,295(4):H1572-H1579
The autoregulation of blood flow, the maintenance of almost constant blood flow in the face of variations in arterial pressure, is characteristic of many tissue types. Here, contributions to the autoregulation of pressure-dependent, shear stress-dependent, and metabolic vasoactive responses are analyzed using a theoretical model. Seven segments, connected in series, represent classes of vessels: arteries, large arterioles, small arterioles, capillaries, small venules, large venules, and veins. The large and small arterioles respond actively to local changes in pressure and wall shear stress and to the downstream metabolic state communicated via conducted responses. All other segments are considered fixed resistances. The myogenic, shear-dependent, and metabolic responses of the arteriolar segments are represented by a theoretical model based on experimental data from isolated vessels. To assess autoregulation, the predicted flow at an arterial pressure of 130 mmHg is compared with that at 80 mmHg. If the degree of vascular smooth muscle activation is held constant at 0.5, there is a fivefold increase in blood flow. When myogenic variation of tone is included, flow increases by a factor of 1.66 over the same pressure range, indicating weak autoregulation. The inclusion of both myogenic and shear-dependent responses results in an increase in flow by a factor of 2.43. A further addition of the metabolic response produces strong autoregulation with flow increasing by a factor of 1.18 and gives results consistent with experimental observation. The model results indicate that the combined effects of myogenic and metabolic regulation overcome the vasodilatory effect of the shear response and lead to the autoregulation of blood flow. 相似文献
19.
Enouri S Monteith G Johnson R 《American journal of physiology. Regulatory, integrative and comparative physiology》2011,300(2):R470-R478
Mechanisms of mechanically induced venous tone and its interaction with the endothelium and key vasoactive neurohormones are not well established. We investigated the contribution of the endothelium, l-type voltage-operated calcium channels (L-VOCCs), and PKC and Rho kinase to myogenic reactivity in mesenteric vessels exposed to increasing transmural pressure. The interaction of myogenic reactivity with norepinephrine (NE) and endothelin-1 (ET-1) was also investigated. Pressure myography was used to study isolated, cannulated, third-order rat mesenteric small veins and arteries. NE and ET-1 concentration response curves were constructed at low, intermediate, and high transmural pressures. Myogenic reactivity was not altered by nitric oxide synthase inhibition with N(ω)-nitro-L-arginine (L-NNA; 100 μM) or endothelium removal in both vessels. L-VOCCs blockade (nifedipine, 1 μM) completely abolished arterial tone, while only partially reducing venous tone. PKC (chelerythrine, 2.5 μM) and Rho kinase (Y27632, 3 μM) inhibitors largely abolished venous and arterial myogenic reactivity. There was no significant difference in the sensitivity of NE or ET-1-induced contractions within vessels. However, veins were more sensitive to NE and ET-1 when compared with corresponding arteries at low, intermediate, and high transmural pressures, respectively. These results suggest that 1) myogenic factors are important contributors to net venous tone in mesenteric veins; 2) PKC and Rho activation are important in myogenic reactivity in both vessels, while l-VOCCs play a limited role in the veins vs. the arteries, and the endothelium does not appear to modulate myogenic reactivity in either vessel type; and 3) mesenteric veins maintain an enhanced sensitivity to NE and ET-1 compared with the arteries when studied under conditions of changing transmural distending pressure. 相似文献
20.
Toshiaki Shibasaki Hirofumi Nakano Iwao Ohno Fumio Ishimoto Osamu Sakai 《Biological trace element research》1994,41(3):245-251
We developed a rat model of cadmium (Cd)-induced nephrotoxicity and tried to prevent renal damage by treating the animals with pentoxifylline (PTX). Sprague-Dawley (SD) rats given CdCl2 3.0 mg/kg sc, daily for 2 wk showed evidences of renal proximal tubular damage, including significant increases in urine volume, urinary excretion ofN-acetyl-β-D-glucosaminidase (NAG), alanine aminopeptidase (AAP), and fractional excretion of sodium (FENa), and a decrease in the percentage of tubular reabsorption of phosphate (%TRP). PTX significantly improved the urinary excretion of NAG and %TRP. Urine volume was increased threefold in the CdCl2-treated rats and fivefold in the Cd+PTX-treated rats, respectively, as compared with saline-treated control. Total protein, AAP, and creatinine clearance, showed no change after PTX administration. Concentration of Cd in the renal cortex was three times higher than that in the renal medulla, but there were no differences in concentration between the Cd-treated rats and the Cd+PTX-treated rats. Our animal model was useful in studying the renal tubular damage produced by cadmium. PTX appears useful for improving the nephrotoxicity of Cd. 相似文献