首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An approach for generating efficient RNnnS, nk {\rm{RN}}_{n}^{\nu_{\rm{S}}, {\nu_{\rm{k}}}} symmetry-based dual channel RF pulse schemes for γ-encoded broadband 15N–13C dipolar recoupling at high magic angle spinning frequencies is presented. The method involves the numerical optimisation of the RF phase-modulation profile of the basic “R” element so as to obtain heteronuclear double quantum dipolar recoupling sequences with satisfactory magnetisation transfer characteristics. The basic “R” element was implemented as a sandwich of a small number of short pulses of equal duration with each pulse characterised by a RF phase and amplitude values. The performance characteristics of the sequences were evaluated via numerical simulations and 15N–13C chemical shift correlation experiments. Employing such 13C–15N double-quantum recoupling sequences and the multiple receiver capabilities available in the current generation of NMR spectrometers, the possibility to simultaneously acquire 3D NCC and CNH chemical shift correlation spectra is also demonstrated.  相似文献   

2.
A novel NMR pulse sequence has been developed that correlates the H2 resonances with the C2 and the N1 (N3) resonances in adenine nucleobases of 13C, 15N labeled oligonucleotides. The pulse scheme of the new 3D-HNHC experiment is composed of a 2J-15N-HSQC and a 1J-13C-HSQC and utilizes large 2J(H2, N1(N3)) and 1J(H2, C2) couplings. The experiment was applied to a medium-size 13C, 15N-labeled 36mer RNA. It is useful to resolve assignment ambiguities occurring especially in larger RNA molecules due to resonance overlap in the 1H-dimension. Therefore, the missing link in correlating the imino H3 resonances of the uracils across the AU base pair to the H8 resonances of the adenines via the novel pulse sequence and the TROSY relayed HCCH-COSY (Simon et al. in J Biomol NMR 20:173–176 2001) is provided. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
The linear analysis of chemical shifts (LACS) has provided a robust method for identifying and correcting 13C chemical shift referencing problems in data from protein NMR spectroscopy. Unlike other approaches, LACS does not require prior knowledge of the three-dimensional structure or inference of the secondary structure of the protein. It also does not require extensive assignment of the NMR data. We report here a way of extending the LACS approach to 15N NMR data from proteins, so as to enable the detection and correction of inconsistencies in chemical shift referencing for this nucleus. The approach is based on our finding that the secondary 15N chemical shift of the backbone nitrogen atom of residue i is strongly correlated with the secondary chemical shift difference (experimental minus random coil) between the alpha and beta carbons of residue i − 1. Thus once alpha and beta 13C chemical shifts are available (their difference is referencing error-free), the 15N referencing can be validated, and an appropriate offset correction can be derived. This approach can be implemented prior to a structure determination and can be used to analyze potential referencing problems in database data not associated with three-dimensional structure. Application of the LACS algorithm to the current BMRB protein chemical shift database, revealed that nearly 35% of the BMRB entries have δ 15N values mis-referenced by over 0.7 ppm and over 25% of them have δ 1HN values mis-referenced by over 0.12 ppm. One implication of the findings reported here is that a backbone 15N chemical shift provides a better indicator of the conformation of the preceding residue than of the residue itself. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Hobbie EA  Jumpponen A  Trappe J 《Oecologia》2005,146(2):258-268
Nitrogen isotopes (15N/14N ratios, expressed as δ15N values) are useful markers of the mycorrhizal role in plant nitrogen supply because discrimination against 15N during creation of transfer compounds within mycorrhizal fungi decreases the 15N/14N in plants (low δ15N) and increases the 15N/14N of the fungi (high δ15N). Analytical models of 15N distribution would be helpful in interpreting δ15N patterns in fungi and plants. To compare different analytical models, we measured nitrogen isotope patterns in soils, saprotrophic fungi, ectomycorrhizal fungi, and plants with different mycorrhizal habits on a glacier foreland exposed during the last 100 years of glacial retreat and on adjacent non-glaciated terrain. Since plants during early primary succession may have only limited access to propagules of mycorrhizal fungi, we hypothesized that mycorrhizal plants would initially be similar to nonmycorrhizal plants in δ15N and then decrease, if mycorrhizal colonization were an important factor influencing plant δ15N. As hypothesized, plants with different mycorrhizal habits initially showed similar δ15N values (−4 to −6‰ relative to the standard of atmospheric N2 at 0‰), corresponding to low mycorrhizal colonization in all plant species and an absence of ectomycorrhizal sporocarps. In later successional stages where ectomycorrhizal sporocarps were present, most ectomycorrhizal and ericoid mycorrhizal plants declined by 5–6‰ in δ15N, suggesting transfer of 15N-depleted N from fungi to plants. The values recorded (−8 to −11‰) are among the lowest yet observed in vascular plants. In contrast, the δ15N of nonmycorrhizal plants and arbuscular mycorrhizal plants declined only slightly or not at all. On the forefront, most ectomycorrhizal and saprotrophic fungi were similar in δ15N (−1 to −3‰), but the host-specific ectomycorrhizal fungus Cortinarius tenebricus had values of up to 7‰. Plants, fungi and soil were at least 4‰ higher in δ15N from the mature site than in recently exposed sites. On both the forefront and the mature site, host-specific ectomycorrhizal fungi had higher δ15N values than ectomycorrhizal fungi with a broad host range. From these isotopic patterns, we conclude:(1) large enrichments in 15N of many ectomycorrhizal fungi relative to co-occurring ectomycorrhizal plants are best explained by treating the plant-fungal-soil system as a closed system with a discrimination against 15N of 8–10‰ during transfer from fungi to plants, (2) based on models of 15N mass balance, ericoid and ectomycorrhizal fungi retain up to two-thirds of the N in the plant-mycorrhizal system under the N-limited conditions at forefront sites, (3) sporocarps are probably enriched in 15N by an additional 3‰ relative to available nitrogen, and (4) host-specific ectomycorrhizal fungi may transfer more N to plant hosts than non-host-specific ectomycorrhizal fungi. Our study confirms that nitrogen isotopes are a powerful tool for probing nitrogen dynamics between mycorrhizal fungi and associated plants.  相似文献   

5.
We describe here, adaptation of the HNN pulse sequence for multiple nuclei detection using two independent receivers by utilizing the detectable 13Cα transverse magnetization which was otherwise dephased out in the conventional HNN experiment. It enables acquisition of 2D 13Cα15N sequential correlations along with the standard 3D 15N–15N–1H correlations, which provides directionality to sequential walk in HNN, on one hand, and enhances the speed of backbone assignment, on the other. We foresee that the implementation of dual direct detection opens up new avenues for a wide variety of modifications that would further enhance the value and applications of the experiment, and enable derivation of hitherto impossible information.  相似文献   

6.
Dematin is an actin-binding protein abundant in red blood cells and other tissues. It contains a villin-type ‘headpiece’ F-actin-binding domain at its extreme C-terminus. The isolated dematin headpiece domain (DHP) undergoes a significant conformational change upon phosphorylation. The mutation of Ser74 to Glu closely mimics the phosphorylation of DHP. We investigated motions in the backbone of DHP and its mutant DHPS74E using several complementary NMR relaxation techniques: laboratory frame 15N NMR relaxation, which is sensitive primarily to the ps–ns time scale, cross-correlated chemical shift modulation NMR relaxation detecting correlated μs–ms time scale motions of neighboring 13C′ and 15N nuclei, and cross-correlated relaxation of two 15N–1H dipole–dipole interactions detecting slow motions of backbone NH vectors in successive amino acid residues. The results indicate a reduction in mobility upon the mutation in several regions of the protein. The additional salt bridge formed in DHPS74E that links the N- and C-terminal subdomains is likely to be responsible for these changes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
In order to confirm that mechanosensitive Ca2+ channels are activated by membrane stretching, we stretched or compressed the plasma membrane of Chara by applying osmotic shrinkage or swelling of the cell by varying the osmotic potential of the bathing medium. Aequorin studies revealed that treatments causing membrane stretching induced a transient but large increase in cytoplasmic concentration of Ca2+ (Δ[Ca2+]c). However, the observed Δ[Ca2+]c decreased during the treatments, resulting in membrane compression. A second experiment was carried out to study the relationship between changes in membrane potential (ΔE m) and stretching or compression of the plasma membrane. Significant ΔE m values, often accompanied by an action potential, were observed during the initial exchange of the bathing medium from a hypotonic medium to a hypertonic one (plasmolysis). ΔE m appears to be triggered by a partial stretching of the membrane as it was peeled from the cell wall. After plasmolysis, other exchanges from hypertonic to hypotonic media, with their accompanying membrane stretching, always induced large ΔE m values and were often accompanied by an action potential. By contrast, action potentials were scarcely observed during other exchanges from hypotonic to hypertonic solutions (=membrane compression). Thus, we concluded that activation of the mechanosensitive channels is triggered by membrane stretching in Chara.  相似文献   

8.
High resolution 13C-detected solid-state NMR spectra of the deuterated beta-1 immunoglobulin binding domain of the protein G (GB1) have been collected to show that all 15N, 13C′, 13Cα and 13Cβ sites are resolved in 13C–13C and 15N–13C spectra, with significant improvement in T 2 relaxation times and resolution at high magnetic field (750 MHz). The comparison of echo T 2 values between deuterated and protonated GB1 at various spinning rates and under different decoupling schemes indicates that 13T 2′ times increase by almost a factor of two upon deuteration at all spinning rates and under moderate decoupling strength, and thus the deuteration enables application of scalar-based correlation experiments that are challenging from the standpoint of transverse relaxation, with moderate proton decoupling. Additionally, deuteration in large proteins is a useful strategy to selectively detect polar residues that are often important for protein function and protein–protein interactions.  相似文献   

9.
The use of stable isotopes to investigate animal diets, habitat use, and trophic level requires understanding the rate at which animals incorporate the 13C and 15N from their diets and the factors that determine the magnitude of the difference in isotopic composition between the animal’s diet and that of its tissues. We determined the contribution of growth and catabolic turnover to the rate of 13C and 15N incorporation into several tissues that can be sampled non-invasively (skin, scute, whole blood, red blood cells, and plasma solutes) in two age classes of a rapidly growing ectotherm (loggerhead turtles, Caretta caretta). We found significant differences in C and N incorporation rates and isotopic discrimination factors (Δ13C = δ13Ctissues − δ13Cdiet and Δ15N = δ15Ntissues − δ15Ndiet) among tissues and between age classes. Growth explained from 26 to 100% of the total rate of incorporation in hatchling turtles and from 15 to 52% of the total rate of incorporation in juvenile turtles. Because growth contributed significantly to the rate of isotopic incorporation, variation in rates among tissues was lower than reported in previous studies. The contribution of growth can homogenize the rate of isotopic incorporation and limit the application of stable isotopes to identify dietary changes at contrasting time scales and to determine the timing of diet shifts. The isotopic discrimination factor of nitrogen ranged from −0.64 to 1.77‰ in the turtles’ tissues. These values are lower than the commonly assumed average 3.4‰ discrimination factors reported for whole body and muscle isotopic analyses. The increasing reliance on non-invasive and non-destructive sampling in animal isotopic ecology requires that we recognize and understand why different tissues differ in isotopic discrimination factors.  相似文献   

10.
The paper presents a set of two-dimensional experiments that utilize direct 13C detection to provide proton–carbon, carbon–carbon and carbon–nitrogen correlations in the bases of nucleic acids. The set includes a 13C-detected proton–carbon correlation experiment for the measurement of 13C–13C couplings, the CaCb experiment for correlating two quaternary carbons, the HCaCb experiment for the 13C–13C correlations in cases where one of the carbons has a proton attached, the HCC-TOCSY experiment for correlating a proton with a network of coupled carbons, and a 13C-detected 13C–15N correlation experiment for detecting the nitrogen nuclei that cannot be detected via protons. The IPAP procedure is used for extracting the carbon–carbon couplings and/or carbon decoupling in the direct dimension, while the S3E procedure is preferred in the indirect dimension of the carbon–nitrogen experiment to obtain the value of the coupling constant. The experiments supply accurate values of 13C and 15N chemical shifts and carbon–carbon and carbon–nitrogen coupling constants. These values can help to reveal structural features of nucleic acids either directly or via induced changes when the sample is dissolved in oriented media. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
A simple spectroscopic filtering technique is presented that may aid the assignment of 13C and 15N resonances of methyl-containing amino-acids in solid-state magic-angle spinning (MAS) NMR. A filtering block that selects methyl resonances is introduced in two-dimensional (2D) 13C-homonuclear and 15N–13C heteronuclear correlation experiments. The 2D 13C–13C correlation spectra are recorded with the methyl filter implemented prior to a 13C–13C mixing step. It is shown that these methyl-filtered 13C-homonuclear correlation spectra are instrumental in the assignment of Cδ resonances of leucines by suppression of Cγ–Cδ cross peaks. Further, a methyl filter is implemented prior to a 15N–13C transferred-echo double resonance (TEDOR) exchange scheme to obtain 2D 15N–13C heteronuclear correlation spectra. These experiments provide correlations between methyl groups and backbone amides. Some of the observed sequential 15N–13C correlations form the basis for initial sequence-specific assignments of backbone signals of the outer-membrane protein G.  相似文献   

12.
Pentaerythritol tetranitrate reductase (PETNR) is a flavoenzyme possessing a broad substrate specificity and is a member of the Old Yellow Enzyme family of oxidoreductases. As well as having high potential as an industrial biocatalyst, PETNR is an excellent model system for studying hydrogen transfer reactions. Mechanistic studies performed with PETNR using stopped-flow methods have shown that tunneling contributes towards hydride transfer from the NAD(P)H coenzyme to the flavin mononucleotide (FMN) cofactor and fast protein dynamics have been inferred to facilitate this catalytic step. Herein, we report the near-complete 1H, 15N and 13C backbone resonance assignments of PETNR in a stoichiometric complex with the FMN cofactor in its native oxidized form, which were obtained using heteronuclear multidimensional NMR spectroscopy. A total of 97% of all backbone resonances were assigned, with 333 out of a possible 344 residues assigned in the 1H–15N TROSY spectrum. This is the first report of an NMR structural study of a flavoenzyme from the Old Yellow Enzyme family and it lays the foundation for future investigations of functional dynamics in hydride transfer catalytic mechanism.  相似文献   

13.
The hyphae of ectomycorrhizal and ericoid mycorrhizal fungi proliferate in nitrogen (N)-limited forests and tundra where the availability of inorganic N is low; under these conditions the most common fungal species are those capable of protein degradation that can supply their host plants with organic N. Although it is widely understood that these symbiotic fungi supply N to their host plants, the transfer is difficult to quantify in the field. A novel approach uses the natural 15N:14N ratios (expressed as δ15N values) in plants, soils, and mycorrhizal fungi to estimate the fraction of N in symbiotic trees and shrubs that enters through mycorrhizal fungi. This calculation is possible because mycorrhizal fungi discriminate against 15N when they create compounds for transfer to plants; host plants are depleted in 15N, whereas mycorrhizal fungi are enriched in 15N. The amount of carbon (C) supplied to these fungi can be stoichiometrically calculated from the fraction of plant N derived from the symbiosis, the N demand of the plants, the fungal C:N ratio, and the fraction of N retained in the fungi. Up to a third of C allocated belowground, or 20% of net primary production, is used to support ectomycorrhizal fungi. As anthropogenic N inputs increase, the C allocation to fungi decreases and plant δ15N increases. Careful analyses of δ15N patterns in systems dominated by ectomycorrhizal and ericoid mycorrhizal symbioses may reveal the ecosystem-scale effects of alterations in the plant–mycorrhizal symbioses caused by shifts in climate and N deposition. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Experiments detecting low gyromagnetic nuclei have recently been proposed to utilize the relatively slow relaxation properties of these nuclei in comparison to 1H. Here we present a new type of 15N direct-detection experiment. Like the previously proposed CaN experiment (Takeuchi et al. in J Biomol NMR 47:271–282, 2010), the hCaN experiment described here sequentially connects amide 15N resonances, but utilizes the initial high polarization and the faster recovery of the 1H nucleus to shorten the recycling delay. This allows recording 2D 15N-detected NMR experiments on proteins within a few hours, while still obtaining superior resolution for 13C and 15N, establishing sequential assignments through prolines, and at conditions where amide protons exchange rapidly. The experiments are demonstrated on various biomolecules, including the small globular protein GB1, the 22 kDa HEAT2 domain of eIF4G, and an unstructured polypeptide fragment of NFAT1, which contains many SerPro sequence repeats.  相似文献   

15.
Obtaining NMR assignments for slowly tumbling molecules such as detergent-solubilized membrane proteins is often compromised by low sensitivity as well as spectral overlap. Both problems can be addressed by amino-acid specific isotope labeling in conjunction with 15N–1H correlation experiments. In this work an extended combinatorial selective in vitro labeling scheme is proposed that seeks to reduce the number of samples required for assignment. Including three different species of amino acids in each sample, 15N, 1-13C, and fully 13C/15N labeled, permits identification of more amino acid types and sequential pairs than would be possible with previously published combinatorial methods. The new protocol involves recording of up to five 2D triple-resonance experiments to distinguish the various isotopomeric dipeptide species. The pattern of backbone NH cross peaks in this series of spectra adds a new dimension to the combinatorial grid, which otherwise mostly relies on comparison of [15N, 1H]–HSQC and possibly 2D HN(CO) spectra of samples with different labeled amino acid compositions. Application to two α-helical membrane proteins shows that using no more than three samples information can be accumulated such that backbone assignments can be completed solely based on 3D HNCA/HN(CO)CA experiments. Alternatively, in the case of severe signal overlap in certain regions of the standard suite of triple-resonance spectra acquired on uniformly labeled protein, or missing signals due to a lack of efficiency of 3D experiments, the remaining gaps can be filled.  相似文献   

16.
The transforming growth factor beta induced protein (TGFBIp) is a major protein component of the human cornea. Mutations occurring in TGFBIp may cause corneal dystrophies, which ultimately lead to loss of vision. The majority of the disease-causing mutations are located in the C-terminal domain of TGFBIp, referred as the fourth fascilin-1 (FAS1-4) domain. In the present study the FAS1-4 Ala546Thr, a mutation that causes lattice corneal dystrophy, was investigated in dimethylsulfoxide using liquid-state NMR spectroscopy, to enable H/D exchange strategies for identification of the core formed in mature fibrils. Isotope-labeled fibrillated FAS1-4 A546T was dissolved in a ternary mixture 95/4/1 v/v/v% dimethylsulfoxide/water/trifluoroacetic acid, to obtain and assign a reference 2D 1H–15N HSQC spectrum for the H/D exchange analysis. Here, we report the near-complete assignments of backbone and aliphatic side chain 1H, 13C and 15N resonances for unfolded FAS1-4 A546T at 25 °C.  相似文献   

17.
Temperature coefficients have been measured for backbone amide 1H and 15N nuclei in the B1 domain of protein G (GB1), using temperatures in the range 283–313 K, and pH values from 2.0 to 9.0. Many nuclei display pH-dependent coefficients, which were fitted to one or two pKa values. 1H coefficients showed the expected behaviour, in that hydrogen-bonded amides have less negative values, but for those amides involved in strong hydrogen bonds in regular secondary structure there is a negative correlation between strength of hydrogen bond and size of temperature coefficient. The best correlation to temperature coefficient is with secondary shift, indicative of a very approximately uniform thermal expansion. The largest pH-dependent changes in coefficient are for amides in loops adjacent to sidechain hydrogen bonds rather than the amides involved directly in hydrogen bonds, indicating that the biggest determinant of the temperature coefficient is temperature-dependent loss of structure, not hydrogen bonding. Amide 15N coefficients have no clear relationship with structure.  相似文献   

18.
Natural variability in stable isotope ratios and element concentrations in calcified structures of fish (e.g. scales and otoliths) has provided biogeochemical ‘tags’ for studying origins and movements of marine species, but has been little used in freshwater studies. We examine whether variability in scale δ15N and δ13C values of Salmo trutta L., could provide a tag of fish over small spatial scales in a small river catchment (River Dee, U.K.) and compared their performance as tags with that of scale/otolith element concentrations. Whole scale δ15N and δ13C values differed among six study sites and fish could be classified to their site of origin with a high degree of accuracy. Classifying fish to their site of capture was marginally superior using scale δ15N and δ13C values compared to that achieved using Sr, Mn, Ba and Mg in scale hydroxyapatite or otolith aragonite. Scale δ15N and δ13C values could therefore provide non-lethally collectable biogeochemical tags superior in performance to element concentrations in otoliths and scales. A comprehensive study of δ15N and δ13C values within freshwater systems would develop our understanding of factors influencing geographical variability in baseline δ15N and δ13C signatures.  相似文献   

19.
We present a computational method for finding optimal labeling patterns for the backbone assignment of membrane proteins and other large proteins that cannot be assigned by conventional strategies. Following the approach of Kainosho and Tsuji (Biochemistry 21:6273–6279 (1982)), types of amino acids are labeled with 13C or/and 15N such that cross peaks between 13CO(i – 1) and 15NH(i) result only for pairs of sequentially adjacent amino acids of which the first is labeled with 13C and the second with 15N. In this way, unambiguous sequence-specific assignments can be obtained for unique pairs of amino acids that occur exactly once in the sequence of the protein. To be practical, it is crucial to limit the number of differently labeled protein samples that have to be prepared while obtaining an optimal extent of labeled unique amino acid pairs. Our computer algorithm UPLABEL for optimal unique pair labeling, implemented in the program CYANA and in a standalone program, and also available through a web portal, uses combinatorial optimization to find for a given amino acid sequence labeling patterns that maximize the number of unique pair assignments with a minimal number of differently labeled protein samples. Various auxiliary conditions, including labeled amino acid availability and price, previously known partial assignments, and sequence regions of particular interest can be taken into account when determining optimal amino acid type-specific labeling patterns. The method is illustrated for the assignment of the human G-protein coupled receptor bradykinin B2 (B2R) and applied as a starting point for the backbone assignment of the membrane protein proteorhodopsin.  相似文献   

20.
We developed an NMR pulse sequence, 3D HCA(N)CO, to correlate the chemical shifts of protein backbone 1Hα and 13Cα to those of 13C′ in the preceding residue. By applying 2H decoupling, the experiment was accomplished with high sensitivity comparable to that of HCA(CO)N. When combined with HCACO, HCAN and HCA(CO)N, the HCA(N)CO sequence allows the sequential assignment using backbone 13C′ and amide 15N chemical shifts without resort to backbone amide protons. This assignment strategy was demonstrated for 13C/15N-labeled GB1 dissolved in 2H2O. The quality of the GB1 structure determined in 2H2O was similar to that determined in H2O in spite of significantly smaller number of NOE correlations. Thus this strategy enables the determination of protein structures in 2H2O or H2O at high pH values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号