首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ray S  Maiti S  Sa B 《AAPS PharmSciTech》2008,9(1):295-301
The objective of this study was to develop a multiunit sustained release dosage form of diltiazem using a natural polymer from a completely aqueous environment. Diltiazem was complexed with resin and the resinate-loaded carboxymethyl xanthan (RCMX) beads were prepared by interacting sodium carboxymethyl xanthan (SCMX), a derivatized xanthan gum, with Al+3 ions. The beads were evaluated for drug entrapment efficiency (DEE) and release characteristics in enzyme free simulated gastric fluid (SGF, HCl solution, pH 1.2) and simulated intestinal fluid (SIF, USP phosphate buffer solution, pH 6.8). Increase in gelation time from 5 to 20 min and AlCl3 concentration from 1 to 3% decreased the DEE respectively from 95 to 79% and 88.5 to 84.6%. However, increase in gum concentration from 1.5 to 2.5% increased the DEE from 86.5 to 90.7%. The variation in DEE was related to displacement of drug from the resinate by the gel forming Al+3 ions. While 75–82% drug was released in 2 h in SGF from various beads, 75 to 98% drug was released in 5 hour in SIF indicating the dependence of drug release on pH of dissolution media. Although the beads maintained their initial integrity throughout the dissolution process in both media, as evident from scanning electron microscopic studies, the faster release in SGF was accounted for higher swelling of the beads in SGF than in SIF. When release data (up to 60%) was fitted in power law expression, the drug release was found to be controlled by diffusion with simultaneous relaxation phenomena.  相似文献   

2.
The present study deals with the development of novel pH-sensitive tamarind seed polysaccharide (TSP)-alginate composite beads for controlled diclofenac sodium delivery using response surface methodology by full 32 factorial design. The effect of polymer-blend ratio (sodium alginate:TSP) and cross-linker (CaCl2) concentration on the drug encapsulation efficiency (DEE, %) and drug release from diclofenac sodium loaded TSP-alginate composite beads prepared by ionotropic gelation was optimized. The observed responses were coincided well with the predicted values by the experimental design. The DEE (%) of these beads containing diclofenac sodium was within the range between 72.23 ± 2.14 and 97.32 ± 4.03% with sustained in vitro drug release (69.08 ± 2.36-96.07 ± 3.54% in 10 h). The in vitro drug release from TSP-alginate composite beads containing diclofenac sodium was followed by controlled-release pattern (zero-order kinetics) with case-II transport mechanism. Particle size range of these beads was 0.71 ± 0.03-1.33 ± 0.04 mm. The swelling and degradation of the developed beads were influenced by different pH of the test medium. The FTIR and NMR analyses confirmed the compatibility of the diclofenac sodium with TSP and sodium alginate used to prepare the diclofenac sodium loaded TSP-alginate composite beads. The newly developed TSP-alginate composite beads are suitable for controlled delivery of diclofenac sodium for prolonged period.  相似文献   

3.
The purpose of this study was to prepare wax-incorporated pectin-based emulsion gel beads using a modified emulsion-gelation method. The waxes in pectin–olive oil mixtures containing a model drug, metronidazole, were hot-melted, homogenized and then extruded into calcium chloride solution. The beads formed were separated, washed with distilled water and dried for 12 h. The influence of various types and amounts of wax on floating and drug release behavior of emulsion gel beads of calcium pectinate was investigated. The drug-loaded gel beads were found to float on simulated gastric fluid if the sufficient amount of oil was used. Incorporation of wax into the emulsion gel beads affected the drug release. Water-soluble wax (i.e. polyethylene glycol) increased the drug release while other water-insoluble waxes (i.e. glyceryl monostearate, stearyl alcohol, carnauba wax, spermaceti wax and white wax) significantly retarded the drug release. Different waxes had a slight effect on the drug release. However, the increased amount of incorporated wax in the formulations significantly sustained the drug release while the beads remained floating. The results suggest that wax-incorporated emulsion gel beads could be used as a carrier for intragastric floating drug delivery.  相似文献   

4.
Calcium alginate (CA), chitosan-coated calcium alginate (CCA-I), and chitosan–calcium alginate complex (CCA-II) gel beads, in which an oil-in-water emulsion containing allyl isothiocyanate (AITC) was entrapped, were prepared and characterized for efficient oral delivery of AITC. The AITC entrapment efficiency was 81% for CA gel beads, whereas about 30% lower values were determined for the chitosan-treated gel beads. Swelling studies showed that all the gel beads suddenly shrunk in simulated gastric fluid (pH 1.2). In simulated intestinal fluid (pH 7.4), CA and CCA-I gel beads rapidly disintegrated, whereas CCA-II gel beads highly swelled without degradation probably due to the strong chitosan–alginate complexation. Release studies revealed that most entrapped AITC was released during the shrinkage, degradation, or swelling of the gel beads, and the chitosan treatments, especially the chitosan–alginate complexation, were effective in suppressing the release. CCA-II gel beads showed the highest bead stability and AITC retention under simulated gastrointestinal pH conditions.  相似文献   

5.

Background

The objective of this study was to fabricate, characterize and evaluate in vitro, an injectable calcium sulfate bone cement beads loaded with an antibiotic nanoformulation, capable of delivering antibiotic locally for the treatment of periodontal disease.

Methods

Tetracycline nanoparticles (Tet NPs) were prepared using an ionic gelation method and characterized using DLS, SEM, and FTIR to determine size, morphology, stability and chemical interaction of the drug with the polymer. Further, calcium sulfate (CaSO4) control and CaSO4-Tet NP composite beads were prepared and characterized using SEM, FTIR and XRD. The drug release pattern, material properties and antibacterial activity were evaluated. In addition, protein adsorption, cytocompatibility and alkaline phosphatase activity of the CaSO4-Tet NP composite beads in comparison to the CaSO4 control were analyzed.

Results

Tet NPs showed a size range of 130 ± 20 nm and the entrapment efficiency calculated was 89%. The composite beads showed sustained drug release pattern. Further the drug release data was fitted into various kinetic models wherein the Higuchi model showed higher correlation value (R2 = 0.9279) as compared to other kinetic models. The composite beads showed antibacterial activity against Staphylococcus aureus and Escherichia coli. The presence of Tet NPs in the composite bead didn't alter its cytocompatibility. In addition, the composite beads enhanced the ALP activity of hPDL cells.

Conclusions

The antibacterial and cytocompatible CaSO4-Tet NP composite beads could be beneficial in periodontal management to reduce the bacterial load at the infection site.

General significance

Tet NPs would deliver antibiotic locally at the infection site and the calcium sulfate cement, would itself facilitate tissue regeneration.  相似文献   

6.
The current study involves the development and optimization of their drug entrapment and ex vivo bioadhesion of multiunit chitosan based floating system containing Ranitidine HCl by ionotropic gelation method for gastroretentive delivery. Chitosan being cationic, non-toxic, biocompatible, biodegradable and bioadhesive is frequently used as a material for drug delivery systems and used to transport a drug to an acidic environment where it enhances the transport of polar drugs across epithelial surfaces. The effect of various process variables like drug polymer ratio, concentration of sodium tripolyphosphate and stirring speed on various physiochemical properties like drug entrapment efficiency, particle size and bioadhesion was optimized using central composite design and analyzed using response surface methodology. The observed responses were coincided well with the predicted values given by the optimization technique. The optimized microspheres showed drug entrapment efficiency of 74.73%, particle size 707.26μm and bioadhesion 71.68% in simulated gastric fluid (pH 1.2) after 8h with floating lag time 40s. The average size of all the dried microspheres ranged from 608.24 to 720.80μm. The drug entrapment efficiency of microspheres ranged from 41.67% to 87.58% and bioadhesion ranged from 62% to 86%. Accelerated stability study was performed on optimized formulation as per ICH guidelines and no significant change was found in drug content on storage.  相似文献   

7.
The aims of this investigation were to develop a procedure to prepare chelerythrine (CHE) loaded O-carboxymethylchitosan (O-CMCS) microspheres by emulsion cross-linking method and optimize the process and formulation variables using response surface methodology (RSM) with a three-level, three-factor Box-Behnken design (BBD). The independent variables studied were O-CMCS/CHE ratio, O/W phase ratio, and O-CMCS concentration, dependent variables (responses) were drug loading content and encapsulation efficiency. Mathematical equations and response surface plots were used to relate the dependent and independent variables. The process and formulation variables were optimized to achieve maximum drug loading content and entrapment efficiency by the desirability function. The optimized microsphere formulation was characterized for particle size, shape, morphology and in vitro drug release. Results for mean particle size, drug loading content, entrapment efficiency, and in vitro drug release of CHE-loaded O-CMCS microspheres were found to be of 12.18 μm, 4.16 ± 3.36%, 57.40 ± 2.30%, and 54.5% at pH 7.4 after 70 h, respectively. The combination use of RSM, BBD and desirability function could provide a promising application for O-CMCS as controlled drug delivery carrier and help to develop procedures for a lab-scale microemulsion process.  相似文献   

8.
The objective of this study was to prepare and characterize beads of Gelucire 43/01 for floating delivery of metformin hydrochloride (MH). The beads were evaluated for particle size, surface morphology, percent drug entrapment, percent yield, differential scanning calorimetry (DSC), in vitro floating ability, and in vitro drug release. Aging effect on storage was evaluated using hot stage microscopy (HSM), DSC, scanning electron microscopy, and in vitro floating ability. The formed beads were sufficiently hard and spherical in shape. Photomicrographs show that the surface was porous in nature. The average particle diameter of beads was found to be in the size range of 3.85 to 3.95 mm, and percent entrapment was 83.07% to 86.13%. The beads demonstrated favorable in vitro floating ability. The analysis of DSC thermograms revealed no physical interaction between the lipid and the drug in the prepared beads. Prepared formulations showed better controlled release behavior when compared with its conventional dosage form and comparable release profile with marketed sustained release product. HSM photomicrograph showed presence of some unmelted portion even at 43°C and completely melts on 51°C in aged sample. It was found that there was no significant effect on floating ability of aged beads since it remains floats up to 8 h study period. Thus, it is concluded that beads of Gelucire 43/01 could be serve as an effective carrier for highly water-soluble antihyperglycemic drugs like MH for the controlled delivery.  相似文献   

9.
A novel pH-sensitive amphiphilic copolymer brush poly(methyl methacrylate-co-methacrylic acid)-b-poly(poly(ethylene glycol) methyl ether monomethacrylate) [P(MMA-co-MAA)-b-PPEGMA] was defined and synthesized by atom transfer radical polymerization (ATRP) technique. The molecular structures and characteristics of this copolymer and its precursors were confirmed by (1)H NMR, FT-IR, and GPC. The CMC of P(MMA-co-MAA)-b-PPEGMA in aqueous medium was determined to be 1-4 mg/L. This copolymer could self-assemble into micelles in aqueous solution with an average size of 120-250 nm determined by DLS. The morphologies of the micelles were found to be spherical by SEM and TEM. Ibuprofen (IBU), a poorly water-soluble drug, was selected as the model drug and wrapped into the core of micelles via dialysis method. Drug entrapment efficiency reached to 90%. The in vitro release behavior of IBU from these micelles was pH-dependent. The cumulative release percent of IBU was less than 20% of the initial drug content in simulated gastric fluid (SGF, pH 1.2) over 12 h, but 90% was released in simulated intestinal fluid (SIF, pH 7.4) within 6 h. The release profiles showed that the P(MMA-co-MAA)-b-PPEGMA micelles could inhibit the premature burst drug release under the intestinal conditions. All the results indicate that the P(MMA-co-MAA)-b-PPEGMA micelle may be a potential oral drug delivery carrier for poorly water-soluble drugs.  相似文献   

10.
The purpose of this research was to prepare floating microspheres consisting of (1) calcium silicate as porous carrier; (2) orlistat, an oral anti-obesity agent; and (3) Eudragit S as polymer, by solvent evaporation method and to evaluate their gastro-retentive and controlled-release properties. The effect of various formulation and process variables on the particle morphology, micromeritic properties, in vitro floating behavior, percentage drug entrapment, and in vitro drug release was studied. The gamma scintigraphy of the optimized formulation was performed in albino rabbits to monitor the transit of floating microspheres in the gastrointestinal tract. The orlistat-loaded optimized formulation was orally administered to albino rabbits, and blood samples collected were used to determine pharmacokinetic parameters of orlistat from floating microspheres. The microspheres were found to be regular in sphae and highly porous. Microsphere formulation CS4, containing 200 mg calcium silicate, showed the best floating ability (88%±4% buoyancy) in simulated gastric fluid as compared with other formulations. Release pattern of orlistat in simulated gastric fluid from all floating microspheres followed Higuchi matrix model and Peppas-Korsmeyer model. Prolonged gastric residence time of over 6 hours was achieved in all rabbits for calcium silicate-based floating microspheres of orlistat. The enhanced elimination half-life observed after pharmacokinetic investigations in the present study is due to the floating nature of the designed formulations.  相似文献   

11.
The aim of this study was to develop novel hydrogel-based beads and characterize their potential to deliver and release a drug exhibiting pH-dependent solubility into distal parts of gastrointestinal (GI) tract. Oxycellulose beads containing diclofenac sodium as a model drug were prepared by the ionotropic external gelation technique using calcium chloride solution as the cross-linking medium. Resulting beads were characterized in terms of particle shape and size, encapsulation efficacy, swelling ability and in vitro drug release. Also, potential drug–polymer interactions were evaluated using Fourier transform infrared spectroscopy. The particle size was found to be 0.92–0.96 mm for inactive (oxycellulose only) and 1.47–1.60 mm for active (oxycellulose–diclofenac sodium) beads, respectively. In all cases, the sphericity factor was between 0.70 and 0.81 with higher values observed for samples containing higher polymer and drug concentrations. The swelling of inactive beads was found to be strongly influenced by the pH and composition (i.e. Na+ concentration) of the selected media (simulated gastric fluid vs. phosphate buffer pH 6.8). The encapsulation efficiency of the prepared particles ranged from 58% to 65%. Results of dissolution tests showed that the drug loading inside of the particles influenced the rate of its release. In general, prepared particles were able to release the drug within 12–16 h after a lag time of 4 h. Fickian diffusion was found as the predominant drug release mechanism. Thus, this novel particulate system showed a good potential to deliver drugs specifically to the distal parts of the human GI tract.  相似文献   

12.
This study reports on the preparation of chitosan (CS)/polyethylene glycol (PEG) hydrogel beads using sodium diclofenac (DFNa) as a model drug. Following the optimization of the polymer to drug ratio, the chitosan beads were modified by ionic crosslinking with sodium tripolyphosphate (TPP). The CS/PEG/DFNa beads obtained from a (w/w/w) ratio of 1/0.5/0.5 with crosslinking in 10% (w/v) TPP at pH 6.0 for 30 min yielded excellent DFNa encapsulation levels with over 90% loading efficiency. The dissolution profile of DFNa from CS/PEG/DFNa beads demonstrated that this formulation was able to maintain a prolonged drug release for approximately 8 h. Among the formulations tested, the CS/PEG/DFNa (1/0.5/1 (w/w/w)) beads crosslinked with a combination of TPP (10% (w/v) for 30 min) and glutaraldehyde (GD) (5% (w/v)) were able to provide minimal DFNa release in the gastric and duodenal simulated fluids (pH 1.2 and 6.8, respectively) allowing for a principally gradual drug release over 24 h in the intestinal (jejunum and ileum) simulated fluid (pH 7.4). Thus, overall the CS/PEG beads crosslinked with TPP and GD look to be a promising and novel alternative gastrointestinal drug release system.  相似文献   

13.
An oral sustained release dosage form of cinnarizine HCl (CNZ) based on gastric floating matrix tablets was studied. The release of CNZ from different floating matrix formulations containing four viscosity grades of hydroxypropyl methylcellulose, sodium alginate or polyethylene oxide, and gas-forming agent (sodium bicarbonate or calcium carbonate) was studied in simulated gastric fluid (pH 1.2). CNZ release data from the matrix tablets were analyzed kinetically using Higuchi, Peppas, Weibull, and Vergnaud models. From water uptake, matrix erosion studies, and drug release data, the overall release mechanism can be explained as a result of rapid hydration of polymer on the surface of the floating tablet and formation of a gel layer surrounding the matrix that controls water penetration into its center. On the basis of in vitro release data, batch HP1 (CNZ, HPMC-K100LV, SBC, LTS, and MgS) was subjected to bioavailability studies in rabbits and was compared with CNZ suspension. It was concluded that the greater bioavailability of HP1 was due to its longer retention in the gastric environment of the test animal. Batch no. HP1 of floating tablet in rabbits demonstrated that the floating tablet CNZ could be a 24-h sustained release formulation.  相似文献   

14.
A series of pH-sensitive composite hydrogel beads composed of chitosan-g-poly (acrylic acid)/attapulgite/sodium alginate (CTS-g-PAA/APT/SA) was prepared as drug delivery matrices crosslinked by Ca2+ owing to the ionic gelation of SA. The structure and surface morphology of the composite hydrogel beads were characterized by FTIR and SEM, respectively. pH-sensitivity of these composite hydrogels beads and the release behaviors of drug from them were investigated. The results showed that the composite hydrogel beads had good pH-sensitivity. The cumulative release ratios of diclofenac sodium (DS) from the composite hydrogel beads were 3.76% in pH 2.1 solution and 100% in pH 6.8 solutions within 24 h, respectively. However, the cumulative release ratio of DS in pH 7.4 solution reached 100% within 2 h. The DS cumulative release ratio reduced with increasing APT content from 0 to 50 wt%. The drug release was swelling-controlled at pH 6.8.  相似文献   

15.
A simple and rapid high-performance liquid-chromatography method is presented that permits quantification of caffeine in colloidal fat emulsions proposed as new ‘biorelevant’ dissolution media (Intralipid™ and various milks). Using a mobile phase of 0.1 M sodium acetate (pH 4.0) and acetonitrile (89.5:10.5, v/v) at 1 ml min−1, the drug and internal standard (7-β-hydroxyethyltheophylline) were eluted within 8 min. Caffeine extraction was undertaken by protein precipitation in ice-cold 12% (w/v) trichloroacetic acid and centrifugation at 10,000 rpm for 15 min. This simple extraction method generated caffeine recovery values (corrected for % fat content) of 75.4 ± 1.4–100.6 ± 5.5%. The limit of detection was within the range 0.25–0.4 μg ml−1 and linearity was demonstrated in each medium up to 125 μg ml−1. Precision was <11.5% RSD and intra- and inter-day accuracy was 93.4–109.3%. The validated method was applied to in vitro USP dissolution tests in milk which compared the kinetics of caffeine release from (i) extended release matrices containing hydroxypropyl methylcellulose (HPMC) and (ii) an immediate release commercial analgesic tablet. Good reproducibility was obtained in both extended and immediate release dissolution tests. The method provides high-throughput quantification of this common drug in fat emulsions used as biorelevant dissolution media.  相似文献   

16.
Calcium pectinate gel (CPG) beads entrapping catechin-loaded liposomes were prepared with or without hydroxypropylmethylcellulose (HPMC) (denoted as CPG-LH and CPG-L beads, respectively) and characterized in comparison with the CPG beads prepared without liposome and HPMC (denoted as CPG-C beads). For all types of beads, the catechin entrapment efficiency decreased by about 40-50% as the concentration of CaCl2 in gelling media increased from 2 to 6%. At a constant CaCl2 level, the entrapment efficiency was higher in the order of CPG-LH, CPG-L, and CPG-C beads. The in vitro release test showed that in simulated intestinal fluid the rate of catechin release was higher in the order of CPG-C, CPG-L, and CPG-LH beads, indicating that the catechin release was slowed by liposome and further retarded when HPMC was used simultaneously, whereas not in simulated gastric fluid. The addition of cholesterol in liposome could not retard but accelerated the catechin release. The results suggest that the CPG beads reinforced with liposome and HPMC could be employed for a sustained oral delivery of catechins, although further improvements are necessary.  相似文献   

17.
In winter seasons, wild sika deer (Cervus nippon yesoensis) inhabiting the Shiretoko Peninsula of Hokkaido Island, Japan, mainly graze woody materials (bark and twigs, etc.) as their feed source. Most of the tree species that they feed upon contain a high level of hydrolysable tannins within the inner bark. Tannins generally lead to low protein digestion and nutrient loss to these herbivorous mammals due to tannization of proteins. In winter months, it is speculated that wild sika deer develop a mechanism to degrade the tannins which are contained in their feed sources, but rumen fluid obtained from sika deer in winter months did not exhibit any ability to degrade tannins in liquid culture medium. However, constant degradation of hydrolysable tannin was observed when Ca-alginate gel beads were used for microbial immobilization and culturing. The gel beads that had been impregnated with 0.6×104 fold-diluted rumen fluid of sika deer in winter and pre-incubated for 24 h under anaerobic conditions supplemented with a 1.5 g/L sugar were reacted with 5 g/L tannic acid solution. Under these conditions, the immobilized rumen bacteria grown in the macrogel beads effectively hydrolyzed tannic acid to release gallic acid monomers. Major bacterial colonies emerging in the Ca-alginate gel beads were identified as Streptococcus macedonicus and this bacterium (EC-D140) was regarded as the most likely candidate as the tannin-degrading bacterium.  相似文献   

18.
The aim of the present research work was to develop release modulated beads of losartan potassium complexed with anion exchange resin, Duolite AP143 (cholestyramine). Chitosan was selected as a hydrophilic polymer for the formation of beads which could sustain the release of the drug up to 12 h, along with drug resin complex (DRC). Chitosan beads were prepared using an in-liquid curing method by ionotropic cross-linking or interpolymer linkage with sodium tripolyphosphate (TPP). The formulation of the beads was optimized for entrapment efficiency and drug release using 32 full factorial design. The independent variables selected were DRC/chitosan and percent of TPP. The optimization model was validated for its performance characteristics. Studies revealed that as the concentration of chitosan and TPP was increased, entrapment efficiency and the drug release were found to increase and decrease, respectively. The swelling capacity of chitosan–TPP beads decreased with increasing concentration of TPP. The effect of chitosan concentration and percentage of TPP solution used for cross-linking on entrapment efficiency and drug release rate was extensively investigated. Optimized beads were subjected to in vivo studies in Wistar albino rats to determine the mean arterial blood pressure and compared with marketed formulation. The pharmacodynamic study demonstrates steady blood pressure control for optimized formulation as compared to fluctuated blood pressure for the marketed formulation.  相似文献   

19.
Fibrous poly(styrene-d-glycidylmethacrylate) (P(S-GMA)) brushes were grafted on poly(styrene-divinylbenzene) (P(S-DVB)) beads using surface initiated-atom transfer radical polymerization (SI-ATRP). Tetraethyldiethylenetriamine (TEDETA) ligand was incorporated on P(GMA) block. The multi-modal ligand attached beads were used for reversible immobilization of catalase. The influences of pH, ionic strength and initial catalase concentration on the immobilization capacities of the P(S-DVB)-g-P(S-GMA)-TEDETA beads have been investigated. Catalase adsorption capacity of P(S-DVB-g-P(S-GMA)-TEDETA beads was found to be 40.8 ± 1.7 mg/g beads at pH 6.5 (with an initial catalase concentration 1.0 mg/mL). The Km value for immobilized catalase on the P(S-DVB-g-P(S-GMA)-TEDETA beads (0.43 ± 0.02 mM) was found about 1.7-fold higher than that of free enzyme (0.25 ± 0.03 mM). Optimum operational temperature and pH was increased upon immobilization. The same support was repeatedly used five times for immobilization of catalase after regeneration without significant loss in adsorption capacity or enzyme activity.  相似文献   

20.
Temperature-sensitive liposomes (TSLs) loaded with doxorubicin (Dox), and Magnetic Resonance Imaging contrast agents (CAs), either manganese (Mn2 +) or [Gd(HPDO3A)(H2O)], provide the advantage of drug delivery under MR image guidance. Encapsulated MRI CAs have low longitudinal relaxivity (r1) due to limited transmembrane water exchange. Upon triggered release at hyperthermic temperature, the r1 will increase and hence, provides a means to monitor drug distribution in situ. Here, the effects of encapsulated CAs on the phospholipid bilayer and the resulting change in r1 were investigated using MR titration studies and 1H Nuclear Magnetic Relaxation Dispersion (NMRD) profiles. Our results show that Mn2 + interacted with the phospholipid bilayer of TSLs and consequently, reduced doxorubicin retention capability at 37 °C within the interior of the liposomes over time. Despite that, Mn2 +-phospholipid interaction resulted in higher r1 increase, from 5.1 ± 1.3 mM− 1 s− 1 before heating to 32.2 ± 3 mM− 1 s− 1 after heating at 60 MHz and 37 °C as compared to TSL(Gd,Dox) where the longitudinal relaxivities before and after heating were 1.2 ± 0.3 mM− 1 s− 1 and 4.4 ± 0.3 mM− 1 s− 1, respectively. Upon heating, Dox was released from TSL(Mn,Dox) and complexation of Mn2 + to Dox resulted in a similar Mn2 + release profile. From 25 to 38 °C, r1 of [Gd(HPDO3A)(H2O)] gradually increased due to increase transmembrane water exchange, while no Dox release was observed. From 38 °C, the release of [Gd(HPDO3A)(H2O)] and Dox was irreversible and the release profiles coincided. By understanding the non-covalent interactions between the MRI CAs and phospholipid bilayer, the properties of the paramagnetic TSLs can be tailored for MR guided drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号