首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
In order to study functional gene expression in Streptomyces coelicolor, a mini-transposon encoding the apramycin resistance gene aac(3)IV within its inverted repeat (IR) boundaries was constructed based on IS204, which was previously identified in the genome of Nocardia asteroides YP21. The mini-transposon and IS204 transposase gene were then put on a kanamycin-resistant conjugative plasmid pDZY101 that can only replicate in Escherichia coli. After mating with S. coelicolor A3(2) M145, resistant colonies arose efficiently on both apramycin and kanamycin plates. Plasmid rescue indicated that entire plasmids were inserted into the M145 genome with cleavage at an inverted repeat junction formed by the right inverted repeat (IRR) and the last 18 bp of the transposase gene, while the left inverted repeat (IRL) was untouched. Southern blot analysis of the mutants using an aac(3)IV gene probe showed that transposition of plasmid pDZY101 was genetically stable, with a single-copy insertion within the S. coelicolor M145 genome. Several mutagenesis libraries of S. coelicolor M145 were constructed using plasmid pDZY101 derivatives and the transposon insertion site was determined. The correlation between novel mutant phenotypes and previously uncharacterized genes was established and these transposon locations were widely scattered around the genome.  相似文献   

3.
Genes for biosynthesis of a Streptomyces sp. FR-008 heptaene macrolide antibiotic with antifungal and mosquito larvicidal activity were cloned in Escherichia coli using heterologous DNA probes. The cloned genes were implicated in heptaene biosynthiesis by gene replacement. The FR-008 antibiotic contains a 38-membered, poiyketide-derived macrolide ring. Southern hybridization using probes encoding domains of the type i modular erythromycin polyketide synthase (PKS) showed that the Streptomyces sp. FR-008 PKS gene cluster contains repeated sequences spanning c. 105 kb of contiguous DNA; assuming c. 5 kb for each PKS module, this is in striking agreement with the expectation for the 21-step condensation process required for synthesis of the FR-008 carbon chain. The methods developed for transformation and gene replacement in Streptomyces sp. FR-008 make it possible to genetically manipulate polyene macrolide production, and may later lead to the biosynthesis of novel polyene macrolides.  相似文献   

4.
5.
6.
We report here the in vivo expression of the synthetic transposase gene himar1(a) in Streptomyces coelicolor M145 and Streptomyces albus. Using the synthetic himar1(a) gene adapted for Streptomyces codon usage, we showed random insertion of the transposon into the streptomycetes genome. The insertion frequency for the Himar1-derived minitransposons is nearly 100 % of transformed Streptomyces cells, and insertions are stably inherited in the absence of an antibiotic selection. The minitransposons contain different antibiotic resistance selection markers (apramycin, hygromycin, and spectinomycin), site-specific recombinase target sites (rox and/or loxP), I-SceI meganuclease target sites, and an R6Kγ origin of replication for transposon rescue. We identified transposon insertion loci by random sequencing of more than 100 rescue plasmids. The majority of insertions were mapped to putative open-reading frames on the S. coelicolor M145 and S. albus chromosomes. These insertions included several new regulatory genes affecting S. coelicolor M145 growth and actinorhodin biosynthesis.  相似文献   

7.
8.
A method was developed for the heterologous expression of biosynthetic gene clusters in different Streptomyces strains and for the modification of these clusters by single or multiple gene replacements or gene deletions with unprecedented speed and versatility. λ-Red-mediated homologous recombination was used for genetic modification of the gene clusters, and the attachment site and integrase of phage C31 were employed for the integration of these clusters into the heterologous hosts. This method was used to express the gene clusters of the aminocoumarin antibiotics novobiocin and clorobiocin in the well-studied strains Streptomyces coelicolor and Streptomyces lividans, which, in contrast to the natural producers, can be easily genetically manipulated. S. coelicolor M512 derivatives produced the respective antibiotic in yields comparable to those of natural producer strains, whereas S. lividans TK24 derivatives were at least five times less productive. This method could also be used to carry out functional investigations. Shortening of the cosmids' inserts showed which genes are essential for antibiotic production.  相似文献   

9.
RNase III is a double strand specific endoribonuclease that is involved in the regulation of gene expression in bacteria. In Streptomyces coelicolor, an RNase III (rnc) null mutant manifests decreased ability to synthesize antibiotics, suggesting that RNase III globally regulates antibiotic production in that species. As RNase III is involved in the processing of ribosomal RNAs in S. coelicolor and other bacteria, an alternative explanation for the effects of the rnc mutation on antibiotic production would involve the formation of defective ribosomes in the absence of RNase III. Those ribosomes might be unable to translate the long polycistronic messenger RNAs known to be produced by operons containing genes for antibiotic production. To examine this possibility, we have constructed a reporter plasmid whose insert encodes an operon derived from the actinorhodin cluster of S. coelicolor. We show that an rnc null mutant of S. coelicolor is capable of translating the polycistronic message transcribed from the operon. We show further that RNA species with the mobilities expected for mature 16S and 23S ribosomal RNAs are produced in the rnc mutant even though the mutant contains higher levels of the 30S rRNA precursor than the wild-type strain.  相似文献   

10.
The chromosome of Streptomyces coelicolor A3(2), a model organism for the genus Streptomyces, contains a cryptic type I polyketide synthase (PKS) gene cluster which was revealed when the genome was sequenced. The ca. 54-kb cluster contains three large genes, cpkA, cpkB and cpkC, encoding the PKS subunits. In silico analysis showed that the synthase consists of a loading module, five extension modules and a unique reductase as a terminal domain instead of a typical thioesterase. All acyltransferase domains are specific for a malonyl extender, and have a B-type ketoreductase. Tailoring and regulatory genes were also identified within the gene cluster. Surprisingly, some genes show high similarity to primary metabolite genes not commonly identified in any antibiotic biosynthesis cluster. Using western blot analysis with a PKS subunit (CpkC) antibody, CpkC was shown to be expressed in S. coelicolor at transition phase. Disruption of cpkC gave no obvious phenotype.  相似文献   

11.
Very few of the tyrosine-phosphorylated proteins in Streptomyces have been identified. Here, we identify a tyrosine-phosphorylated protein from Streptomyces coelicolor A3(2), designated as SCO5717. The protein possesses Walker motifs and a tyrosine cluster at the C-terminus. When sco5717 harboring its own promoter was introduced into the S. coelicolor cell, the growth was inhibited. An sco5717-disrupted mutant formed aerial mycelium earlier than the wild-type strain, suggesting that SCO5717 controls the cell growth of S. coelicolor. Although the recombinant SCO5717 showed an ATPase activity, it lacked self-phosphorylation ability, suggesting that SCO5717 is a novel tyrosine-phosphorylated protein, which is distinguishable from bacterial protein tyrosine kinases known so far.  相似文献   

12.
Streptomyces davawensis JCM 4913 synthesizes the antibiotic roseoflavin, a structural riboflavin (vitamin B2) analog. Here, we report the 9,466,619-bp linear chromosome of S. davawensis JCM 4913 and a 89,331-bp linear plasmid. The sequence has an average G+C content of 70.58% and contains six rRNA operons (16S-23S-5S) and 69 tRNA genes. The 8,616 predicted protein-coding sequences include 32 clusters coding for secondary metabolites, several of which are unique to S. davawensis. The chromosome contains long terminal inverted repeats of 33,255 bp each and atypical telomeres. Sequence analysis with regard to riboflavin biosynthesis revealed three different patterns of gene organization in Streptomyces species. Heterologous expression of a set of genes present on a subgenomic fragment of S. davawensis resulted in the production of roseoflavin by the host Streptomyces coelicolor M1152. Phylogenetic analysis revealed that S. davawensis is a close relative of Streptomyces cinnabarinus, and much to our surprise, we found that the latter bacterium is a roseoflavin producer as well.  相似文献   

13.
14.

Objective

To develop a reliable and easy to use expression system for antibiotic production improvement of Streptomyces.

Results

A two-compound T7 RNA polymerase-dependent gene expression system was developed to fulfill this demand. In this system, the T7 RNA polymerase coding sequence was optimized based on the codon usage of Streptomyces coelicolor. To evaluate the functionality of this system, we constructed an activator gene overexpression strain for enhancement of actinorhodin production. By overexpression of the positive regulator actII-ORF4 with this system, the maximum actinorhodin yield of engineered strain was 15-fold higher and the fermentation time was decreased by 48 h.

Conclusion

The modified two-compound T7 expression system improves both antibiotic production and accelerates the fermentation process in Streptomyces. This provides a general and useful strategy for strain improvement of important antibiotic producing Streptomyces strains.
  相似文献   

15.
Unlike the majority of actinomycete secondary metabolic pathways, the biosynthesis of peptidoglycan glycosyltransferase inhibitor moenomycin in Streptomyces ghanaensis does not involve any cluster-situated regulators (CSRs). This raises questions about the regulatory signals that initiate and sustain moenomycin production. We now show that three pleiotropic regulatory genes for Streptomyces morphogenesis and antibiotic production—bldA, adpA and absB—exert multi-layered control over moenomycin biosynthesis in native and heterologous producers. The bldA gene for tRNALeuUAA is required for the translation of rare UUA codons within two key moenomycin biosynthetic genes (moe), moeO5 and moeE5. It also indirectly influences moenomycin production by controlling the translation of the UUA-containing adpA and, probably, other as-yet-unknown repressor gene(s). AdpA binds key moe promoters and activates them. Furthermore, AdpA interacts with the bldA promoter, thus impacting translation of bldA-dependent mRNAs—that of adpA and several moe genes. Both adpA expression and moenomycin production are increased in an absB-deficient background, most probably because AbsB normally limits adpA mRNA abundance through ribonucleolytic cleavage. Our work highlights an underappreciated strategy for secondary metabolism regulation, in which the interaction between structural genes and pleiotropic regulators is not mediated by CSRs. This strategy might be relevant for a growing number of CSR-free gene clusters unearthed during actinomycete genome mining.  相似文献   

16.
In the arsenic resistance gene cluster from the large linear plasmid pHZ227, two novel genes, arsO (for a putative flavin-binding monooxygenase) and arsT (for a putative thioredoxin reductase), were coactivated and cotranscribed with arsR1-arsB and arsC, respectively. Deletion of the ars gene cluster on pHZ227 in Streptomyces sp. strain FR-008 resulted in sensitivity to arsenic, and heterologous expression of the ars gene cluster in the arsenic-sensitive Streptomyces strains conferred resistance on the new hosts. The pHZ227 ArsB protein showed homology to the yeast arsenite transporter Acr3p. The pHZ227 ArsC appears to be a bacterial thioredoxin-dependent ArsC-type arsenate reductase with four conserved cysteine thioredoxin-requiring motifs.  相似文献   

17.
A large number of Streptomyces bacteria with antifungal activity isolated from samples collected in the Trondheim fjord (Norway) were found to produce polyene compounds. Investigation of polyene-containing extracts revealed that most of the isolates produced the same compound, which had an atomic mass and UV spectrum corresponding to those of candicidin D. The morphological diversity of these isolates prompted us to speculate about the involvement of a mobile genetic element in dissemination of the candicidin biosynthesis gene cluster (can). Eight candicidin-producing isolates were analyzed by performing a 16S rRNA gene-based taxonomic analysis, pulsed-field gel electrophoresis, PCR, and Southern blot hybridization with can-specific probes. These analyses revealed that most of the isolates were related, although they were morphologically diverse, and that all of them contained can genes. The majority of the isolates studied contained large plasmids, and two can-specific probes hybridized to a 250-kb plasmid in one isolate. Incubation of the latter isolate at a high temperature resulted in loss of the can genes and candicidin production, while mating of the “cured” strain with a plasmid-containing donor restored candicidin production. The latter result suggested that the 250-kb plasmid contains the complete can gene cluster and could be responsible for conjugative transfer of this cluster to other streptomycetes.Actinomycete bacteria, especially those belonging to the family Streptomycetaceae, are well-known producers of secondary metabolites with diverse biological activities. Representatives of the genus Streptomyces produce a variety of antibiotics with antibacterial, antifungal, and antitumor activities. The majority of antibiotic-producing streptomycetes have been isolated from terrestrial environments, while antibiotic-producing streptomycetes from the marine sources remain largely unexplored. Therefore, studies of streptomycetes from the marine environment are important for unraveling their potential for antibiotic production. In addition, such studies might reveal the means by which antibiotic biosynthesis and resistance genes are spread in nature.It is widely acknowledged that plasmids play an important role in genetic exchange between bacterial species. Conjugative plasmids are quite common in Streptomyces strains (13), and a number of these mobile genetic elements have been characterized in detail. The characterized mobile genetic elements include both circular plasmids, such as pIJ101 from Streptomyces lividans (14) and SCP2 from Streptomyces coelicolor (2, 35), and linear plasmids, such as SLP2 from S. lividans (6) and SCP1 from S. coelicolor (38, 39). The presence of a linear plasmid in Streptomyces was first reported in 1979, and the plasmid was the 17-kb pSLA2 plasmid of Streptomyces rochei (11). SCP1 of S. coelicolor was discovered in the early 1970s (38, 39), but because of its large size (356 kb), isolation of this plasmid with conventional techniques was not possible and therefore it was not recognized as a linear plasmid until pulsed-field gel electrophoresis (PFGE) was invented. Later, SCP1 was shown to harbor a complete set of genes for biosynthesis of the antibiotic methylenomycin (21; K. F. Chater, C. J. Bruton, S. J. O''Rouke, and A. W. Wietzorrek, 5 July 2001, Patent Cooperation Treaty international application WO/2001/048228), while another linear plasmid, found in S. rochei, has been shown to contain genes for biosynthesis of both lankamycin and lankacidin (16, 19, 28, 36). Other examples of plasmids include pPZG103 carrying oxytetracycline biosynthesis genes acquired from the chromosome of Streptomyces rimosus (10) and pKSL from Streptomyces lasaliensis, which might be involved in the production of lasalocid and/or echinomycin (17, 20).Linear plasmids can be transferred between Streptomyces strains by means of conjugation, and SCP1 is an example of a conjugative linear plasmid as it is easily transferred from an SCP1+ strain to an SCP1 strain (39). Interspecific transfer to S. lividans and Streptomyces parvulus has also been reported for this plasmid, and it was demonstrated that the recipient strains had acquired the ability to produce and be resistant to methylenomycin (12, 21). Transfer of intact linear plasmids containing mercury resistance genes from two Streptomyces strains isolated from the marine environment to S. lividans, conferring mercury resistance to the initially mercury-sensitive recipient, has been reported by Ravel et al. (32). It has also been shown that interspecific transfer of linear plasmids is possible in sterile amended soil microcosms, suggesting that mercury resistance might be spread by plasmid transfer in polluted environments (31).We report here isolation and screening of several thousand actinobacterial strains from the Trondheim fjord (Norway), which resulted in identification of producers of both known and potentially new polyene macrolides with antifungal activity. The ability to produce the polyene macrolide candicidin D was found to be widespread among the Trondheim fjord Streptomyces isolates. We also report that the candicidin biosynthesis genes (can) are present on a linear plasmid identified in one of these isolates, suggesting that the can genes might be spread by means of conjugation.  相似文献   

18.
Streptomyces coelicolor is a model system for the study of Streptomyces, a genus of bacteria responsible for the production of many clinically important antibiotics. Here we report the genome sequence of ϕCAM, a new S. coelicolor generalized transducing bacteriophage, isolated from a soil sample originating from Lincolnshire, United Kingdom. Many open reading frames within ϕCAM shared high levels of similarity to a prophage from Salinispora tropica and a putative prophage in Streptomyces sp. strain C.  相似文献   

19.
Traditional three-domain fungal and bacterial laccases have been extensively studied for their significance in various biotechnological applications. Growing molecular evidence points to a wide occurrence of more recently recognized two-domain laccase-like multicopper oxidase (LMCO) genes in Streptomyces spp. However, the current knowledge about their ecological role and distribution in natural or artificial ecosystems is insufficient. The aim of this study was to investigate the diversity and composition of Streptomyces two-domain LMCO genes in agricultural waste composting, which will contribute to the understanding of the ecological function of Streptomyces two-domain LMCOs with potential extracellular activity and ligninolytic capacity. A new specific PCR primer pair was designed to target the two conserved copper binding regions of Streptomyces two-domain LMCO genes. The obtained sequences mainly clustered with Streptomyces coelicolor, Streptomyces violaceusniger, and Streptomyces griseus. Gene libraries retrieved from six composting samples revealed high diversity and a rapid succession of Streptomyces two-domain LMCO genes during composting. The obtained sequence types cluster in 8 distinct clades, most of which are homologous with Streptomyces two-domain LMCO genes, but the sequences of clades III and VIII do not match with any reference sequence of known streptomycetes. Both lignocellulose degradation rates and phenol oxidase activity at pH 8.0 in the composting process were found to be positively associated with the abundance of Streptomyces two-domain LMCO genes. These observations provide important clues that Streptomyces two-domain LMCOs are potentially involved in bacterial extracellular phenol oxidase activities and lignocellulose breakdown during agricultural waste composting.  相似文献   

20.

Background  

Streptomyces coelicolor is the most studied Streptomyces species and an excellent model for studying differentiation and antibiotic production. To date, many genes have been identified to be required for its differentiation (e.g. bld genes for aerial growth and whi genes for sporulation) and antibiotics production (including actII-orf4, redD, cdaR as pathway-specific regulatory genes and afsR, absA1/A2 as pleiotropic regulatory genes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号