首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Information on the ecology of New Guinea streams is meagre, and data are needed on the trophic basis of aquatic production in rivers such as the Sepik in Papua New Guinea which have low fish yields. This study investigates the relationship between riparian shading (from savanna grassland to primary rainforest), algal and detrital food, and macroinvertebrate abundance and community structure in 6 Sepik River tributary streams. A particular aim was to elucidate macroinvertebrate community responses to changes in riparian conditions. All streams supported diverse benthic communities, but morphospecies richness (overall total 64) was less than in streams on the tropical Asian mainland; population densities of benthic invertebrates, by contrast, were similar to those recorded elsewhere. Low diversity could reflect limited taxonomic penetration, but may result from the absence of major groups (Plecoptera, Heptageniidae, Ephemerellidae, Psephenidae, Megaloptera, etc.) which occur on the Asian mainland. Population densities of all 19 of the most abundant macroinvertebrate taxa varied significantly among the 6 study streams, but community composition in each was broadly similar with dominance by Baetidae and (in order of decreasing importance), Leptophlebiidae, Orthocladiinae, Elmidae and Hydropsychidae. Principal components analysis (PCA) undertaken on counts of abundant macroinvertebrate taxa clearly separated samples taken in two streams from the rest. Both streams contained high detrital standing stocks and one was completely shaded by rainforest. Stepwise multiple-regression analysis indicated that population densities of the majority of abundant taxa (11 out of 19) across streams (10 samples per stream; n = 60) were influenced by algae and/or detritus, although standing stocks of these variables were not clearly related to riparian conditions. When regression analysis was repeated on mean counts of taxa per stream (dependent variables) versus features of each stream as a whole (thus n = 6), % shading and detritus were the independent variables yielding significant regression models most frequently, but pH, total-nitrogen loads and algae were also significant predictors of faunal abundance. Further regression analysis, undertaken separately on samples (n = 10) from each stream, confirmed the ability of algae and detritus to account for significant portions of the variance in macroinvertebrate abundance, but the significance of these variables varied among streams with the consequence that responses of individual taxa to algae or detritus was site-specific.Community functional organization — revealed by investigation of macroinvertebrate functional feeding groups (FFGs) — was rather conservative, and streams were codominated by collector-gatherers (mean across 6 streams = 43%) and grazers (36%), followed by filter-feeders (15%) and predators (7%). The shredder FFG was species-poor and comprised only 0.4% of total macroinvertebrate populations; shredders did not exceed 2% of benthic populations in any stream. PCA of FFG abundance data was characterized by poor separation among streams, although there was some evidence of clustering of samples from unshaded sites. The first 2 PCA axes accounted for 84% of the variation in the data suggesting that the poor separation resulted from the general similarity of FFG representation among streams. Although stepwise multiple-regression analysis indicated that algae and detritus accounted for significant proportions of the variations in population density and relative abundance of some FFGs, the response of community functional organization to changes in riparian conditions and algal and detrital food base was weak — unlike the deterministic responses that may be typical of north-temperate streams.  相似文献   

2.
  • 1 The seasonal dynamics of the benthic macroinvertebrate assemblage, and the subset of this assemblage colonising naturally formed detritus accumulations, was investigated in two streams in south‐west Ireland, one draining a conifer plantation (Streamhill West) and the other with deciduous riparian vegetation (Glenfinish). The streams differed in the quantity, quality and diversity of allochthonous detritus and in hydrochemistry, the conifer stream being more acid at high discharge. We expected the macroinvertebrate assemblage colonising detritus to differ in the two streams, due to differences in the diversity and quantity of detrital inputs.
  • 2 Benthic density and taxon richness did not differ between the two streams, but the density of shredders was greater in the conifer stream, where there was a greater mass of benthic detritus. There was a significant positive correlation between shredder density and detritus biomass in both streams over the study period.
  • 3 Detritus packs in the deciduous stream were colonised by a greater number of macroinvertebrates and taxa than in the conifer stream, but packs in both streams had a similar abundance of shredders. The relative abundance of taxa colonising detritus packs was almost always significantly different to that found in the source pool of the benthos.
  • 4 Correspondence analysis illustrated that there were distinct faunal differences between the two streams overall and seasonally within each stream. Differences between the streams were related to species tolerances to acid episodes in the conifer stream. Canonical correspondence analysis demonstrated a distinct seasonal pattern in the detrital composition of the packs and a corresponding seasonal pattern in the structure of the detritus pack macroinvertebrate assemblage.
  • 5 Within‐stream seasonal variation both in benthic and detritus pack assemblages and in detrital inputs was of similar magnitude to the between‐stream variation. The conifer stream received less and poorer quality detritus than the deciduous stream, yet it retained more detritus and had more shredders in the benthos. This apparent contradiction may be explained by the influence of hydrochemistry (during spate events) on the shredder assemblage, by differences in riparian vegetation between the two streams, and possibly by the ability of some taxa to exhibit more generalist feeding habits and thus supplement their diets in the absence of high quality detritus.
  相似文献   

3.
1. Small cages (294cm2) containing unglazed clay quarry tiles were used to investigate the influence of periphytic algae on macroinvertebrate abundance in a Hong Kong stream. Algal biomass was manipulated by shading cages with plastic sheets. Individual cages were assigned to one of three treatment groups: unshaded, shaded and deeply shaded. Invertebrate densities and algal biomass within cages were monitored after 23, 37 and 65 days. 2. Multiple-regression analysis revealed that algal biomass, invertebrate morphospecies richness and total abundance declined with greater shading intensity. The responses of individual invertebrate taxa varied: some (especially Trichoptera) were unaffected by shading, whereas grazers (Baetidae, Psephenidae and Elmidae) declined as shading increased. 3. Significant regressions of the densities of individual taxa upon algal and detrital standing stocks in cages had positive slopes, but algal biomass increased during the study while detrital standing stocks declined. Abundance of invertebrates declined or remained rather stable over time. Density increases resulting from a positive association with algae were apparently offset by declines in abundance correlated with reductions in detritus. 4. Declines in algal biomass were associated with greater shading to which animals may respond directly. To uncouple the link between scarcity of algae and reduction of light intensity, the plastic covers on two groups of cages (deeply shaded and unshaded) which had been placed in the stream for 28 days were reversed so that cages which had been shaded became unshaded and vice versa. The cages were recovered on day 33, Only Coleoptera demonstrated a positive association with atgae inside cages; no relationship between population densities and algal biomass or light intensity was apparent for other taxa. However, the design may have been confounded by deposition of sediment in the cages (due to declining stream discharge) which reduced population densities of colonizers. 5. This study documents changes in invertebrate abundance and morphospecies richness in response periphyton and detritus standing stocks within patches. Summation of such responses may account for observed variations in benthic communities among Hong Kong streams which differ in the extent of shading by riparian vegetation.  相似文献   

4.
Over the past few decades, land-use changes through conversion of global forest cover to exotic plantations is contributing to both habitat and biodiversity loss and species extinctions. To better understand human influences on ecosystem, we use diet composition from introduced Rainbow Trout Oncorhynchus mykiss as indicator of potential changes in the composition of stream-macroinvertebrates due to land use changes from native to exotic vegetation (eucalyptus plantations) in southern Chile. Water quality variables, aquatic macroinvertebrates and Rainbow Trout diet were studied in 12 sites from mountain streams located in two watersheds including one dominated by native riparian vegetation and the other dominated by exotic vegetation. As expected, richness and abundance of macroinvertebrates were clearly higher at sites in native forest than in those with exotic vegetation. Collector-gatherer was the most abundant functional feeding group, but there was no statistical difference in the functional composition between the two watersheds. Differences in in-stream macroinvertebrate availability was more higher correlated with changes in Rainbow Trout diets. Specifically, taxa consumed from the watershed dominated by native forests was higher than from the watershed with exotic vegetation. Additional environmental variables showed statistical differences between watersheds. The exotic vegetation sites had the highest concentrations of dissolved solids, suspended solids, nitrates, chlorides and sulphates. Our findings show that macroinvertebrate assemblage structure and trout diets can be altered by changes in riparian vegetation. The absence of specific macroinvertebrate taxa in streams with exotic vegetation was captured by the composition of trout diets. This suggest that Rainbow Trout diets can be a good biological indicator of land use practices and thus, diet can be used as a rapid and effective tool for evaluate environmental quality. Our findings provide insights about the design of aquatic monitoring programmes to improve detection of anthropogenic impacts in streams in South America and elsewhere.  相似文献   

5.
1. Despite non‐point‐source (NPS) pollution being perhaps the most ubiquitous stressor affecting urban streams, there is a lack of research assessing how urban NPS pollution affects stream ecosystems. We used a natural experimental design approach to assess how stream macroinvertebrate community structure, secondary production and trophic structure are influenced by urban NPS pollution in six streams. 2. Differences in macroinvertebrate community structure and secondary production among sites were highly correlated with stream‐water specific conductivity and dissolved inorganic phosphorus (DIP) concentrations. Macroinvertebrate richness, the Shannon diversity index and the Shannon evenness index were all negatively correlated with specific conductivity. These patterns were driven by differences in the richness and production of EPT and other intolerant taxa. Production of the five most productive taxa, tolerant taxa, non‐insect taxa and primary consumers were all positively correlated with stream‐water DIP. 3. Despite the positive correlation between primary consumer production and DIP, there was no correlation between macroinvertebrate predator production and either total or primary consumer macroinvertebrate production. This was observed because DIP was positively correlated with the production of non‐insect macroinvertebrate taxa assumed to be relatively unavailable for macroinvertebrate predator consumption. After removing production of these taxa, we observed a strong positive correlation between macroinvertebrate predator production and production of available prey. 4. Our results suggest that urban NPS pollution not only affects macroinvertebrate community structure, but also alters secondary production and trophic‐level dynamics. Differences in taxon production in our study indicate the potential for altered energy flow through stream food webs and potential effects on subsidies of aquatic insect prey to riparian food webs.  相似文献   

6.
Macroinvertebrates were sampled from 15 sites along a dry-land river in northwestern Zimbabwe to assess biotic responses to land use changes along the course of the river. The headwater sites were protected by a riparian corridor of native forest, but this was replaced by intensive subsistence agriculture in the mid-reaches while the lower reaches were located within a protected wildlife area with diverse and wide riparian forests. Canonical correspondence analysis indicated that intensive agricultural activities within the mid-reaches caused severe degradation of the stream physical habitat through increased fine sediment deposition. This coincided with a significant decline in macroinvertebrate richness, diversity, and abundance at the agriculturally impacted mid-reach sites. The presence of wide riparian zones at the lower river sites resulted in significant improvements in stream physical habitat quality, and this was paralleled by significant recovery or reappearance of taxa that had disappeared from the mid-reaches. We suggest that restoration of the riparian vegetation within the mid-reaches of the Nyaodza River would lead to improved physical habitat and biotic health of this dry-land river.  相似文献   

7.
This study assessed benthic macroinvertebrates and periphyton and its responses to managed river-flows, in riffles downstream of three dams on the Cotter River, Australian Capital Territory. Benthic macroinvertebrates and periphyton were also assessed in adjacent tributaries of the river, as well as in a nearby unregulated river and its tributaries. Food sources of four macroinvertebrate taxa (Leptophlebiidae, Elmidae, Glossosomatidae and Orthocladiinae) were determined by stable isotope analysis of the invertebrates and their potential food, in conjunction with examination of the gut contents of individual invertebrates. Components of benthic periphyton were the main food source for the selected taxa. Orthocladiinae consumed primarily amorphous detritus, while Elmidae, Glossosomatidae and Leptophlebiidae consumed diatoms. Enclosed benthic chambers were used to measure the response of benthic metabolism to monthly flow spikes released from one of the dams. The balance of benthic metabolism as measured by the Production/Respiration ratio (P/R) showed a shift towards production after the release of flow spikes. At sites downstream of the dams, there was more periphyton chlorophyll-a in the form of filamentous green algae than at sites in the unregulated river and the tributaries, and macroinvertebrate taxa using periphyton as a food resource were missing or reduced in abundance relative to sites without dams. However, the site downstream of the dam with environmental flow releases had more macroinvertebrate taxa and less periphyton cholorophyll-a content than sites downstream of dams without managed environmental flows, suggesting that a more suitable food supply resulting from environmental flow releases shifted macroinvertebrate communities towards those of unregulated streams.  相似文献   

8.
《新西兰生态学杂志》2011,33(2):177-189
Urban streams globally are characterised by degraded habitat conditions and low aquatic biodiversity, but are increasingly becoming the focus of restoration activities. We investigated habitat quality, ecological function, and fish and macroinvertebrate community composition of gully streams in Hamilton City, New Zealand, and compared these with a selection of periurban sites surrounded by rural land. A similar complement of fish species was found at urban and periurban sites, including two threatened species, with only one introduced fish widespread (Gambusia affinis). Stream macroinvertebrate community metrics indicated low ecological condition at most urban and periurban sites, but highlighted the presence of one high value urban site with a fauna dominated by sensitive taxa. Light-trapping around seepages in city gullies revealed the presence of several caddisfly species normally associated with native forest, suggesting that seepage habitats can provide important refugia for some aquatic insects in urban environments. Qualitative measures of stream habitat were not significantly different between urban and periurban sites, but urban streams had significantly lower hydraulic function and higher biogeochemical function than periurban streams. These functional differences are thought to reflect, respectively, (1) the combined effects of channel modification and stormwater hydrology, and (2) the influence of riparian vegetation providing shade and enhancing habitat in streams. Significant relationships between some macroinvertebrate community metrics and riparian vegetation buffering and bank protection suggest that riparian enhancement may have beneficial ecological outcomes in some urban streams. Other actions that may contribute to urban stream restoration goals include an integrated catchment approach to resolving fish passage issues, active reintroduction of wood to streams to enhance cover and habitat heterogeneity, and seeding of depauperate streams with native migratory fish to help initiate natural recolonisation.  相似文献   

9.
Reed invasion is a common phenomenon of open streams with disturbed riparian vegetation in river catchments. Knowledge of the effects of such vegetation change on aquatic communities is fundamental to river management. Macroinvertebrate fauna in Phragmites australis (Cav.) Trin. ex Steud. and open bank habitats were examined in three rivers in central Victoria in order to understand the effect of such littoral habitat on macroinvertebrates. Data were analysed using Partially Nested Factorial ANOVA with season, river and habitats as main effects. Habitat structure had a significant effect (p<0.05) on macroinvertebrate species richness, however this was not seasonally consistent across the three rivers. There was a significant increase (p<0.05) in macroinvertebrate taxa richness in Phragmites habitats during winter and spring seasons. Total abundance of taxa showed no consistent significant differences in the two habitats. Results of Canonical Analysis of Principle Coordinates indicated significant differences (p<0.05) in macroinvertebrate assemblages between Phragmites and bare bank habitats in all seasons. Habitat selection by taxa could be related to the microphysical environment of the habitats. This study suggests that reed beds create important littoral habitat structures which support diverse macroinvertebrate assemblages.  相似文献   

10.
1. The structure of lotic macroinvertebrate communities may be strongly influenced by land‐use practices within catchments. However, the relative magnitude of influence on the benthos may depend upon the spatial arrangement of different land uses in the catchment. 2. We examined the influence of land‐cover patterns on in‐stream physico‐chemical features and macroinvertebrate assemblages in nine southern Appalachian headwater basins characterized by a mixture of land‐use practices. Using a geographical information system (GIS)/remote sensing approach, we quantified land‐cover at five spatial scales; the entire catchment, the riparian corridor, and three riparian ‘sub‐corridors’ extending 200, 1000 and 2000 m upstream of sampling reaches. 3. Stream water chemistry was generally related to features at the catchment scale. Conversely, stream temperature and substratum characteristics were strongly influenced by land‐cover patterns at the riparian corridor and sub‐corridor scales. 4. Macroinvertebrate assemblage structure was quantified using the slope of rank‐abundance plots, and further described using diversity and evenness indices. Taxon richness ranged from 24 to 54 among sites, and the analysis of rank‐abundance curves defined three distinct groups with high, medium and low diversity. In general, other macroinvertebrate indices were in accord with rank‐abundance groups, with richness and evenness decreasing among sites with maximum stream temperature. 5. Macroinvertebrate indices were most closely related to land‐cover patterns evaluated at the 200 m sub‐corridor scale, suggesting that local, streamside development effectively alters assemblage structure. 6. Results suggest that differences in macroinvertebrate assemblage structure can be explained by land‐cover patterns when appropriate spatial scales are employed. In addition, the influence of riparian forest patches on in‐stream habitat features (e.g. the thermal regime) may be critical to the distribution of many taxa in headwater streams draining catchments with mixed land‐use practices.  相似文献   

11.
The response of aquatic macroinvertebrate communities to flow permanence within limestone springs and headwater streams was examined across the English Peak District. At the regional scale, macroinvertebrate communities of perennial and intermittent springs displayed significant differences in the number of taxa, macroinvertebrate community abundance, diversity indices (Shannon and Simpson indices) and the Berger–Parker dominance index at intermediate discharge. However, no significant difference was recorded between intermittent and perennial sites at high discharge or when all sampling occasions were pooled. At the catchment scale, the number of taxa, community abundance and Bray–Curtis similarity coefficients within the River Lathkill differed significantly between intermittent springs and other habitats. At both the regional and catchment scale the macroinvertebrate communities of intermittent springs were characterised by a small number of taxa displaying life cycle adaptations to intermittent aquatic habitats, particularly Trichoptera.  相似文献   

12.
We examined the influence of riparian vegetation on macroinvertebrate community structure in streams of the Upper Thames River watershed in southwestern Ontario. Thirty-three μ-basins (129–1458 ha) were used to identify land cover variables that influenced stream macroinvertebrates. Micro-basins represented the entire drainage area of study streams and were similar in stream order (first, second) and land cover (agricultural or forest; no urban). We described the structure and composition of riparian vegetation and benthic macroinvertebrate communities at the outflow reach. The nature of the land cover was quantified for the stream network buffer (30 m) and the whole μ-basin. The objective of this study was to measure the magnitude and nature of the relationship between the riparian vegetation and benthic macroinvertebrate community at the outflow reach, stream network buffer, and whole μ-basin scales. Taxon richness (including total number of Ephemeroptera, Plecoptera, and Trichoptera taxa) and Simpson’s diversity of the macroinvertebrate community all increased with increased tree cover in the riparian zone at the outflow reach scale. Simpson’s equitability was lower with greater agricultural land cover in the stream network buffer. No relationship between the macroinvertebrate community and land cover was found at the whole μ-basin scale. Analysis of the influence of land cover on stream communities within a spatial hierarchy is important for understanding the interactions of stream ecosystems with their adjacent landscapes.  相似文献   

13.
Macroinvertebrates are one of the key components of lake ecosystems and are required to be monitored alongside other biological groups to define ecological status according to European Union legislation. Macroinvertebrate communities are highly variable and complex and respond to a diverse series of environmental conditions. The purpose of this study was to examine the relative importance of environmental variables in explaining macroinvertebrate abundance. A total of 45 sub-alpine lakes were sampled for macroinvertebrates in the shallow sublittoral. Environmental variables were grouped into four types: (1) aquatic physical and chemical parameters, (2) littoral and riparian habitat, (3) lake morphometric parameters and (4) sediment chemical characteristics. Nonparametric multiplicative regression (NPMR) was used to model the abundance of individual macroinvertebrate taxa. Significant models were produced for nine out of the 24 taxa examined. Sediment characteristics were the group most frequently included in models and also the factors to which taxa abundance was the most sensitive. Aquatic physical and chemical variables were the next group most frequently included in models although chlorophyll a was not included in any of the models and total phosphorus in only one. This indicates that many taxa may not show a direct easily interpretable response to eutrophication pressure. Lake morphometric factors were included in several of the models although the sensitivity of macroinvertebrate abundance tended to be lower than for sediment and aquatic physical and chemical factors. Habitat factors were only included in three models although riparian vegetation was found to have a significant influence on the abundance of Ephemera danica indicating that ecotone integrity is likely to play a role in its ecology. Overall, the models tended to be specific for species with limited commonality across taxa. Models produced by NPMR indicate that the response of macroinvertebrates to environmental variables can be successfully described but further research is required focussing in more detail on the response of key taxa to relevant environmental parameters and anthropogenic pressures.  相似文献   

14.
SUMMARY.
  • 1 Based on monthly samples taken over a 1-year period, average density (individuals m-2). average standing biomass and annual production of benthic macroinvertebrates were estimated at five sites within an Appalachian Mountain drainage basin. Two sites were on first order streams and differed from the three second order sites: they were smaller and more shallow and they were depressed in pH and chemical richness.
  • 2 Patterns of abundance of individual taxa, of higher taxonomic groups and of functional (feeding) groups differed according to whether abundance was measured as density, as standing biomass or as annual production. Standing biomass was chosen as the measure of macroinvertebrate abundance because available evidence indicates that only standing biomass is consistently, positively correlated with survivorship, and thus with habitat favourability.
  • 3 Two non-insect taxa (the crayfish Cambarus and the snail Leptoxis carinata) dominated standing biomass at each site. Consequently, differences among sites in total macroinvertebrate standing biomass and differences within and among sites in standing biomass of functional groups were determined by differences in estimated standing biomass of these two taxa. Differences in estimates of crayfish standing biomass were consistent with an explanation based on the availability of refuges created by large substrate particles. The abundance of L. carinata appeared to be controlled primarily by water chemistry and possibly secondarily by predators. A number of insect taxa exhibited patterns of standing biomass consistent with hypotheses based on effects of annual depth-flow regimes. Hypotheses based on differences in food resource and on competition appeared, in general, to be inconsistent with observed patterns of macroinvertebrate abundance.
  • 4 Contrary to predictions of the River Continuum Concept, the shredder functional group in the Guys Run drainage and in other temperate woodland streams was found to be a minor part of total macroinvertebrate standing biomass. Further, in a majority of small forested stream sites studied to date, standing biomass of grazers has been determined to be greater than that of shredders.
  相似文献   

15.
SUMMARY. 1. We studied the effects of seasonal flooding on macro-invertebrate abundance by manipulating water regime and detrital level within three contiguous experimental marshes in Manitoba, Canada, over 2 years. One area was seasonally flooded (standing water present through midsummer) with emergent vegetation left undisturbed throughout the study, one was semipermanently flooded (standing water present through the ice-free season) with the vegetation left undisturbed, and one was seasonally flooded with the vegetation harvested at the end of the first summer.
2. Abundances of frequent macroinvertebrate taxa were compared between the seasonally flooded-undisturbed treatment area and each of the other areas.
3. Densities of total invertebrates and of the dominant taxa (Cladocera, Ostracoda and Culicidae) were reduced dramatically by a year of semipermanent flooding, despite high levels of paniculate organic food resources and low populations of predators. Densities were not reduced by lowering the availability of detritus under seasonally flooded conditions.
4. Taxa unaffected by water regime included Dytiscidae, Corixidae, Chironomidae, Ceratopogonidae and Ephydridae.
5. Semi-permanent flooding may have eliminated environmental cues necessary for oviposition, embryonic development and hatch among dominant taxa. High invertebrate densities in temporary waters may be more dependent upon life history traits of resident fauna than upon habitat features such as food availability or predation pressure.  相似文献   

16.
B. Khan  M. H. Colbo 《Hydrobiologia》2008,600(1):229-235
This study examined the impact of physical disturbance from long-established road culverts on stream macroinvertebrate communities. Three streams within a 6 km section of highway on the Avalon Peninsula, Newfoundland, Canada, were sampled. Streams had the entire upstream watershed and at least 100 m downstream of the road with natural boreal forest/barren vegetation and all had, within the sampled reaches, similar physical streambed characteristics. The fauna on stones from riffles was sampled at two upstream and three downstream sites, i.e., from 50 m above to about 100 m below the road in each stream. A total of 33 taxa were identified among the streams, with differences limited to a few rare taxa. The sample site communities did not significantly differ from each other with respect to the taxa present. Total macroinvertebrate abundance by site, for combined data of all streams, indicated the site at the exit of culvert plunge pool (site 3) had significantly elevated abundances. Analysis of individual taxa showed this was primarily due to very high numbers of Simulium spp. The other most notable changes were a decrease in numbers of Hydropsyche spp. and Elmidae below the road. The abundances of the remaining taxa were more variable among all sites. The study indicated that long-standing point source physical disturbance primarily impacted taxa abundance rather than community present/absent data, which will recolonize the disturbed zone by downstream drift. The differences in abundance are probably the result of the cleaning of substrate by abrasion, movement of substrate and reduction of detritus during each spate. Handling editor: D. Dudgeon  相似文献   

17.
In forest headwater streams where the riparian canopy limits autochthonous primary production, leaf litter decomposition is a key process controlling nutrient and carbon cycling. Any alteration of the riparian vegetation may influence litter decomposition and detrital food webs. We evaluated the effect of non-native Platanus hybrida riparian plantations on leaf litter decomposition in Mediterranean streams. The experiment was conducted in six headwater streams; three lined by native riparian vegetation and three crossing P. hybrida plantations. We have characterized the processing rates of alder leaves and the assemblages of shredder macroinvertebrates and fungi. Litter decomposition was significantly faster in the P. hybrida than in the reference streams. Although the dissolved inorganic nitrogen concentration was higher in P. hybrida, no significant effect was observed in decomposition rates. Differences in decomposition rates reflected the macroinvertebrate and shredder colonization in alder litter, with higher abundance and richness in the P. hybrida streams. However, aquatic hyphomycete sporulation rate was higher in reference streams, suggesting that the variation in decomposition rates is a direct consequence of shredder abundance. Our findings support part of the substrate quality-matrix quality (SMI) hypothesis, which expects that high-quality litter will show increased decomposition rates in a low-quality litter matrix.  相似文献   

18.
马康  史璇  尤晓光  刘静玲 《生态学报》2021,41(5):2001-2010
河流岸带湿地栖息地完整性对河流水环境、水生态和水文的安全与健康具有重要意义,为探究河流岸带湿地表层沉积物重金属分布特征及其对植被和底栖动物的影响,对滦河干流上中下游河段表层沉积物、植物群落和底栖动物调查分析,采用生物毒性效应系数法和综合潜在生态风险指数法评价沉积物重金属污染特征,采用植被物种多样性指数和底栖动物完整性指数评价滦河植物和底栖动物群落特征,探究岸带湿地沉积物重金属空间分布与植被及底栖动物群落特征之间关系。结果表明,滦河表层沉积物总体呈清洁水平,但不同河段重金属空间分布差异较大,下游重金属生态危害系数和潜在生态风险指数高于上中游。湿地物种调查共识别维管束植物219种,大型无脊椎底栖动物105种,综合评价结果表明下游植物群落物种多样性和底栖动物群落完整性低于上中游。滦河下游岸带湿地沉积物重金属对生物群落具有生物毒性和潜在的生态风险,降低了植被物种多样性和底栖动物群落完整性。大型底栖动物完整性指数能够综合反映底栖动物群落结构特征变化,对河岸带湿地生态健康评价和监测具有重要意义。  相似文献   

19.
Biological indicators are being increasingly used to rapidly monitor changing river quality. Among these bioindicators are macroinvertebrates. A short-coming of macroinvertebrate rapid assessments is that they use higher taxa, and therefore lack taxonomic resolution and species-specific responses. One subset of invertebrate taxa is the Odonata, which as adults, are sensitive indicators of both riparian and river conditions. Yet adult Odonata are not necessarily an umbrella taxon for all other taxa. Therefore, we investigated whether the two metrics of aquatic macroinvertebrate higher taxa and adult odonate species might complement each other, and whether together they provide better clarity on river health and integrity than one subset alone. Results indicated that both metrics provide a similar portrait of large-scale, overall river conditions. At the smaller spatial scale of parts of rivers, Odonata were highly sensitive to riparian vegetation, and much more so than macroinvertebrate higher taxa. Odonate species were more sensitive to vegetation structure than they were to vegetation composition. Landscape context is also important, with the odonate assemblages at point localities being affected by the neighbouring dominant habitat type. Overall, benthic macroinvertebrates and adult Odonata species provide a highly complementary pair of metrics which together provide large spatial scale (river system) and small spatial scale (point localities) information on the impact of stressors such as riparian invasive alien trees. As adult Odonata are easy to sample and are sensitive to disturbance at both small and large spatial scales, they are valuable indicators for rapid assessment of river condition and riparian quality.  相似文献   

20.
Riparian vegetation is known to affect aquatic macroinvertebrate communities through contributions of organic matter and shading. Despite the widespread degradation of riparian vegetation in Australia, there are relatively few studies examining the effect of changes in riparian vegetation on in-stream macroinvertebrate assemblages on individual catchments. In particular, information is lacking on the responses of macroinvertebrate communities in catchments dominated by agriculture, where farms that are managed at the paddock scale result in riparian vegetation condition varying over relatively short distances. In this study, macroinvertebrate assemblages were assessed from 12 reaches along a 25-km section of a small agricultural stream in south-eastern Australia. Riparian condition was assessed using in-stream coarse woody debris (CWD) levels and the rapid appraisal of riparian condition (RARC) index, a numerical system for categorising the health of riparian areas that incorporates sub-indices reflecting habitat continuity, vegetation cover, plant debris levels, native vegetation dominance, and other indicative features. There was a significant positive correlation between RARC scores and macroinvertebrate taxon richness (p < 0.01), and also between CWD scores and macroinvertebrate taxon richness (p < 0.05). In contrast, there was no significant correlation observed between riparian condition and the other macroinvertebrate indices (abundance, Shannon diversity, SIGNAL and SIGNAL2). Macroinvertebrate communities were significantly different in stream reaches from different riparian condition categories (ANOSIM; p < 0.05). Our results indicate that efforts to rehabilitate riparian vegetation may have a positive effect on in-stream biota even when implemented at a relatively small scale by individual landholders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号