首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Platelet-derived growth factor (PDGF) plays a critical role in the pathogenesis of proliferative diseases. NAD(P)H oxidase (Nox)-derived reactive oxygen species (ROS) are essential for signal transduction by growth factor receptors. Here we investigated the dependence of PDGF-AA-induced ROS production on the cytosolic Nox subunits Rac-1 and p47(phox), and we systematically evaluated the signal relay mechanisms by which the alphaPDGF receptor (alphaPDGFR) induces ROS liberation. Stimulation of the alphaPDGFR led to a time-dependent increase of intracellular ROS levels in fibroblasts. Pharmacological inhibitor experiments and enzyme activity assays disclosed Nox as the source of ROS. alphaPDGFR activation is rapidly followed by the translocation of p47(phox) and Rac-1 from the cytosol to the cell membrane. Experiments performed in p47(phox)(-/-) cells and inhibition of Rac-1 or overexpression of dominant-negative Rac revealed that these Nox subunits are required for PDGF-dependent Nox activation and ROS liberation. To evaluate the signaling pathway mediating PDGF-AA-dependent ROS production, we investigated Ph cells expressing mutant alphaPDGFRs that lack specific binding sites for alphaPDGFR-associated signaling molecules (Src, phosphatidylinositol 3-kinase (PI3K), phospholipase Cgamma, and SHP-2). Lack of PI3K signaling (but not Src, phospholipase Cgamma, or SHP-2) completely abolished PDGF-dependent p47(phox) and Rac-1 translocation, increase of Nox activity, and ROS production. Conversely, a mutant alphaPDGFR able to activate only PI3K was sufficient to mediate these subcellular events. Furthermore, the catalytic PI3K subunit p110alpha (but not p110beta) was identified as the crucial isoform that elicits alphaPDGFR-mediated production of ROS. Finally, bromodeoxyuridine incorporation and chemotaxis assays revealed that the lack of ROS liberation blunted PDGF-AA-dependent chemotaxis but not cell cycle progression. We conclude that PI3K/p110alpha mediates growth factor-dependent ROS production by recruiting p47(phox) and Rac-1 to the cell membrane, thereby assembling the active Nox complex. ROS are required for PDGF-AA-dependent chemotaxis but not proliferation.  相似文献   

2.
Rac is an activating factor for Nox1, an O2-generating NADPH oxidase, expressed in the colon and other tissues. Rac requires a GDP-GTP exchange factor for activation. Nox1 activation by βPix has been demonstrated in cell lines. We examined the effects of βPix and its phosphomimetic mutant on endogenous Nox1 in Caco-2 cells transfected with Noxo1 and Noxa1. βPix expression enhanced O2 production in resting cells and cells stimulated with EGF or phorbol ester. βPix(S340E) further enhanced O2 production, while βPix(S340A) eliminated the βPix effect. βPix(S340E), but not βPix(S340A), had higher affinity and GEF activity for Rac than wild-type βPix. These results suggest that βPix phosphorylation at Ser-340 upregulates Nox1 through Rac activation, confirming Rac as a trigger for acute Nox1-dependent ROS production.  相似文献   

3.
Rac1 has been implicated in the generation of reactive oxygen species (ROS) in several cell types, but the enzymatic origin of the ROS has not been proven. The present studies demonstrate that Nox1, a homolog of the phagocyte NADPH-oxidase component gp91(phox), is activated by Rac1. When Nox1 is co-expressed along with its regulatory subunits NOXO1 and NOXA1, significant ROS generation is seen. Herein, co-expression of constitutively active Rac1(G12V), but not wild-type Rac1, resulted in marked further stimulation of activity. Decreased Rac1 expression using small interfering RNA reduced Nox1-dependent ROS. CDC42(G12V) failed to increase activity, and small interfering RNA directed against CDC42 failed to decrease activity, pointing to specificity for Rac. TPR domain mutants of NOXA1 that interfere with Rac1 binding were ineffective in supporting Nox1-dependent ROS generation. Immunoprecipitation experiments demonstrated a complex containing Rac1(G12V), NOXO1, NOXA1, and Nox1. CDC42(G12V) could not substitute for Rac1(G12V) in such a complex. Nox1 formed a complex with Rac1(G12V) that was independent of NOXA1 and NOXO1, consistent with direct binding of Rac1(G12V) to Nox1. Rac1(G12V) interaction with NOXA1 was enhanced by Nox1 and NOXO1, suggesting cooperative binding. A model is presented comparing activation by regulatory subunits of Nox1 versus gp91(phox) (Nox2) in which Rac1 activation provides a major trigger that acutely activates Nox1-dependent ROS generation.  相似文献   

4.
LPS, the primary constituent of the outer membrane of Gram-negative bacteria, is recognized by TLR4. Binding of TLR4 to LPS triggers various cell signaling pathways including NF-kappaB activation and reactive oxygen species (ROS) production. In this study, we present the data that LPS-induced ROS generation and NF-kappaB activation are mediated by a direct interaction of TLR4 with (NAD(P)H oxidase 4 (Nox) 4), a protein related to gp91phox (Nox2) of phagocytic cells, in HEK293T cells. Yeast two hybrid and GST pull-down assays indicated that the COOH-terminal region of Nox4 interacted with the cytoplasmic tail of TLR4. Knockdown of Nox4 by transfection of small interference RNA specific to the Nox4 isozyme in HEK293T cells expressing TLR4 along with MD2 and CD14 resulted in inhibition of LPS-induced ROS generation and NF-kappaB activation. Taken together, these results indicate that direct interaction of TLR4 with Nox4 is involved in LPS-mediated ROS generation and NF-kappaB activation.  相似文献   

5.
Although mitochondria and the Nox family of NADPH oxidase are major sources of reactive oxygen species (ROS) induced by external stimuli, there is limited information on their functional relationship. This study has shown that serum withdrawal promotes the production of ROS in human 293T cells by stimulating both the mitochondria and Nox1. An analysis of their relationship revealed that the mitochondria respond to serum withdrawal within a few minutes, and the ROS produced by the mitochondria trigger Nox1 action by stimulating phosphoinositide 3-kinase (PI3K) and Rac1. Activation of the PI3K/Rac1/Nox1 pathway was evident 4-8 h after but not earlier than serum withdrawal initiation, and this time lag was found to be required for an additional activator of the pathway, Lyn, to be expressed. Functional analysis suggested that, although the mitochondria contribute to the early (0-4 h) accumulation of ROS, the maintenance of the induced ROS levels to the later (4-8 h) phase required the action of the PI3K/Rac1/Nox1 pathway. Serum withdrawal-treated cells eventually lost their viability, which was reversed by blocking either the mitochondria-dependent induction of ROS using rotenone or KCN or the PI3K/Rac1/Nox1 pathway using the dominant negative mutants or small interfering RNAs. This suggests that mitochondrial ROS are essential but not enough to promote cell death, which requires the sustained accumulation of ROS by the subsequent action of Nox1. Overall, this study shows a signaling link between the mitochondria and Nox1, which is crucial for the sustained accumulation of ROS and cell death in serum withdrawal-induced signaling.  相似文献   

6.
Generation of reactive oxygen species (ROS) during infection is an immediate host defense leading to microbial killing. APE1 is a multifunctional protein induced by ROS and after induction, protects against ROS-mediated DNA damage. Rac1 and NAPDH oxidase (Nox1) are important contributors of ROS generation following infection and associated with gastrointestinal epithelial injury. The purpose of this study was to determine if APE1 regulates the function of Rac1 and Nox1 during oxidative stress. Gastric or colonic epithelial cells (wild-type or with suppressed APE1) were infected with Helicobacter pylori or Salmonella enterica and assessed for Rac1 and NADPH oxidase-dependent superoxide production. Rac1 and APE1 interactions were measured by co-immunoprecipitation, confocal microscopy and proximity ligation assay (PLA) in cell lines or in biopsy specimens. Significantly greater levels of ROS were produced by APE1-deficient human gastric and colonic cell lines and primary gastric epithelial cells compared to control cells after infection with either gastric or enteric pathogens. H. pylori activated Rac1 and Nox1 in all cell types, but activation was higher in APE1 suppressed cells. APE1 overexpression decreased H. pylori-induced ROS generation, Rac1 activation, and Nox1 expression. We determined that the effects of APE1 were mediated through its N-terminal lysine residues interacting with Rac1, leading to inhibition of Nox1 expression and ROS generation. APE1 is a negative regulator of oxidative stress in the gastrointestinal epithelium during bacterial infection by modulating Rac1 and Nox1. Our results implicate APE1 in novel molecular interactions that regulate early stress responses elicited by microbial infections.  相似文献   

7.
Neuregulin (NRG), a member of the epidermal growth factor family, plays important roles in the development of the nervous system and heart, and in cancer progression. Recent reports have suggested that NRG is involved in wound healing in keratinocytes, although the cellular mechanisms remain unclear. Here, we showed that NRG treatment increased slingshot-1L (SSH-1L)-mediated cofilin dephosphorylation and activation in HaCaT keratinocytes. Additionally, Rac1 activation and NADPH-oxidase (Nox)-dependent reactive oxygen species (ROS) generation, both known to be upstream regulators of the SSH-cofilin pathway, were increased in NRG-stimulated HaCaT cells. Inhibition of Rac1 or Nox activity blocked NRG-induced cofilin activation and cell migration by HaCaT cells. Moreover, the effects of Rac1 on cofilin activation were dependent on Nox activity. These findings indicate that NRG-induced HaCaT cell migration via the ROS-SSH-1L-cofilin pathway is activated as a consequence of Rac1 and Nox activation.  相似文献   

8.
NADPH oxidase (Nox) family enzymes are one of the main sources of cellular reactive oxygen species (ROS), which have been shown to function as second messenger molecules. To date, seven members of this family have been reported, including Nox1-5 and Duox1 and -2. With the exception of Nox2, the regulation of the Nox enzymes is still poorly understood. Nox1 is highly expressed in the colon, and it requires two cytosolic regulators, NoxO1 and NoxA1, as well as the binding of Rac1 GTPase, for its activity. In this study, we investigate the role of the tyrosine kinase c-Src in the regulation of ROS formation by Nox1. We show that c-Src induces Nox1-mediated ROS generation in the HT29 human colon carcinoma cell line through a Rac-dependent mechanism. Treatment of HT29 cells with the Src inhibitor PP2, expression of a kinase-inactive form of c-Src, and c-Src depletion by small interfering RNA (siRNA) reduce both ROS generation and the levels of active Rac1. This is associated with decreased Src-mediated phosphorylation and activation of the Rac1-guanine nucleotide exchange factor Vav2. Consistent with this, Vav2 siRNA that specifically reduces endogenous Vav2 protein is able to dramatically decrease Nox1-dependent ROS generation and abolish c-Src-induced Nox1 activity. Together, these results establish c-Src as an important regulator of Nox1 activity, and they may provide insight into the mechanisms of tumor formation in colon cancers.  相似文献   

9.
Generation of reactive oxygen species (ROS) by Ras oncogene-induced NADPH oxidase (Nox) 1 is required for Ras transformation phenotypes including anchorage-independent growth, morphological transformation, and tumorigenesity, but the signaling mechanism downstream of Nox1 remains elusive. Rho is known to be a critical regulator of actin stress fiber formation. Nonetheless, Rho was reported to no longer couple to loss of actin stress fibers in Ras-transformed Swiss3T3 cells despite the elevation of Rho activity. In this study, however, we demonstrate that Rho is inactivated in K-Ras-transformed normal rat kidney cells, and that abrogation of Nox1-generated ROS by Nox1 small interference RNAs or diphenyleneiodonium restores Rho activation, suggesting that Nox1-generated oxidants mediate down-regulation of the Rho activity. This down-regulation involves oxidative inactivation of the low molecular weight protein-tyrosine phosphatase by Nox1-generated ROS and a subsequent elevation in the tyrosine-phosphorylated active form of p190RhoGAP, the direct target of the phosphatase. Furthermore, the decreased Rho activity leads to disruption of both actin stress fibers and focal adhesions in Ras-transformed cells. As for Rac1, Rac1 also appears to participate in the down-regulation of Rho via Nox1. Our discovery defines a mediating role of Nox1-redox signaling for Ras oncogene-induced actin cytoskeletal changes.  相似文献   

10.
The DNA damage response (DDR) cascade and ROS (reactive oxygen species) signaling are both involved in the induction of cell death after DNA damage, but a mechanistic link between these two pathways has not been clearly elucidated. This study demonstrates that ROS induction after treatment of cells with neocarzinostatin (NCS), an ionizing radiation mimetic, is at least partly mediated by increasing histone H2AX. Increased levels of ROS and cell death induced by H2AX overexpression alone or DNA damage leading to H2AX accumulation are reduced by treating cells with the antioxidant N-Acetyl-L-Cysteine (NAC), the NADP(H) oxidase (Nox) inhibitor DPI, expression of Rac1N17, and knockdown of Nox1, but not Nox4, indicating that induction of ROS by H2AX is mediated through Nox1 and Rac1 GTPase. H2AX increases Nox1 activity partly by reducing the interaction between a Nox1 activator NOXA1 and its inhibitor 14-3-3zeta. These results point to a novel role of histone H2AX that regulates Nox1-mediated ROS generation after DNA damage.  相似文献   

11.
Reactive oxygen species (ROS) generated by NADPH oxidases (Nox) have been implicated in the regulation of signal transduction. However, the cellular mechanisms that link Nox activation with plasma membrane receptor signaling remain poorly defined. We have found that Nox2-derived ROS influence the formation of an active interleukin-1 (IL-1) receptor complex in the endosomal compartment by directing the H2O2-dependent binding of TRAF6 to the IL-1R1/MyD88 complex. Clearance of both superoxide and H2O2 from within the endosomal compartment significantly abrogated IL-1beta-dependent IKK and NF-kappaB activation. MyD88-dependent endocytosis of IL-1R1 following IL-1beta binding was required for the redox-dependent formation of an active endosomal receptor complex competent for IKK and NF-kappaB activation. Small interfering RNAs to either MyD88 or Rac1 inhibited IL-1beta induction of endosomal superoxide and NF-kappaB activation. However, MyD88 and Rac1 appear to be recruited independently to IL-1R1 following ligand stimulation. In this context, MyD88 binding was required for inducing endocytosis of IL-1R1 following ligand binding, while Rac1 facilitated the recruitment of Nox2 into the endosomal compartment and subsequent redox-dependent recruitment of TRAF6 to the MyD88/IL-1R1 complex. The identification of Nox-active endosomes helps explain how subcellular compartmentalization of redox signals can be used to direct receptor activation from the plasma membrane.  相似文献   

12.
In the present study we investigated the interplay between matrix metalloproteinase 3 (MMP3) and NADPH oxidase 1 (Nox1) in the process of dopamine (DA) neuronal death. We found that MMP3 activation causes the induction of Nox1 via mitochondrial reactive oxygen species (ROS) production and subsequently Rac1 activation, eventually leading to Nox1-derived superoxide generation in a rat DA neuronal N27 cells exposed to 6-OHDA. While a MMP3 inhibitor, NNGH, largely attenuated mitochondrial ROS and subsequent Nox1 induction, both apocynin, a putative Nox inhibitor and GKT137831, a Nox1 selective inhibitor failed to reduce 6-OHDA-induced mitochondrial ROS. However, both inhibitors for MMP3 and Nox1 similarly attenuated 6-OHDA-induced N27 cell death. RNAi-mediated selective inhibition of MMP3 or Nox1 showed that knockdown of either MMP3 or Nox1 significantly reduced 6-OHDA-induced ROS generation in N27 cells. While 6-OHDA-induced Nox1 was abolished by MMP3 knockdown, Nox1 knockdown did not alter MMP3 expression. Direct overexpression of autoactivated MMP3 (actMMP3) in N27 cells or in rat substantia nigra (SN) increased expression of Nox1. Selective knockdown of Nox1 in the SN achieved by adeno-associated virus-mediated overexpression of Nox1-specific shRNA largely attenuated the actMMP3-mediated dopaminergic neuronal loss. Furthermore, Nox1 expression was significantly attenuated in Mmp3 null mice treated with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Together we established novel molecular mechanisms underlying oxidative stress-mediated dopaminergic neuronal death in which MMP3 activation is a key upstream event that leads to mitochondrial ROS, Nox1 induction and eventual dopaminergic neuronal death. Our findings may lead to the development of novel therapeutic approach.  相似文献   

13.
Beta1Pix (PAK-interacting exchange factor) is a recently identified guanine nucleotide exchange factor (GEF) for the Rho family small G protein Cdc42/Rac. On stimulation with extracellular signals, GEFs induce the exchange of guanosine diphosphate to guanosine triphosphate, resulting in the activation of the small guanosine 5C-triphosphatases. This activation enables the signal to propagate to downstream effectors. Herein, we show that G(salpha) stimulation by cholera toxin increased Cdc42 activation by endothelin-1 (ET-1), whereas pertussis toxin had no effect. H-89, a protein kinase A (PKA) inhibitor, strongly inhibited Cdc42 activation by ET-1. Moreover, the overexpression of beta1Pix enhanced ET-1-induced Cdc42 activation. The essential role of beta1Pix in ET-1-induced Cdc42 activation was evidenced by the blocking of Cdc42 activation in cells expressing beta1Pix mutant lacking the ability to bind PAK (beta1Pix SH3m[W43K]) or mutant lacking GEF activity (beta1PixdeltaDH). The overexpression of mutant lacking the pleckstrin homology domain beta1PixdeltaPH, which is unable to bind phospholipids, had no effect on Cdc42 activation. These results demonstrate that beta1Pix, along with PKA, plays a crucial role in the regulation of Cdc42 activation by ET-1.  相似文献   

14.
15.
Although generation of reactive oxygen species (ROS) by NADPH oxidases (Nox) is thought to be important for signal transduction in nonphagocytic cells, little is known of the role ROS plays in chondrogenesis. We therefore examined the possible contribution of ROS generation to chondrogenesis using both ATDC5 cells and primary chondrocytes derived from mouse embryos. The intracellular level of ROS was increased during the differentiation process, which was then blocked by treatment with the ROS scavenger N-acetylcysteine. Expression of Nox1 and Nox2 was increased upon differentiation of ATDC5 cells and primary mouse chondrocytes, whereas that of Nox4, which was relatively high initially, was decreased gradually during chondrogenesis. In developing limb, Nox1 and Nox2 were highly expressed in prehypertrophic and hypertrophic chondrocytes. However, Nox4 was highly expressed in proliferating chondrocytes and prehypertrophic chondrocytes. Depletion of Nox2 or Nox4 expression by RNA interference blocked both ROS generation and differentiation of ATDC5 cells, whereas depletion of Nox1 had no such effect. We also found that ATDC5 cells depleted of Nox2 or Nox4 underwent apoptosis. Further, inhibition of Akt phosphorylation along with subsequent activation of ERK was observed in the cells. Finally, depletion of Nox2 or Nox4 inhibited the accumulation of proteoglycan in primary chondrocytes. Taken together, our data suggest that ROS generated by Nox2 or Nox4 are essential for survival and differentiation in the early stage of chondrogenesis.  相似文献   

16.
Kim J  Lee JH  Park HS  Hwang J  Han IO  Bae YS  Oh ES 《FEBS letters》2008,582(18):2725-2730
The cell adhesion receptor, syndecan-4, regulates cellular interactions with both the extracellular matrix and soluble ligands. Accumulating evidence also suggests that cell adhesion is involved in generating reactive oxygen species (ROS). Here, we investigated the role of syndecan-4 in regulating growth factor-induced ROS generation. Rat embryo fibroblasts (REFs) overexpressing syndecan-4 exhibited increased ROS levels compared to control cells. Expression of the non-phagocytic NADH oxidase component Nox1 was increased in syndecan-4-overexpressing REFs and syndecan-4-mediated ROS generation was diminished when levels of Nox1 were knocked-down with small inhibitory RNAs. In addition, syndecan-4 enhanced platelet-derived growth factor (PDGF)-induced MAP kinase activity in parallel with ROS generation. Collectively, these data suggest that syndecan-4 regulates PDGF-induced MAP kinase activation by altering ROS generation.  相似文献   

17.
UV radiation-mediated photodamage to the skin has been implicated in premature aging and photoaging-related skin cancer and melanoma. Little is known about the cellular events that underlie premature senescence, or how to impede these events. In the present study we demonstrate that PPARδ (peroxisome-proliferator-activated receptor δ) regulates UVB-induced premature senescence of normal keratinocytes. Activation of PPARδ by GW501516, a specific ligand of PPARδ, significantly attenuated UVB-mediated generation of ROS (reactive oxygen species) and suppressed senescence of human keratinocytes. Ligand-activated PPARδ up-regulated the expression of PTEN (phosphatase and tensin homologue deleted on chromosome 10) and suppressed the PI3K (phosphatidylinositol 3-kinase)/Akt pathway. Concomitantly, translocation of Rac1 to the plasma membrane, which leads to the activation of NADPH oxidases and generation of ROS, was significantly attenuated. siRNA (small interfering RNA)-mediated knockdown of PTEN abrogated the effects of PPARδ on cellular senescence, on PI3K/Akt/Rac1 signalling and on generation of ROS in keratinocytes exposed to UVB. Finally, when HR-1 hairless mice were treated with GW501516 before exposure to UVB, the number of senescent cells in the skin was significantly reduced. Thus ligand-activated PPARδ confers resistance to UVB-induced cellular senescence by up-regulating PTEN and thereby modulating PI3K/Akt/Rac1 signalling to reduce ROS generation in keratinocytes.  相似文献   

18.
p21-activated kinase (Pak)-interacting exchange factor (Pix), a Rho family guanine nucleotide exchange factor (GEF), has been shown to co-localize with Pak and form activated Cdc42- and Rac1-driven focal complexes. In this study we have presented evidence that treatment of human mesangial cells (HMC) with endothelin 1 (ET-1) and stimulation of adenylate cyclase with either forskolin or with the cAMP analog 8-Br-cAMP activated the GTP loading of Cdc42. Transient expression of constitutively active G alpha(s) also stimulated Cdc42. In addition, overexpression of beta(1)Pix enhanced ET-1-induced Cdc42 activation, whereas the expression of beta(1)Pix SH3m(W43K), which lacks the ability to bind Pak, and beta(1)PixDHm(L238R/L239S), which lacks GEF activity, decreased ET-1-induced Cdc42 activation. Furthermore, ET-1 stimulation induced beta(1)Pix translocation to focal complexes. Interestingly, pretreatment of HMC with protein kinase A (PKA) inhibitors blocked both Cdc42 activation and beta(1)Pix translocation induced by ET-1, indicating the involvement of the PKA pathway. Through site-directed mutagenesis studies of consensus PKA phosphorylation sites and in vitro PKA kinase assay, we have shown that beta(1)Pix is phosphorylated by PKA. Using purified recombinant beta(1)Pix(wt) and beta(1)Pix mutants, we have identified Ser-516 and Thr-526 as the major phosphorylation sites by PKA. beta(1)Pix(S516A/T526A), in which both phosphorylation sites are replaced by alanine, blocks beta(1)Pix translocation and Cdc42 activation. Our results have provided evidence that stimulation of PKA pathway by ET-1 or cAMP analog results in beta(1)Pix phosphorylation, which in turn controls beta(1)Pix translocation to focal complexes and Cdc42 activation.  相似文献   

19.
The mechanism of angiotensin II (Ang II)-induced superoxide production was investigated with HEK293 or Chinese hamster ovary cells reconstituted with the angiotensin type 1 receptor (AT(1)R) and NADPH oxidase (either Nox1 or Nox2) along with a pair of adaptor subunits (either NOXO1 with NOXA1 or p47(phox) with p67(phox)). Ang II enhanced the activity of both Nox1 and Nox2 supported by either adaptor pair, with more effective activation of Nox1 in the presence of NOXO1 and NOXA1 and of Nox2 in the presence of p47(phox) and p67(phox). Expression of several AT(1)R mutants showed that interaction of the receptor with G proteins but not that with beta-arrestin or with other proteins (Jak2, phospholipase C-gamma1, SH2 domain-containing phosphatase 2) that bind to the COOH-terminal region of AT(1)R, was necessary for Ang II-induced superoxide production. The effects of constitutively active alpha subunits of G proteins and of various pharmacological agents implicated signaling by a pathway comprising AT(1)R, Galpha(q/11), phospholipase C-beta, and protein kinase C as largely, but not exclusively, responsible for Ang II-induced activation of Nox1 and Nox2 in the reconstituted cells. A contribution of Galpha(12/13), phospholipase D, and phosphatidyl-inositol 3-kinase to Ang II-induced superoxide generation was also suggested, whereas Src and the epidermal growth factor receptor did not appear to participate in this effect of Ang II. In reconstituted cells stimulated with Ang II, Nox2 exhibited a more sensitive response than Nox1 to the perturbation of protein kinase C, phosphatidylinositol 3-kinase, or the small GTPase Rac1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号