首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract: The role of voltage-sensitive Ca2+ channels in mediating Ca2+ influx during ischemia was investigated in NG108-15 cells, a neuronal cell line that does not express glutamate-sensitive receptor-mediated Ca2+ channels. Concurrent 31P/19F and 23Na double-quantum filtered (DQF) NMR spectra were used to monitor cellular energy status, intracellular [Ca2+] ([Ca2+]i), and intracellular Na+ content in cells loaded with the calcium indicator 1,2-bis-(2-amino-5-fluorophenoxy)ethane-N,N,N′,N′-tetraacetic acid (5FBAPTA) during ischemia and reperfusion. Cells loaded with 5FBAPTA were indistinguishable from unloaded cells except for small immediate decreases in levels of phosphocreatine (PCr) and ATP. Ischemia induced a steady decrease in intracellular pH and PCr and ATP levels, and a steady increase in intracellular Na+ content; however, a substantial increase in [Ca2+]i (about threefold) was seen only following marked impairment of cellular energy status, when PCr was undetectable and ATP content was reduced to 55% of control levels. A depolarization-induced increase in [Ca2+]i could be completely blocked by 1 µM nifedipine, whereas up to 20 µM nifedipine had no effect on the increase in [Ca2+]i seen during ischemia. These data demonstrate that voltage-gated Ca2+ channels do not mediate significant Ca2+ flux during ischemia in this cell line and suggest an important role for Ca2+i stores, the Na+/Ca2+ antiporter, or other processes linked to cellular energy status in the increase in cytosolic Ca2+ level during ischemia.  相似文献   

2.
Abstract: The role of transmembrane processes that are dependent on external anions in the regulation of cerebral intracellular pH (pHi), high-energy metabolites, and lactate was investigated using 31P and 1H NMR spectroscopy in an ex vivo brain slice preparation. During oxygenated superfusion, removal of external HCO3?/CO2 in the presence of Na+ led to a sustained split of the inorganic phosphate (Pi) peak so that the pHi indicated by one part of the peak was 0.38 pH units more alkaline and by the other part 0.10 pH units more acidic at 5 min than in the presence of HCO3?. The pH in the compartment with a higher pHi value returned to 7.29 ± 0.04 by 10.5 min of superfusion in a HCO3?-free medium, whereas the pHi in an acidic compartment was reduced to 7.02. In the presence of 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid or the absence of external Cl?, removal of HCO3? caused alkalinization without split of the Pi peak. Both treatments reduced the rate of pHi normalization following alkalinization. Simultaneous omission of external HCO3? and Na+ did not inhibit alkalinization of the pHi following CO2 exit. All these data show that the acid loading mechanism at neutral pHi is mediated by an Na+-independent anion transport. During severe hypoxia, pHi dropped from 7.29 ± 0.05 to 6.13 ± 0.16 and from 7.33 ± 0.03 to 6.67 ± 0.05 in the absence and presence of HCO3?, respectively, in Na+-containing medium. Lactate accumulated to 18.7 ± 2.8 and 19.6 ± 1.5 mmol/kg under the respective conditions. In the HCO3?-free medium supplemented with 1 mM amiloride, the pHi fell only to 6.94 ± 0.08 despite the lactate concentration of 18.9 ± 2.4 mmol/kg. Acidification caused by hypoxia was also small in the slice preparations superfused in the absence of both HCO3? and Cl?, as the pHi was 7.01 ± 0.12 at a lactate concentration of 24.5 ± 2.4 mmol/kg. These data indicate that apart from anaerobic glucose metabolism, separate acidifying mechanisms are functioning during hypoxia under these conditions. Recovery of phosphocreatine levels following reoxygenation was >75% relative to the prehypoxic level in the slice preparations superfused in the absence of HCO3? but <47% in those preparations superfused without HCO3? and Cl?. This indicates that either neutral pHi or absence of Cl? during hypoxia was deleterious to the energy metabolism. The present data indicate that Cl?/HCO3? exchange mechanisms have distinct roles in cerebral H+ homeostasis depending on the level of pHi and energy state.  相似文献   

3.
We have investigated in more detail our previous observations on a form of ischaemic pre-conditioning “metabolic adaptation”, i.e.—that sequential metabolic insults (hypoxia followed 40 min later by combined hypoxia + hypoglycaemia, or vice versa) are less injurious (monitored by increased [Ca2+]i and decreased PCr) than the immediate combined insult. We have now observed that the “adaptation” occurs between 10 and 20 min. Pre-treatment of the tissues with 10 μM-MK801 showed that it had no effect on the increase in [Ca2+]i caused by the sequential insult and only partially blocked the increase observed by exposure to the immediate combined insult. Exposure to both the delayed and immediate combined insults with low extracellular Ca2+ resulted in a two-fold increase in [Ca2+]i, similar to the increase observed with normal extracellular Ca2+ in the presence of MK801. The results are discussed in terms of the possible origins of the increases in [Ca2+]i.  相似文献   

4.
Abstract: The human neuroblastoma cell line SH-SY5Y, maintained at confluence for 14 days, released [3H]-noradrenaline ([3H]NA) when stimulated with either the muscarinic receptor agonist methacholine or bradykinin. The major fraction of release was rapid, occurring in <10 s, whereas nicotine-evoked release was slower. When the extracellular [Ca2+] ([Ca2+]e) was buffered to ~50–100 nM, release evoked by nicotine was abolished, whereas that in response to methacholine or bradykinin was reduced by ~50% with EC50 values of ?5.46 ± 0.05 M and ?7.46 ± 0.06 M (log10), respectively. Methacholine and bradykinin also produced rapid elevations of both inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and intracellular free [Ca2+] ([Ca2+]i). These elevations were reduced at low [Ca2+]e and under these conditions the EC50 values for peak elevation of [Ca2+]i were ?6.00 ± 0.14 M for methacholine and ?7.95 ± 0.34 M for bradykinin (n = 3 for all EC50 determinations). At low [Ca2+]e, depletion of nonmitochondrial intracellular Ca2+ stores with the Ca2+-ATPase inhibitor thapsigargin produced a transient small elevation of [Ca2+]i and a minor release of [3H]NA. At low [Ca2+]e, thapsigargin abolished elevation of [Ca2+]i in response to methacholine and bradykinin and completely inhibited their stimulation of [3H]NA release. It is proposed, therefore, that Ca2+ release from Ins(1,4,5)P3-sensitive stores is a major trigger of methacholine- and bradykinin-evoked [3H]NA release in SH-SY5Y cells.  相似文献   

5.
Abstract: The mechanisms involved in Ca2+ mobilization evoked by the muscarinic cholinoceptor (mAChR) agonist carbachol (CCh) and N-methyl-d -aspartate (NMDA) in cerebellar granule cells have been investigated. An initial challenge with caffeine greatly reduced the subsequent intracellular Ca2+ concentration ([Ca2+]i) response to CCh (to 45 ± 19% of the control), and, similarly, a much reduced caffeine response was detectable after prior stimulation with CCh (to 27 ± 6% of the control). CCh-evoked [Ca2+]i responses were inhibited by preincubation with thapsigargin (10 µM), 2,5-di(tert-butyl)-1,4-benzohydroquinone (BHQ; 25 µM), ryanodine (10 µM), or dantrolene (25 µM). BHQ pretreatment was found to have no effect on the sustained phase of the NMDA-evoked [Ca2+]i response. Both CCh (1 mM) and 1-aminocyclopentane-1S,3R-dicarboxylic acid (ACPD; 200 µM) evoked a much diminished increase in [Ca2+]i in granule cells pretreated with CCh for 24 h compared with vehicle-treated control cells (CCh, 23 ± 14%; ACPD, 27 ± 1% of respective control values). In contrast, a 24-h CCh pretreatment decreased the subsequent inositol 1,4,5-trisphosphate (InsP3) response to CCh to a much greater extent compared with responses evoked by metabotropic glutamate receptor (mGluR) agonists; this suggests that the former effect on Ca2+ mobilization represents a heterologous desensitization of the mGluR-mediated response distal to the pathway second messenger. Furthermore, [Ca2+]i responses to caffeine and NMDA were unaffected by a 24-h pretreatment with CCh. This study indicates that ryanodine receptors, as well as InsP3 receptors, appear to be crucial to the mAChR-mediated [Ca2+]i response in granule cells. As BHQ apparently differentiates between the CCh- and NMDA-evoked responses, it is possible that the directly InsP3-sensitive pool is physically different from the ryanodine receptor pool. Also, activation of InsP3 receptors may not contribute significantly to NMDA-evoked elevation of [Ca2+]i in cerebellar granule cells. A model for the topographic organization of cerebellar granule cell Ca2+ stores is proposed.  相似文献   

6.
In this study, the functional consequences of the pharmacological modulation of the M‐current (IKM) on cytoplasmic Ca2+ intracellular Ca2+concentration ([Ca2+]i) changes and excitatory neurotransmitter release triggered by various stimuli from isolated rat cortical synaptosomes have been investigated. Kv7.2 immunoreactivity was identified in pre‐synaptic elements in cortical slices and isolated glutamatergic cortical synaptosomes. In cerebrocortical synaptosomes exposed to 20 mM [K+]e, the IKM activator retigabine (RT, 10 μM) inhibited [3H]d ‐aspartate ([3H]d ‐Asp) release and caused membrane hyperpolarization; both these effects were prevented by the IKM blocker XE‐991 (20 μM). The IKM activators RT (0.1–30 μM), flupirtine (10 μM) and BMS‐204352 (10 μM) inhibited 20 mM [K+]e‐induced synaptosomal [Ca2+]i increases; XE‐991 (20 μM) abolished RT‐induced inhibition of depolarization‐triggered [Ca2+]i transients. The P/Q‐type voltage‐sensitive Ca2+channel (VSCC) blocker ω‐agatoxin IVA prevented RT‐induced inhibition of depolarization‐induced [Ca2+]i increase and [3H]d ‐Asp release, whereas the N‐type blocker ω‐conotoxin GVIA failed to do so. Finally, 10 μM RT did not modify the increase of [Ca2+]i and the resulting enhancement of [3H]d ‐Asp release induced by [Ca2+]i mobilization from intracellular stores, or by store‐operated Ca2+channel activation. Collectively, the present data reveal that the pharmacological activation of IKM regulates depolarization‐induced [3H]d ‐Asp release from cerebrocortical synaptosomes by selectively controlling the changes of [Ca2+]i occurring through P/Q‐type VSCCs.  相似文献   

7.
ABSTRACT Trypomastigotes of Trypanosoma cruzi maintain an intracellular Ca2+ concentration([Ca2+]i) of 64 ± 30 nM. Equilibration of trypomastigotes in an extracellular buffer containing 0.5 mM [Ca2+]o (preloaded cells) increased [Ca2+]i < 20 nM whereas total cell Ca2+ increased by 1.5 to 2.0 pmole/cell. This amount of Ca2+ would be expected to increase [Ca2+]i to > 10 μM suggesting active sequestration of Ca2+. We tested the hypothesis that maintenance of [Ca2+]i involved both the sequestration into intracellular storage sites and extrusion into the extracellular space. Pharmacological probes known to influence [Ca2+]i through well characterized pathways in higher eukaryotic cells were employed. [Ca2+], responses in the presence or absence of [Ca2+]o were measured to asses the relative contribution of sequestration or extrusion processes in [Ca2+]i homeostasis. In the presence of 0.5 mM [Ca2+]o, the ability of several agents to increase [Ca2+]i was magnified in the order ionomycin ? nigericin > thapsigargin > monensin > valinomycin. In contrast, preloading markedly enhanced the increase in [Ca2+], observed only in response to monensin. Manoalide, an inhibitor of phospholipase A2, enhanced the accumulation of [Ca2+]i due to all agents tested, particularly ionomycin and thapsigargin. Our results suggest that sequestration of [Ca2+]i involved storage sites sensitive to monensin and ionomycin whereas extrusion of Ca2+ may involve phospholipase A2 activity. A Na+/Ca2+ exchange mechanism did not appear to contribute to Ca2+ homeostasis.  相似文献   

8.
Abstract: The time course of the decline in energy levels during an in vitro ischemia-like condition was compared with changes in intracellular Ca2+ concentration ([Ca2+]i) in subregions of the gerbil hippocampal slice [CA1, CA3, and the inner and outer portions of the dentate gyrus (DG)]. Hippocampal transverse slices were loaded with a fluorescent indicator, rhod-2. During the on-line monitoring of [Ca2+]i, the slices were perfused with an in vitro ischemia-like medium (33°C). The slices were collected at several experimental time points, frozen, dried, and dissected into subregions. The contents of adenine nucleotides (ATP, ADP, and AMP) and phosphocreatine (PCr) were measured by HPLC methods. Region-specific and acute [Ca2+]i elevations were observed in CA1 ~4 min after onset of the in vitro ischemia-like condition and also in the inner portion of the DG with a delay of 10–40 s. The change in ATP levels was related to the increase in [Ca2+]i. ATP levels in all subregions gradually decreased before the acute [Ca2+]i elevation. Concomitant with the acute [Ca2+]i elevation in CA1 and the inner portion of the DG, ATP levels in the subregions rapidly decreased, whereas declines in levels of high-energy-charge phosphates were gradual in CA3 and the outer portion of the DG, in which the remarkable [Ca2+]i elevation was not observed. These results suggest that ATP depletion observed in CA1 and the inner portion of the DG is due to the region-specific increase in [Ca2+]i, which activates a Ca2+-ATP-driven pump and produces a subsequent fall in neuronal ATP content.  相似文献   

9.
Abstract— Ethyleneglycol-bis (β-aminoethyl ether)-N-N'-tetraacetic acid (EGTA) inhibited the incorporation of 32Pi into phosphatidylinositol (PI) in rat diaphragm incubated in Ca2+-free Krebs-Ringer medium. Only the labelling of the PI was altered, and no effects on the pool size of PI or on the incorporation of 32Pi into other phospholipids were observed. The effect of EGTA was concentration-dependent and appeared to be related to its Caa+-chelating properties; the inhibition of the incorporation of 32Pi could be completely reversed by the addition of excess Ca2+ but not Mg2+. The inhibitory effect of the EGTA was progressively enhanced by lengthening the preincubation of the tissue with EGTA, an observation suggesting that chelation of intracellular or membrane-bound Ca2+, rather than extracellular Ca2+, was involved in the effect. In contrast to its inhibition of the incorporation of 32Pi EGTA enhanced the incorporation of [3H]inositol into PI, but this effect was accompanied by an appreciable increase in total uptake of [3Hlinositol by the tissue. Our results suggest that the level of intracellular Ca2+ plays a role in the regulation of the incorporation of 32Pi into PI. Addition of unlabelled α-glycerophosphate to the incubation medium of tissues which had been preincubated with 2-deoxy-d -glucose failed to cause a significant diminution in the inhibition by EGTA of the incorporation of 32Pi into PI. This experiment suggests, but does not prove, that the effect of EGTA was not at the level of incorporation of 32Pi into α-glycerophosphate.  相似文献   

10.
Abstract: The effect of replacement of extracellular Na+ with N-methyl-d -glucamine (NMG) on P2 receptor signaling pathways was investigated in dibutyryl cyclic AMP-differentiated NG108-15 cells. Benzoylbenzoic ATP (BzATP) dose-dependently increased the cytosolic Ca2+ concentration ([Ca2+]i) with an EC50 value of 230 µM. Replacement of Na+ with NMG as well as removal of Mg2+ from the bathing buffer potentiated ethidium bromide uptake, [Ca2+]i increase, and 45Ca2+ uptake in response to ATP or BzATP. In contrast, in the presence of 5 mM Mg2+ to limit the amount of ATP4?, replacement of Na+ with NMG had no effect on the ATP-induced [Ca2+]i increase but caused a markedly larger [Ca2+]i increase when the calculated concentration of ATP4? was >10 µM. The calculated EC50 value for ATP4? stimulation of the [Ca2+]i increase was 23 µM in NG108-15 cells. In vascular smooth muscle cells, intracellular Ca2+ release was the major pathway for the ATP-induced [Ca2+]i increase; both removal of Mg2+ and replacement of Na+ with NMG did not affect the action of ATP. These data suggest that ATP4?-promoted pores are antagonized by Na+ and Mg2+ in dibutyryl cyclic AMP-differentiated NG108-15 cells.  相似文献   

11.
Effect of P2Y Agonists on Adenosine Transport in Cultured Chromaffin Cells   总被引:1,自引:0,他引:1  
Abstract: Adenosine transport in cultured chromaffin cells was inhibited by purinergic P2y-receptor agonists without significant changes in the affinity constant, the values being between 1 ± 0.4 and 1.6 ± 0.6 μM. The Vmax parameter was modified significantly, being 40 ± 1.0, 26 ± 5.0, 32 ± 3.0, and 22 ± 4.7 pmol/106 cells/min for control, adenosine-5′-O-(2-thiodiphosphate), 5′-adenylylimidodiphosphate, and P1,P4-di(adenosine-5′-) tetraphosphate (Ap4A) (100 μM for every effector), respectively. Ap4A, a physiological ligand for P2y receptors in chromaffin cells, showed the highest inhibitory effect (45%). This transport inhibition is explained by an increase in the cytosolic Ca2+ concentration ([Ca2+]i) and the activation of protein kinase C (PKC). Experiments of [Ca2+]i measurement with the fura-2 technique showed that P2y agonists, as well as bradykinin, were able to increase [Ca2+]i, this effect being independent of the presence of extracellular Ca2+. The peptide bradykinin, determined to be coupled to phosphatidylinositol hydrolysis and internal Ca2+ mobilization in chromaffin cells, exhibited a behavior similar to that of P2y agonists in adenosine transport inhibition (39%). P2y agonists and bradykinin increased PKC activity associated with the membrane fraction (about 50% increase in particulate PKC activity with respect to controls). The present studies suggest that adenosine transport is regulated by P2y-purinergic receptors mediated via Ca2+ mobilization and PKC activation.  相似文献   

12.
In order to determine the sequence of cellular processes in glutamate toxicity, we simultaneously recorded O2 consumption, cytosolic Ca2+ concentration ([Ca2+]i), and mitochondrial membrane potential (mΔψ) in single cortical neurons. Oxygen consumption was measured using an amperometric self‐referencing platinum electrode adjacent to neurons in which [Ca2+]i and mΔψ were monitored with Fluo‐4 and TMRE+, respectively, using a spinning disk laser confocal microscope. Excitotoxic doses of glutamate caused an elevation of [Ca2+]i followed seconds afterwards by an increase in O2 consumption which reached a maximum level within 1–5 min. A modest increase in mΔψ occurred during this time period, and then, shortly before maximal O2 consumption was reached, the mΔψ, as indicated by TMRE+ fluorescence, dissipated. Maximal O2 consumption lasted up to 5 min and then declined together with mΔψ and ATP levels, while [Ca2+]i further increased. mΔψ and [Ca2+]i returned to baseline levels when neurons were treated with an NMDA receptor antagonist shortly after the [Ca2+]i increased. Our unprecedented spatial and time resolution revealed that this sequence of events is identical in all neurons, albeit with considerable variability in magnitude and kinetics of changes in O2 consumption, [Ca2+]i, and mΔψ. The data obtained using this new method are consistent with a model where Ca2+ influx causes ATP depletion, despite maximal mitochondrial respiration, minutes after glutamate receptor activation.  相似文献   

13.
The data presented here describe ratio-imaging of in intracellular free calcium (Ca2+i) during the self-incompatibility (SI) response in pollen. Use of the ratiometric indicator, fura-2 dextran, in pollen tubes of Papaver rhoeas has provided new, detailed information about the spatial-temporal alterations in Ca2+i, and has permitted calibration of alterations in the concentration of intracellular free calcium ([Ca2+]i) in the SI response. Ratio images demonstrate that, like other pollen tubes, normally growing P. rhoeas pollen tubes exhibit a tip-focused gradient of Ca2+bfi, with levels reaching 1–2 μM at the extreme apex of the pollen tube. Non-growing pollen tubes did not exhibit this tip-focused gradient. Basal levels of Ca2+i in the shank of the pollen tube were fairly consistent and had a mean value of 210 nM, with low-level fluctuations +/? 50 nM observed. Challenge with incompatible S proteins resulted in S-specific, rapid and dramatic alterations in [Ca2+]i within a few seconds of challenge. Increases in [Ca2+]i were visualized in the subapical/shank regions of the pollen tube and alterations in [Ca2+]i in this region subsequently increased for several minutes, reaching> 1.5 μM. At the pollen tube tip, a diminution of the tip-focused gradient was observed, which following some fluctuation, was reduced to basal levels within ~1 min. Our data suggest that some of these alterations in [Ca2+]i might be interpreted as a calcium wave, as the changes are not global. Although the increases in [Ca2+]i in the subapical/shank region are very rapid, because tip [Ca2+]i oscillates during normal growth, it is difficult to ascertain whether the increases in the shank of the pollen tube precede the decreases in [Ca2+]i at the pollen tube tip.  相似文献   

14.
Abstract: We have previously demonstrated that activation of the Na+-Ca2+ exchanger in the reverse mode causes Ca2+ influx in astrocytes. In addition, we showed that the exchange activity was stimulated by nitric oxide (NO)/cyclic GMP and inhibited by ascorbic acid. The present study demonstrates that the Na+-Ca2+ exchanger is involved in agonist-induced Ca2+ signaling in cultured rat astrocytes. The astrocytic intracellular Ca2+ concentration ([Ca2+]i) was increased by l -glutamate, noradrenaline (NA), and ATP, and the increases were all attenuated by the NO generator sodium nitroprusside (SNP). SNP also reduced the ionomycin-induced increase in [Ca2+]i. The Na-induced Ca2+ signal was also attenuated by S-nitroso-l -cysteine and 8-bromo cyclic GMP, whereas it was enhanced by 3,4-dichlorobenzamil, an inhibitor of the Na+-Ca2+ exchanger. Treatment of astrocytes with antisense, but not sense, deoxynucleotides to the sequence encoding the Na+-Ca2+ exchanger enhanced the ionomycin-induced increase in [Ca2+]i and blocked the effects of SNP and 8-bromo cyclic GMP in reducing the NA-induced Ca2+ signal. Furthermore, the ionomycin-induced Ca2+ signal was enhanced by removal of extracellular Na+ and pretreatment with ascorbic acid. These findings indicate that the Na+-Ca2+ exchanger is a target for NO modulation of elevated [Ca2+]i and that the exchanger plays a role in Ca2+ efflux when [Ca2+]i is raised above basal levels in astrocytes.  相似文献   

15.
Abstract: RS-42358–197{(S)-N-(1-azabicyclo[2.2.2]oct-3-yl)-2,4,5,6-tetrahydro-1H-benzo[de]isoquinolin-1-one hydrochloride} displaced the prototypic 5-hydroxytryptamine3 (5-HT3) receptor ligand [3H]quipazine in rat cerebral cortical membranes with an affinity (pKi) of 9.8 ± 0.1, while having weak affinity (pKi < 6.0) in 23 other receptor binding assays. [3H]RS-42358–197 was then utilized to label 5-HT3 receptors in a variety of tissues. [3H]RS-42358–197 labelled high-affinity and saturable binding sites in membranes from rat cortex, NG108–15 cells, and rabbit ileal myenteric plexus with affinities (KD) of 0.12 ± 0.01, 0.20 ± 0.01, and 0.10 ± 0.01 nM and densities (Bmax) of 16.0 ± 2.0, 660 ± 74, and 88 ± 12 fmol/mg of protein, respectively. The density of sites labelled in each of these tissues with [3H]RS-42358–197 was similar to that labelled with [3H]GR 65630, but was significantly less than that found with [3H]-quipazine. The binding of [3H]RS-42358–197 had a pharmacological profile similar to that of [3H]quipazine, as indicated by the rank order of displacement potencies: RS-42358–197 > (S)-zacopride > tropisetron > (R)-zacopride > ondansetron > MDL72222 > 5-HT. However, differences in 5-HT3 receptors of different tissues and species were detected on the basis of statistically significant differences in the affinities of phenylbiguanide, and 1-(m-chlorophenyl)biguanide when displacing [3H]RS-42358-197 binding. [3H]RS-42358–197 also labelled a population (Bmax= 91 ± 17 fmol/mg of protein) of binding sites in guinea pig myenteric plexus membranes, with lower affinity (KD= 1.6 ± 0.3 nM) than those in the other preparations. Moreover, the rank order of displacement potencies of 15 5-HT3 receptor ligands in guinea pig ileum was found not to be identical to that in other tissues. Binding studies carried out with [3H]RS-42358–197 have detected differences in 5-HT3 receptor binding sites in tissues of different species and further underscore the unique nature of the guinea pig 5-HT3 receptor.  相似文献   

16.
Abstract: Bovine adrenal chromaffin cells (BCC) were used to compare histamine- and angiotensin II-induced changes of inositol mono-, bis-, and trisphosphate (InsP1, InsP2, and InsP3, respectively) isomers, intracellular free Ca2+ ([Ca2+]i), and the pathways of inositol phosphate metabolism. Both agonists elevated [Ca2+]i by 200 nM 3–4 s after addition, but afterwards the histamine response was much more prolonged. Histamine and angiotensin II also produced similar four- to fivefold increases of Ins(1,4,5)P3 that peaked within 5 s. Over the first minute of stimulation, however, Ins(1,4,5)P3 formation was monophasic after angiotensin II, but biphasic after histamine, evidence supporting differential regulation of angiotensin II- and histamine-stimulated signal transduction. The metabolism of Ins(1,4,5)P3 by BCC homogenates was found to proceed via (a) sequential dephosphorylation to Ins(1,4)P2 and Ins(4)P, and (b) phosphorylation to inositol 1,3,4,5-tetrakisphosphate, followed by dephosphorylation to Ins(1,3,4)P3, Ins(1,3)P2, and Ins(3,4)P2, and finally to Ins(1 or 3)P. In whole cells, Ins(1 or 3)P only increased after histamine treatment. Additionally, Ins(1,3)P2 was the only other InsP2 besides Ins(1,4)P2 to accumulate within 1 min of agonist treatment [Ins(3,4)P2 did not increase]. These results support a correlation between the time course of Ins(1,4,5)P3 formation and the time course of [Ca2+]i transients and illustrate that Ca2+-mobilizing agonists can produce distinguishable patterns of inositol phosphate formation and [Ca2+], changes in BCC. Different patterns of second-messenger formation are likely to be important in signal recognition and may encode agonist-specific information.  相似文献   

17.
Abstract: We studied the effect of α-latrotoxin (αLTX) on [14C]acetylcholine ([14C]ACh) release, intracellular Ca2+ concentration ([Ca2+]i), plasma membrane potential, and high-affinity choline uptake of synaptosomes isolated from guinea pig cortex. αLTX (10?10-10?8M) caused an elevation of the [Ca2+]i as detected by Fura 2 fluorescence and evoked [14C]ACh efflux. Two components in the action of the toxin were distinguished: one that required the presence of Na+ in the external medium and another that did not. Displacement of Na+ by sucrose or N-methylglucamine in the medium considerably decreased the elevation of [Ca2+]i and [14C]ACh release by αLTX. The Na+-dependent component of the αLTX action was obvious in the inhibition of the high-affinity choline uptake of synaptosomes. Some of the toxin action on both [Ca2+]i and [14C]ACh release remained in the absence of Na+. Both the Na+-dependent and the Na+-independent components of the αLTX-evoked [14C]ACh release partly required the presence of either Mg2+ or Ca2+. The nonneurotransmitter [14C]choline was released along with [14C]ACh, but this release did not depend on the presence of either Na+ or Ca2+, indicating nonspecific leakage through the plasma membrane. We conclude that there are two factors in the release of ACh from synaptosomes caused by the toxin: (1) cation-dependent ACh release, which is related to (a) Na+-dependent divalent cation entry and (b) Na+-independent divalent cation entry, and (2) nonspecific Na+- and divalent cation-independent leakage.  相似文献   

18.
Abstract: The effect of oxidative stress induced by the oxidant pair ascorbate/Fe2+ on the activity of ionotropic glutamate receptors was studied in cultured chick retina cells. The release of [3H]GABA and the increase of the intracellular free Na+ concentration ([Na+]i), evoked by glutamate receptor agonists, were used as functional assays for the activity of the receptors. The results show that the maximal release of [3H]GABA evoked by kainate (KA; ~20% of the total) or AMPA (~11% of the total) was not different in control and peroxidized cells, whereas the EC50 values determined for peroxidized cells (33.6 ± 1.7 and 8.0 ± 2.0 µM for KA and AMPA, respectively) were significantly lower than those determined under control conditions (54.1 ± 6.6 and 13.0 ± 2.2 µM for KA and AMPA, respectively). The maximal release of [3H]GABA evoked by NMDA under K+ depolarization was significantly higher in peroxidized cells (7.5 ± 0.5% of the total) as compared with control cells (4.0 ± 0.2% of the total), and the effect of oxidative stress was significantly reduced by a phospholipase A2 inhibitor or by fatty acid-free bovine serum albumin. The change in the intracellular [Na+]i evoked by saturating concentrations of NMDA under depolarizing conditions was significantly higher in peroxidized cells (8.9 ± 0.6 mM) than in control cells (5.9 ± 1.0 mM). KA, used at a subsaturating concentration (35 µM), evoked significantly greater increases of the [Na+]i in peroxidized cells (11.8 ± 1.7 mM) than in control cells (7.1 ± 0.8 mM). A saturating concentration (150 µM) of this agonist triggered similar increases of the [Na+]i in control and peroxidized cells. Accordingly, the maximal number of binding sites for (+)-5-[3H]methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate ([3H]MK-801) was increased after peroxidation, whereas the maximal number of binding sites for [3H]KA was not affected by oxidative stress. These data suggest that under oxidative stress the activity of the ionotropic glutamate receptors is increased, with the NMDA receptor being the most affected by peroxidation.  相似文献   

19.
Abstract: We found that extracellular ATP can increase the intracellular Ca2+ concentration ([Ca2+]i) in mouse pineal gland tumor (PGT-β) cells. Studies of the [Ca2+]i rise using nucleotides and ATP analogues established the following potency order: ATP, adenosine 5′-O-(3-thiotriphosphate) ≥ UTP > 2-chloro-ATP > 3′-O-(4-benzoyl)benzoyl ATP, GTP ≥ 2-methylthio ATP, adenosine 5′-O-(2-thiodiphosphate) (ADPβS) > CTP. AMP, adenosine, α,β-methyleneadenosine 5′-triphosphate, β,γ-methyleneadenosine 5′-triphosphate, and UMP had little or no effect on the [Ca2+]i rise. Raising the extracellular Mg2+ concentration to 10 mM decreases the ATP-and UTP-induced [Ca2+]i rise, because the responses depend on the ATP4? and UTP4? concentrations, respectively. The P2U purinoceptor-selective agonist UTP and the P2Y purinoceptor-selective agonist ADPβS induce inositol 1,4,5-trisphosphate generation in a concentration-dependent manner with maximal effective concentrations of ~100 µM. In sequential stimulation, UTP and ADPβS do not interfere with each other in raising the [Ca2+]i. Costimulation with UTP and ADPβS results in additive inositol 1,4,5-trisphosphate generation to a similar extent as is achieved with ATP alone. Pretreatment with pertussis toxin inhibits the action of UTP and ATP by maximally 45–55%, whereas it has no effect on the ADPβS response. Treatment with 1 µM phorbol 12-myristate 13-acetate inhibits the ADPβS-induced [Ca2+]i rise more effectively than the ATP- and UTP-induced responses. These results suggest that P2U and P2Y purinoceptors coexist on PGT-β cells and that both receptors are linked to phospholipase C.  相似文献   

20.
Abstract— The uptake and release of [3H]dopamine was studied in the goldfish retina with the following results: (1) when goldfish retinas were incubated with 2 ± 10-7m -[3H]dopamine for less than 20min and processed for autoradiography. most of the label was associated with dopaminergic terminals that contact certain horizontal cells. Biochemical analysis showed that > 93% of this label was [3H]-dopamine. (2) [3H]dopamine uptake saturated with increasing dopamine concentration and followed Michaelis-Menten kinetics. This uptake could be explained by a single ‘high-affinity’ mechanism with a Km of 2.61 ± 0.41 ± 10-7m and a Vmax of 66 ± 12 ± 10-12 mol/min/mg protein. (3) [3H]dopamine uptake was temperature-dependent with a temperature coefficient of 1.7 and an energy of activation of 11.4 kcal/mol. (4) The initial rate of uptake was unaffected by the absence of Ca2+ or the presence of Co2+; however, more than 85, uptake was blocked in the absence of external Na+. (5) Neither 1 mm -cyanide nor 5 mm -iodoacetate blocked more than 30% of uptake individually; however, in combination > 70% of uptake was blocked. (6) Centrally acting drugs benztropine and diphenylpyraline inhibited at least 60–70% of [3H]dopamine uptake. (7) [3H]dopamine in the retina could be released by increasing the external K+ concentration. This release was Ca2+ -dependent and was blocked by 10mm -Co2+ or 2Omm -Mg2+. The amount of [3H]dopamine released was not affected by the presence of benztropine, diphenylpyraline or fluphenazine in the incubation medium. These studies add further support for dopamine as a neurotransmitter used by interplexiform cells of the goldfish retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号