首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The objectives of this study were twofold. The first was to develop a forward dynamic model of cycling and an optimization framework to simulate pedaling during submaximal steady-state cycling conditions. The second was to use the model and framework to identify the kinetic, kinematic, and muscle timing quantities that should be included in a performance criterion to reproduce natural pedaling mechanics best during these pedaling conditions. To make this identification, kinetic and kinematic data were collected from 6 subjects who pedaled at 90 rpm and 225 W. Intersegmental joint moments were computed using an inverse dynamics technique and the muscle excitation onset and offset were taken from electromyographic (EMG) data collected previously (Neptune et al., 1997). Average cycles and their standard deviations for the various quantities were used to describe normal pedaling mechanics. The model of the bicycle-rider system was driven by 15 muscle actuators per leg. The optimization framework determined both the timing and magnitude of the muscle excitations to simulate pedaling at 90 rpm and 225 W. Using the model and optimization framework, seven performance criteria were evaluated. The criterion that included all of the kinematic and kinetic quantities combined with the EMG timing was the most successful in replicating the experimental data. The close agreement between the simulation results and the experimentally collected kinetic, kinematic, and EMG data gives confidence in the model to investigate individual muscle coordination during submaximal steady-state pedaling conditions from a theoretical perspective, which to date has only been performed experimentally.  相似文献   

2.
Assessment of intra-session repeatability of muscle activation pattern is of considerable relevance for research settings, especially when used to determine changes over time. However, the repeatability of lower limb muscles activation pattern during pedaling is not fully established. Thus, we tested the intra-session repeatability of the activation pattern of 10 lower limb muscles during a sub-maximal cycling exercise.Eleven triathletes participated to this study. The experimental session consisted in a reference sub-maximal cycling exercise (i.e. 150 W) performed before and after a 53-min simulated training session (mean power output = 200 ± 12 W). Repeatability of EMG patterns was assessed in terms of muscle activity level (i.e. RMS of the mean pedaling cycle and burst) and muscle activation timing (i.e. onset and offset of the EMG burst) for the 10 following lower limb muscles: gluteus maximus (GMax), semimembranosus (SM), Biceps femoris (BF), vastus medialis (VM), rectus femoris (RF), vastus lateralis (VL), gastrocnemius medianus (GM) and lateralis (GL), soleus (SOL) and tibialis anterior (TA).No significant differences concerning the muscle activation level were found between test and retest for all the muscles investigated. Only VM, SOL and TA showed significant differences in muscle activation timing parameters. Whereas ICC and SEM values confirmed this weak repeatability, cross-correlation coefficients suggest a good repeatability of the activation timing parameters for all the studied muscles.Overall, the main finding of this work is the good repeatability of the EMG pattern during pedaling both in term of muscle activity level and muscle activation timing.  相似文献   

3.
The objective of this work was to increase our understanding of how motor patterns are produced during movement tasks by quantifying adaptations in muscle coordination in response to altered task mechanics. We used pedaling as our movement paradigm because it is a constrained cyclical movement that allows for a controlled investigation of test conditions such as movement speed and effort. Altered task mechanics were introduced using an elliptical chainring. The kinematics of the crank were changed from a relatively constant angular velocity using a circular chainring to a widely varying angular velocity using an elliptical chainring. Kinetic, kinematic and muscle activity data were collected from eight competitive cyclists using three different chainrings--one circular and two different orientations of an elliptical chainring. We tested the hypotheses that muscle coordination patterns (EMG timing and magnitude), specifically the regions of active muscle force production, would shift towards regions in the crank cycle in which the crank angular velocity, and hence muscle contraction speeds, were favorable to produce muscle power as defined by the skeletal muscle power-velocity relationship. The results showed that our hypothesis with regards to timing was not supported. Although there were statistically significant shifts in muscle timing, the shifts were minor in absolute terms and appeared to be the result of the muscles accounting for the activation dynamics associated with muscle force development (i.e. the delay in muscle force rise and decay). But, significant changes in the magnitude of muscle EMG during regions of slow crank angular velocity for the tibialis anterior and rectus femoris were observed. Thus, the nervous system used adaptations to the muscle EMG magnitude, rather than the timing, to adapt to the altered task mechanics. The results also suggested that cyclists might work on the descending limb of the power-velocity relationship when pedaling at 90 rpm and sub-maximal power output. This finding might have important implications for preferred pedaling rate selection.  相似文献   

4.
The aim of the study was to review systematically the literature available on electromyographic (EMG) variables of the golf swing. From the 19 studies found, a high variety of EMG methodologies were reported. With respect to EMG intensity, the right erector spinae seems to be highly activated, especially during the acceleration phase, whereas the oblique abdominal muscles showed moderate to low levels of activation. The pectoralis major, subscapularis and latissimus dorsi muscles of both sides showed their peak activity during the acceleration phase. High muscle activity was found in the forearm muscles, especially in the wrist flexor muscles demonstrating activity levels above the maximal voluntary contraction. In the lower limb higher muscle activity of the trail side was found. There is no consensus on the influence of the golf club used on the neuromuscular patterns described. Furthermore, there is a lack of studies on average golf players, since most studies were executed on professional or low handicap golfers.Further EMG studies are needed, especially on lower limb muscles, to describe golf swing muscle activation patterns and to evaluate timing parameters to characterize neuromuscular patterns responsible for an efficient movement with lowest risk for injury.  相似文献   

5.
Despite the wide use of surface electromyography (EMG) recorded during dynamic exercises, the reproducibility of EMG variables has not been fully established in a course of a dynamic leg exercise. The aim of this study was to investigate the reproducibility of eight lower limb muscles activity level during a pedaling exercise performed until exhaustion. Eight male were tested on two days held three days apart. Surface EMG was recorded from vastus lateralis, rectus femoris (RF), vastus medialis, semimembranosus, biceps femoris, gastrocnemius lateral, gastrocnemius medianus and tibialis anterior during incremental exercise test. The root mean square, an index of global EMG activity, was averaged every five crank revolutions (corresponding to about 3 s at 85 rpm) throughout the tests. Despite inter-subjects variations, we showed a high reproducibility of the activity level of lower limb muscles during a progressive pedaling exercise performed until exhaustion. However, RF muscle seemed to be the less reproducible of the eight muscles investigated during incremental pedaling exercise. These results suggest that each subject adopt a personal muscle activation strategy in a course of an incremental cycling exercise but fatigue phenomenon can induce some variations in the most fatigable muscles (RF).  相似文献   

6.
An understanding of the coordination of the leg muscles in recumbent pedaling would be useful to the design of rehabilitative pedaling exercises. The objectives of this work were to (i) determine whether patterns of muscle activity while pedaling in the recumbent and upright positions are similar when the different orientation in the gravity field is considered, (ii) compare the functional roles of the leg muscles while pedaling in the recumbent position to the upright position to the upright position and (iii) determine whether leg muscle onset and offset timing for recumbent and upright pedaling respond similarly to changes in pedaling rate. To fulfill these objectives, surface electromyograms were recorded from 10 muscles of 15 subjects who pedaled in both the recumbent and upright positions at 75, 90, and 105 rpm and at a constant workrate of 250 W. Patterns of muscle activation were compared over the crank cycle. Functional roles of muscles in recumbent and upright pedaling were compared using the percent of integrated activation in crank cycle regions determined previously for upright pedaling. Muscle onset and offset timing were also compared. When the crank cycle was adjusted for orientation in the gravity field, the activation patterns for the two positions were similar. Functional roles of the muscles in the two positions were similar as well. In recumbent pedaling, the uniarticular hip and knee extensors functioned primarily to produce power during the extension region of the crank cycle, whereas the biarticular muscles crossing the hip and knee functioned to propel the leg through the transition regions of the crank cycle. The adaptations of the muscles to changes in pedaling rate were also similar for the two body positions with the uniarticular power producing muscles of the hip and knee advancing their activity to earlier in the crank cycle as the pedaling rate increased. This information on the functional roles of the leg muscles provides a basis by which to form functional groups, such as power-producing muscles and transition muscles, to aid in the development of rehabilitative pedaling exercises and recumbent pedaling simulations to further our understanding of task-dependent muscle coordination.  相似文献   

7.
The study examined the fatigue effect on tennis performance and upper limb muscle activity. Ten players were tested before and after a strenuous tennis exercise. Velocity and accuracy of serve and forehand drives, as well as corresponding surface electromyographic (EMG) activity of eight upper limb muscles were measured. EMG and force were also evaluated during isometric maximal voluntary contractions (IMVC). Significant decreases were observed after exercise in serve accuracy (−11.7%) and velocity (−4.5%), forehand accuracy (−25.6%) and consistency (−15.6%), as well as pectoralis major (PM) and flexor carpi radialis (FCR) IMVC strength (−13.0% and −8.2%, respectively). EMG amplitude decreased for PM and FCR in serve, forehand and IMVC, and for extensor carpi radialis in forehand. No modification was observed in EMG activation timing during strokes or in EMG frequency content during IMVC. Several hypotheses can be put forward to explain these results. First, muscle fatigue may induce a reduction in activation level of PM and forearm muscles, which could decrease performance. Second, conscious or subconscious strategies could lead to a redistribution of muscle activity to non-fatigued muscles in order to protect the organism and/or limit performance losses. Otherwise, the modifications of EMG activity could also illustrate the strategies adopted to manage the speed-accuracy trade-off in such a complex task.  相似文献   

8.
The masseter muscle is involved in the complex and coordinated oromotor behaviors such as mastication during wakefulness. The masseter electromyographic (EMG) activity decreases but does not disappear completely during sleep: the EMG activity is generally of low level and inhomogeneous for the duration, amplitude and intervals. The decreased excitability of the masseter motoneurons can be determined by neural substrates for NREM and REM sleep. The masseter EMG activity is increased in association with the level of arousal fluctuations within either sleep state. In addition, there are some motor events such as REM twitches, swallowing and rhythmic masticatory muscle activity (RMMA), whose generation might involve the additional activation of specific neural circuits. Sleep bruxism (SB) is characterized by exaggerated occurrence of RMMA. In SB, the rhythmic activation of the masseter muscle can reflect the rhythmic motor inputs to motoneurons through, at least in part, common neural circuits for generating masticatory rhythm under the facilitatory influences of transient arousals. However, it remains elusive as to which neural circuits determine the genesis of sleep bruxism. Based on the available knowledge on the masseter EMG activity during sleep, this review presents that the variety of the masseter EMG phenotypes during sleep can result from the combinations of the quantitative, spatial and temporal neural factors eventually sending net facilitatory inputs to trigeminal motoneurons under sleep regulatory systems.  相似文献   

9.
The timing of muscles activation which is a key parameter in determining plenty of medical conditions can be greatly assessed by the surface EMG signal which inherently carries an immense amount of information. Many techniques for measuring muscle activity detection exist in the literature. However, due to the complex nature of the EMG signal as well as the interference from other muscles that is observed during the measurement of the EMG signal, the accuracy of these techniques is compromised. In this paper, we introduce the neural muscle activation detection (NMAD) framework that detects the muscle activation based on deep learning. The main motivation behind using deep learning is to allow the neural network to detect based on the appropriate signal features instead of depending on certain assumptions. Not only the presented approach significantly improves the accuracy of timing detection, but because of the training nature, it can adapt to operate under different levels of interference and signal-to-noise ratio.  相似文献   

10.
Trunk muscle onset detection technique for EMG signals with ECG artefact.   总被引:4,自引:0,他引:4  
The timing of trunk muscle activation has become an important element in the understanding of human movement in normal and chronic low back pain populations. The detection of anticipatory postural adjustment via trunk muscle onsets from electromyographic (EMG) signals can be problematic due to baseline noise or electro-cardiac (ECG) artefact. Shewhart protocols or whole signal analyses may show different degrees of sensitivity under different conditions.Muscle activity onsets were determined from surface EMG of seven muscles for five trials before and after fatigue were examined in four subjects (n=280). The objective of this study was to examine two detection methods (Shewhart and integrated protocol (IP)) in determining the onsets of trunk muscles. The variability of the baseline amplitude and the impact of added Gaussian noise on the detected onsets were used to test for robustness.The results of this study demonstrate that before and after fatigue there is a large degree of baseline variance in the trunk muscles (coefficients of variation between 40-65%) between trials. This could be normal response to body sway. The IP method was less susceptible to false onsets (detecting onsets in the baseline window) 3 vs. 51%. The findings suggest the IP method is robust with large variance in the baseline if the signal to noise ratio is greater than six.In spite of the robustness of the algorithm, the findings would suggest that statistical assessments should be used to target trials for selective visual inspection for subtle trunk muscle onsets.  相似文献   

11.
The role of muscle activation in both pathological and spastic populations is of interest for understanding central nervous system function. Muscle activation patterns may provide insight into pathological changes compared to healthy controls. To gain a better understanding of surgical interventions, gait muscle activation patterns are studied before and after surgery. Previous studies using surface electromyography have indicated that muscle activation onset, time to peak, and peak amplitude may be helpful in assessing the neuromuscular control strategy that underlies pathological populations. Geometric artifact may influence electromyographic variables as recorded by different electrode types and electrode placement. The purpose of this investigation was to compare surface and fine-wire activation patterns during gait to elucidate the influence electrode type has on electromyographic variables. Lower leg surface and fine-wire electromyographic activity was recorded simultaneously during gait to assess if electrode type (fine-wire vs. surface) affects muscle onset, time to peak, peak amplitude, and activation patterns. No significant differences were recorded between surface and fine-wire electrodes for muscle onset or time to peak activation. Activation patterns revealed similarity between electrodes. Some significant differences were detected in peak amplitude. Non-invasive surface electrodes provide an adequate representation of timing variables for primary ankle muscles during gait.  相似文献   

12.
The purpose of this study was to identify one or more performance-based criteria that may be used to generate predictive optimal control simulations of submaximal pedaling. Two-legged pedaling simulations were generated based on minimizing muscle activation, muscle stress, metabolic energy, time derivative of muscle force, and minimizing metabolic energy while pedaling smoothly. The simulations based on minimizing muscle activation and muscle stress most closely matched experimental pedaling data, with the activation criterion better matching experimental muscle activation timing. We conclude that predictive simulations of submaximal pedaling may be generated using a cost function based on minimizing muscle activation.  相似文献   

13.
Prior motor control studies in unloading have shown a tonic-to-phasic shift in muscle activation, particularly in the short extensors. Tonic muscle activity is considered critical for normal musculoskeletal function. The shift from tonic-to-phasic muscle activity has not been systematically studied in humans in unloading nor at the lumbo-pelvic (LP) region. Ten healthy young male subjects underwent 8 wk of bed rest with 6-mo follow up as part of the "Berlin Bed-Rest Study." A repetitive knee movement model performed in the prone position is used to stimulate tonic holding LP muscle activity, as measured by superficial EMG. Tonic and phasic activation patterns were quantified by relative height of burst vs. baseline electromyographic linear-envelope signal components. Statistical analysis shows a shift toward greater phasic activity during bed rest and follow up (P < 0.001) with a significant interaction across muscles (P < 0.001) specifically affecting the short lumbar extensors. These changes appear unrelated to skill acquisition over time (P all > or = 0.196). This change of a shift from tonic LP muscle activation to phasic is in line with prior research on the effects of reduced weight bearing on motor control.  相似文献   

14.
During jumping or falling in humans and various other mammals, limb muscles are activated before landing, and the intensity and timing of this pre-landing activity are scaled to the expected impact. In this study, we test whether similarly tuned anticipatory muscle activity is present in hopping cane toads. Toads use their forelimbs for landing, and we analysed pre-landing electromyographic (EMG) timing and intensity in relation to hop distance for the m. coracoradialis and m. anconeus, which act antagonistically at the elbow, and are presumably important in stabilizing the forelimb during landing. In most cases, a significant, positive relationship between hop distance and pre-landing EMG intensity was found. Moreover, pre-landing activation timing of m. anconeus was tightly linked to when the forelimbs touched down at landing. Thus, like mammals, toads appear to gauge the timing and magnitude of their impending impact and activate elbow muscles accordingly. To our knowledge these data represent the first demonstration of tuned pre-landing muscle recruitment in anurans and raise questions about how important the visual, vestibular and/or proprioceptive systems are in mediating this response.  相似文献   

15.
The variability of electromyographic (EMG) recordings between and within participants is a complex problem, rarely studied in swimming. The importance of signal normalization has long been recognized, but the method used might influence variability. The aims of this study were to: (i) assess the intra-individual variability of the EMG signal in highly skilled front crawl swimmers, (ii) determine the influence of two methods of both amplitude and time normalization of the EMG signal on intra-individual variability and of time normalization on muscle activity level and (iii) describe the muscle activity, normalized using MVIC, in relation to upper limb crawl stroke movements. Muscle activity of rectus abdominis and deltoideus medialis was recorded using wireless surface EMG in 15 adult male competitive swimmers during three trials of 12.5 m front crawl at maximal speed without breathing. Two full upper limb cycles were analyzed from each of the swimming trials, resulting in six full cycles used for the intra-individual variability assessment, quantified with the coefficient of variation (CV), coefficient of quartile variation (CQV) and the variance ratio (VR). The results of this study support previous findings on EMG patterns of deltoideus medialis and rectus abdominis as prime mover during the recovery (45% activity relative to MVIC), and stabilizer of the trunk during the pull (14.5% activity) respectively. The intra-individual variability was lower (VR of 0.34–0.47) when compared to other cyclic movements. No meaningful differences were found between variability measures CV or VR when applying either of the amplitude or the time normalization methods. In addition to reporting the mean amplitude and standard deviation, future EMG studies in swimming should also report the intra-individual variability, preferably using VR as it is independent of peak amplitude, provides a good measure of repeatability and is insensitive to mean EMG amplitude and the degree of smoothing applied.  相似文献   

16.
The present study was performed to assess the electromyographic activity of the scapular muscles during push-ups on a stable and unstable surface, in subjects with scapular dyskinesis. Muscle activation (upper trapezius [UT]; lower trapezius [LT]; upper serratus anterior [SA_5th]; lower serratus anterior [SA_7th]) and ratios (UT/LT; UT/SA_5th; UT/ SA_7th) levels were determined by surface EMG in 30 asymptomatic men with scapular dyskinesis, during push-up performed on a stable and unstable surface. Multivariate analysis of variance with repeated measures was used for statistical analyses. The unstable surface caused a decrease in the EMG activity of the serratus anterior and an increase in EMG activity of the trapezius (p = 0.001). UT/SA_5th and UT/ SA_7th ratios were higher during unstable push-ups (p = 0.001). The results suggest that, in individuals with scapular dyskinesis, there is increased EMG activity of the trapezius and decreased EMG activity of the serratus anterior in response to an unstable surface. These results suggest that the performance of the push up exercise on an unstable surface may be more favorable to produce higher levels of trapezius activation and lower levels of serratus anterior activation. However, if the goal of the exercise program is the strengthening of the SA muscle, it is suggested to perform the push up on a stable surface.  相似文献   

17.
Patients with respiratory diseases or anxiety frequently complain about dyspnea, which may be partly related to chronic tension of respiratory muscles and/or dynamic hyperinflation. In two experiments we tested a biofeedback technique that recorded electromyographic (EMG) activity from a bipolar surface electrode placement over the right external intercostal muscles with visual signal feedback. Healthy participants were tested in their ability to alter the signal. Heart rate was measured continuously throughout training trials. In the second experiment, dyspnea was rated on a modified Borg scale after each trial. Participants were able to increase their EMG activity considerably while heart rate and dyspnea increased substantially. Changes in EMG activity were achieved mostly by manipulating accessory muscle tension and/or altering breathing pattern. Thus, the technique is capable of altering respiratory muscle tension and associated dyspnea. Further studies may test the procedure as a relaxation technique in patients with respiratory disease or anxiety.  相似文献   

18.
The extraction of neural strategies from the surface EMG.   总被引:14,自引:0,他引:14  
This brief review examines some of the methods used to infer central control strategies from surface electromyogram (EMG) recordings. Among the many uses of the surface EMG in studying the neural control of movement, the review critically evaluates only some of the applications. The focus is on the relations between global features of the surface EMG and the underlying physiological processes. Because direct measurements of motor unit activation are not available and many factors can influence the signal, these relations are frequently misinterpreted. These errors are compounded by the counterintuitive effects that some system parameters can have on the EMG signal. The phenomenon of crosstalk is used as an example of these problems. The review describes the limitations of techniques used to infer the level of muscle activation, the type of motor unit recruited, the upper limit of motor unit recruitment, the average discharge rate, and the degree of synchronization between motor units. Although the global surface EMG is a useful measure of muscle activation and assessment, there are limits to the information that can be extracted from this signal.  相似文献   

19.
The winner of an international contest to find the world’s fastest drummer (WFD) can perform repetitive wrist tapping movements with one hand using a handheld drumstick at 10 Hz, much faster than the maximum tapping frequency of 5-7 Hz in the general population. The muscle activity facilitating this improved performance, however, has only recently been explored. The present study investigated the rise rate and timing variability of surface electromyographic (EMG) activity of wrist flexor/extensor muscles in the WFD, and compared them with those in two control groups: non-drummers (NDs) and ordinary drummers (ODs). The WFD showed more rapid EMG amplitude rise, earlier decline of EMG activity, and more stable muscle activation time than the NDs and ODs. In addition, there was a significant correlation between the EMG rise rate and the duration of drum training in the group of drummers (i.e., ODs and WFD). These results indicate that the 10-Hz performance of the WFD was achieved by a ‘sharper’ and ‘less noisy’ burst pattern of wrist muscles, and that drum training would have the effect to increase the speed of development of muscle tension.  相似文献   

20.
The purpose of this project was to study the EMG pattern of the tibialis anterior muscle in heel-toe running. Specifically, EMG changes in time, intensity and frequency shortly before and after heel-strike were addressed using an EMG-specific non-linearly scaled wavelets analysis. This method allowed extracting the time, intensity and frequency information inherent in the EMG signal at any time. The EMG signals of 40 male subjects were recorded for running barefoot and with shoes. The results confirmed that the pre-heel-strike EMG activities were typically seen at higher EMG frequencies (60-270Hz) while the post-heel-strike EMG activities resulted in lower frequency signals (10-90Hz). The timing of the pre-heel-strike EMG activities was not influenced by the used shoe conditions. The timing of the post-heel-strike EMG activities was significantly delayed when wearing shoes. The intensity of the pre-heel-strike muscle activity increased compared to the post-heel-strike one when wearing shoes. One can conclude that the activity of the tibialis anterior adjusts specifically to exterior conditions. The frequency shift between pre- and post heel-strike muscle activity were discussed with respect to activation of different motor units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号