首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gender is known to influence the incidence and severity of cerebrovascular disease. In the present study, luminal diameter was measured in vitro in pressurized middle cerebral artery segments from male rats that were either untreated, orchiectomized (ORX), ORX with testosterone treatment (ORX+TEST), or ORX with estrogen treatment (ORX+EST). The maximal passive diameters (0 Ca(2+) + 3 mM EDTA) of arteries from all four groups were similar. In endothelium-intact arteries, myogenic tone was significantly greater in arteries from untreated and ORX+TEST compared with arteries from either ORX or ORX+EST. During exposure to N(G)-nitro-L-arginine-methyl ester (L-NAME), an NO synthase (NOS) inhibitor, myogenic tone significantly increased in all groups. The effect of L-NAME was significantly greater in arteries from untreated and ORX+EST compared with arteries from ORX and ORX+TEST rats. Differences in myogenic tone between ORX and ORX+TEST persisted after inhibition of NOS. After endothelium removal or inhibition of the cyclooxygenase pathway combined with K(+) channel blockers, myogenic tone differences between ORX and ORX+TEST were abolished. Wall thickness and forced dilation were not significantly different between arteries from ORX and ORX+TEST. Our data show that gonadal hormones affect myogenic tone in male rat cerebral arteries through NOS- and/or endothelium-dependent mechanisms.  相似文献   

2.
Estrogen alters reactivity of cerebral arteries by modifying production of endothelium-dependent vasodilators. Estrogen receptors (ER) are thought to be involved, but the responsible ER subtype is unknown. ER-alpha knockout (alphaERKO) mice were used to test whether estrogen acts via ER-alpha. Mice were ovariectomized, with or without estrogen replacement, and cerebral blood vessels were isolated 1 mo later. Estrogen increased levels of endothelial nitric oxide synthase and cyclooxygenase-1 in vessels from wild-type mice but was ineffective in alphaERKO mice. Endothelium-denuded middle cerebral artery segments from all animals constricted when pressurized. In denuded arteries from alphaERKO but not wild-type mice, estrogen treatment enhanced constriction. In endothelium-intact, pressurized arteries from wild-type estrogen-treated mice, diameters were larger compared with arteries from untreated wild-type mice. In addition, contractile responses to indomethacin were greater in arteries from wild-type estrogen-treated mice compared with arteries from untreated wild-type mice. In contrast, estrogen treatment of alphaERKO mice had no effect on diameter or indomethacin responses of endothelium-intact arteries. Thus ER-alpha regulation of endothelial nitric oxide synthase and cyclooxygenase-1 pathways appears to contribute to effects of estrogen on cerebral artery reactivity.  相似文献   

3.
Estrogen alters reactivity of cerebral arteries by modifyingproduction of endothelium-dependent vasodilators. Estrogen receptors (ER) are thought to be involved, but the responsible ER subtype isunknown. ER- knockout (ERKO) mice were used to test whether estrogen acts via ER-. Mice were ovariectomized, with or without estrogen replacement, and cerebral blood vessels were isolated 1 molater. Estrogen increased levels of endothelial nitric oxide synthaseand cyclooxygenase-1 in vessels from wild-type mice but was ineffectivein ERKO mice. Endothelium-denuded middle cerebral artery segmentsfrom all animals constricted when pressurized. In denuded arteries fromERKO but not wild-type mice, estrogen treatment enhancedconstriction. In endothelium-intact, pressurized arteries fromwild-type estrogen-treated mice, diameters were larger compared witharteries from untreated wild-type mice. In addition, contractileresponses to indomethacin were greater in arteries from wild-typeestrogen-treated mice compared with arteries from untreated wild-typemice. In contrast, estrogen treatment of ERKO mice had no effect ondiameter or indomethacin responses of endothelium-intact arteries. ThusER- regulation of endothelial nitric oxide synthase andcyclooxygenase-1 pathways appears to contribute to effects of estrogenon cerebral artery reactivity.

  相似文献   

4.
The studies on hormone replacement therapy (HRT) in females with estrogen deficiency are not conclusive. Thus, non-estrogen therapies, such as atorvastatin (ATO), could be new strategies to substitute or complement HRT. This study evaluated the effects of ATO on mesenteric vascular bed (MVB) function from ovariectomized (OVX) female rats. Female rats were divided into control SHAM, OVX, and OVX treated with 17β-estradiol (EST) or ATO groups. The MVB reactivity was determined in organ chambers, vascular oxidative stress by dihydroethidine staining, and the expression of target proteins by western blot. The reduction in acetylcholine-induced relaxation in OVX rats was restored by ATO or EST treatment. The endothelium-dependent nitric oxide (NO) component was reduced in OVX rats, whereas the endothelium-derived hyperpolarizing factor (EDHF) component or prostanoids were not altered in the MVBs. Endothelial dysfunction in OVX rats was associated with oxidative stress, an up-regulation of iNOS and NADPH oxidase expression and a down-regulation of eNOS expression. Treatment with ATO or EST improved the NO component of the relaxation and normalized oxidative stress and the expression of those signaling pathways enzymes. Thus, the protective effect of ATO on endothelial dysfunction caused by estrogen deficiency highlights a significant therapeutic benefit for statins independent of its effects on cholesterol, thus providing evidence that non-estrogen therapy could be used for cardiovascular benefit in an estrogen-deficient state, such as menopause.  相似文献   

5.
In this study, we compared endothelial nitric oxide synthase (eNOS)-mediated cerebral vasodilating responses in intact female rats, chronically ovariectomized (OVX) rats, and OVX rats treated for 2 weeks with 17beta-estradiol (E(2)). Under anesthesia, using intravital microscopy and a closed cranial window system, pial arteriolar diameter changes were monitored during sequential cortical suffusions of an eNOS-dependent dilator [acetylcholine (ACh)] and a direct NO donor [S-nitrosoacetylpenicillamine (SNAP)]. In separate rats from the same groups, we compared eNOS and caveolin-1 (CAV-1) protein abundance in pial arterioles (via immunofluorescence analyses). In untreated and low-dose E(2)-treated (1.0 microg x kg(-1) x day(-1)) OVX rats, ACh-induced vasodilations were virtually absent. High-dose E(2) treatment (100 microg x kg(-1) x day(-1)) restored ACh-induced pial arteriolar dilations to levels seen in intact females. The vasodilations elicited by SNAP and ADO were unaffected by chronic estrogen changes, indicating no direct estrogen influence on vascular smooth muscle (VSM) reactivity. Pial arteriolar eNOS protein abundance was diminished by ovariectomy and restored by high-dose E(2) treatment. Pial arteriolar CAV-1 expression was higher in OVX versus intact and E(2)-treated OVX females. These results suggest that long-term changes in estrogen directly influence brain eNOS functional activity. The estrogen-related changes in eNOS-dependent vasodilating function appear to be related, in part, to a capacity for E(2) to increase eNOS protein expression and, in part, to an E(2)-associated diminution in endothelial CAV-1 expression.  相似文献   

6.
Administration of the ovarian hormone relaxin to nonpregnant rats vasodilates the renal circulation comparable to pregnancy. This vasodilation is mediated by endothelin (ET), the ET(B) receptor, and nitric oxide. Furthermore, endogenous relaxin mediates the renal vasodilation and hyperfiltration that occur during gestation. The goal of this study was to investigate whether myogenic reactivity of small renal and mesenteric arteries is reduced in relaxin-treated rats comparable to the pregnant condition. Relaxin or vehicle was administered to virgin female Long-Evans rats for 5 days at 4 microg/h, thereby producing midgestational blood levels of the hormone. The myogenic responses of small renal arteries (200-300 microm in diameter) isolated from these animals were evaluated in an isobaric arteriograph system. Myogenic reactivity was significantly reduced in the small renal arteries from relaxin-treated compared with vehicle-treated rats. The reduced myogenic responses were mediated by the ET(B) receptor and nitric oxide since the selective ET(B) receptor antagonist RES-701-1 and the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester restored myogenic reactivity to virgin levels. The influence of relaxin was not limited to the renal circulation because myogenic reactivity was also reduced in small mesenteric arteries isolated from relaxin-treated rats. Thus relaxin administration to nonpregnant rats mimics pregnancy, insofar as myogenic reactivity of small renal and mesenteric arteries is reduced in both conditions.  相似文献   

7.
Previous studies have demonstrated that pregnancy prevents protective hypertension-induced remodeling of cerebral arteries using nitric oxide synthase (NOS) inhibition to raise mean arterial pressure (MAP). In the present study, we investigated whether this effect of pregnancy was specific to NOS inhibition by using the Dahl salt-sensitive (SS) rat as a model of hypertension. Nonpregnant (n = 16) and late-pregnant (n = 17) Dahl SS rats were fed either a high-salt diet (8% NaCl) to raise blood pressure or a low-salt diet (<0.7% NaCl). Third-order posterior cerebral arteries were isolated and pressurized in an arteriograph chamber to measure active responses to pressure and passive remodeling. Several vessels from each group were stained for protein gene product 9.5 to determine perivascular nerve density. Blood pressure was elevated in both groups on high salt. The elevated MAP was associated with significantly smaller active and passive diameters (P < 0.05) and inward remodeling in the nonpregnant hypertensive group only. Whereas no structural changes were observed in the late-pregnant hypertensive animals, both late-pregnant groups had diminished myogenic reactivity (P < 0.05). Nerve density in both the late-pregnant groups was significantly greater when compared with the nonpregnant groups, suggesting that pregnancy has a trophic influence on perivascular innervation of the posterior cerebral artery. However, hypertension lowered the nerve density in both nonpregnant and late-pregnant animals. It therefore appears that pregnancy has an overall effect to prevent hypertension-induced remodeling regardless of the mode of hypertension. This effect may predispose the brain to autoregulatory breakthrough, hyperperfusion, and eclampsia when MAP is elevated.  相似文献   

8.
Cerebral blood flow (CBF) is maintained constant despite changes in systemic blood pressure (BP) through multiple mechanisms of autoregulation such as vascular myogenic reactivity. Our aim was to determine myogenic characteristics of cannulated middle cerebral arteries (MCA) in male and female stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar-Kyoto rats (WKY) at 12 wk of age under pressurised no-flow conditions. MCA pressure-diameter relationships (20-200 mmHg) were constructed in active (with calcium) and passive (without calcium) conditions, and myogenic and mechanical properties were determined. Myogenic reactivity in WKY (P < 0.05) and SHRSP (P < 0.05) males was impaired compared with their female counterparts. Comparison of SHRSP with WKY in males revealed similar myogenic reactivity, but in females SHRSP exhibited augmented myogenic reactivity (P < 0.05). In both sexes, myogenic tone yielded at lower pressure in SHRSP compared with WKY vessels (120-140 vs. 140-180 mmHg). Stress-strain relationships and elastic moduli in WKY rats showed that vessels were stiffer in females than in males. Conversely, in SHRSP, male vessels were stiffer than female vessels. Comparison of strains in males indicated that stiffness was increased in SHRSP compared with WKY vessels, whereas the converse was observed in females. These findings demonstrate that MCA myogenic and distensibility characteristics exhibit significant sex- and strain-dependent differences. Inappropriate myogenic adaptation and augmented vascular stiffness, particularly in male SHRSP, are potential limiting factors in blood flow autoregulation and may increase the predisposition for stroke-related cerebrovascular events.  相似文献   

9.
Supraphysiological increases in serum triglycerides and cholesterol often occur during pregnancy, but their effects on vascular function are poorly understood. Intraperitoneal injection of the nontoxic surfactant poloxamer 407 (P-407) results in sustained elevation of triglycerides and cholesterol. We asked if P-407-induced hyperlipidemia during late pregnancy adversely affects mesenteric resistance artery vasodilator function. On days 13-15 of pregnancy, rats were given a single intraperitoneal injection of P-407, sterile water vehicle, or non-lipid-altering pluronic F-88 (P-88). Four days postinjection, serum triglycerides, cholesterol, free fatty acids, and the lipid peroxidation product malondialdehyde were significantly increased in P-407-treated rats. Mesenteric arteries from P-407-treated rats displayed significant increases in myogenic reactivity (constrictor responses to step increases in intraluminal pressure). The nitric oxide (NO) blocker N(alpha)-methyl-L-arginine increased the myogenic response in control but not in P-407 arteries, normalizing group differences. Endothelial removal increased myogenic reactivity beyond that of prior NO synthase inhibition in controls and potentiated myogenic reactivity in P-407 arteries such that responses again converged. Relaxation responses to the endothelium-dependent vasodilator methacholine did not differ. We conclude that that P-407-induced hyperlipidemia during pregnancy increases myogenic reactivity due to selective attenuation of an NO-mediated vasodilator component of the myogenic response.  相似文献   

10.
Nitric oxide has been shown to be involved in the regulation of cerebral blood flow and the consequences of cerebral ischemia. Short-term inhibition of its synthesis induces hypertension and increases the cortical infarct volume in focal ischemia. Our purpose was to investigate the influence of the long-term inhibition of nitric oxide synthase on infarct volume due to middle cerebral artery (MCA) occlusion and on the reactivity of cerebral arteries. Sprague Dawley rats were given N(omega)-nitro-L-arginine methyl ester (L-NAME) for 2 or 6 weeks and compared to untreated normotensive rats and untreated spontaneously hypertensive rats (SHRs). Brain nitric oxide synthase activity was measured by the 14C-L-arginine assay. Arterial blood pressure was measured in each group. Independently, the reactivity of MCA trees was studied in vitro by a perfusion technique. Cortical infarct volume was not significantly modified by either 2-week or 6-week L-NAME treatment, despite induced hypertension, whereas it was significantly higher in SHRs than in normotensive rats. The reactivity of the MCA tree was significantly affected by the treatment with a clearcut time-dependency. Compared to normotensive controls, contractility to noradrenaline and serotonin was reduced, more severely at 6 weeks, and while dilatation to acetylcholine and nitroprusside was moderately reduced at 6 weeks, dilatation to papaverine was then increased. A major difference of treated animals compared to SHRs was the decreased response to 5-hydroxytryptamine. We conclude that infarct expansion may be limited in treated animals by a progressive reduction in cerebral artery response to vasoconstrictory neurotransmitters, concomitant with augmented non-guanylate cyclase dilator responses (cf. papaverine) and some recovery of dilatation to acetylcholine.  相似文献   

11.
Epidemiological evidence suggests that advancing age affects the cardiovascular system of men and women differently. The purpose of this study was to determine whether the effects of aging on nitric oxide synthase (NOS), oxidative stress, and vascular function are different in males and females. Mesenteric arteries from young (3 mo) and old (24 mo) male and female Fischer 344/Brown Norway rats were studied. Western blot analysis and NOS activity were performed on the homogenized mesenteric arterial bed separated into cytosolic and membrane-associated fractions. Plasma 8-isoprostane measurements assessed oxidative stress. Vascular reactivity was determined by using a wire myograph in the absence and presence of a NOS inhibitor, N(omega)-nitro-l-arginine, to examine endothelial function and basal and stimulated nitric oxide release. In additional arteries, reactivity was performed in the presence of polyethylene glycol-SOD to assess the impact of superoxide on vascular function. Among females, aging was associated with a decline in membrane-associated NOS activity and membrane-associated NOS III protein expression. Advancing age in males was associated with increased cytosolic NOS III protein expression. Among both males and females, advancing age resulted in increased oxidative stress. Vascular function was maintained with age in arteries from both males and females, and there was no difference in either basal or stimulated nitric oxide release with age. Despite sex-specific effects of advancing age on the NOS system and increases in markers of oxidative stress, vascular function is maintained in mesenteric arteries from aged Fischer 344/Brown Norway rats. These data suggest that age-related alterations in the resistance vasculature are complex and likely involve multiple compensating vasoactive pathways.  相似文献   

12.
Data from the Framingham Heart Study suggest that women may be more sensitive to the deleterious cardiovascular remodeling effects of aldosterone. Previous studies from our laboratory have shown that chronic treatment with spironolactone, a mineralocorticoid receptor (MR) antagonist, decreases ischemic cerebral infarct size and prevents remodeling of the middle cerebral artery (MCA) in male spontaneously hypertensive stroke-prone rats (SHRSP). Therefore, we hypothesized that MR antagonism would reduce ischemic infarct size and prevent MCA remodeling in female SHRSP. Six-week-old female SHRSP were treated for 6 wk with spironolactone (25 or 50 mg.kg(-1).day(-1)) or eplerenone (100 mg.kg(-1).day(-1)) and compared with untreated controls. At 12 wk, cerebral ischemia was induced for 18 h using the intraluminal suture occlusion technique, or the MCA was isolated for analysis of passive structure using a pressurized arteriograph. MR antagonism had no effect on infarct size or passive MCA structure in female SHRSP. To study the potential effects of estrogen, the above experiments were repeated in bilaterally ovariectomized (OVX) female SHRSP treated with spironolactone (25 mg.kg(-1).day(-1)). Infarct size and vessel structure in OVX SHRSP were not different from control SHRSP. Spironolactone had no effect on infarct size in OVX SHRSP. However, MCA lumen and outer diameters were increased in spironolactone-treated OVX SHRSP, suggesting an effect of estrogen. Cerebral artery MR expression, assessed by Western blotting, was increased in female, compared with male, SHRSP. These studies highlight an apparent sexual dimorphism of MR expression and activity in the cerebral vasculature from hypertensive rats.  相似文献   

13.
Cerebral artery vasospasm is a major cause of death and disability in patients experiencing subarachnoid hemorrhage (SAH). Currently, little is known regarding the impact of SAH on small diameter (100-200 microm) cerebral arteries, which play an important role in the autoregulation of cerebral blood flow. With the use of a rabbit SAH model and in vitro video microscopy, cerebral artery diameter was measured in response to elevations in intravascular pressure. Cerebral arteries from SAH animals constricted more (approximately twofold) to pressure within the physiological range of 60-100 mmHg compared with control or sham-operated animals. Pressure-induced constriction (myogenic tone) was also enhanced in arteries from control animals organ cultured in the presence of oxyhemoglobin, an effect independent of the vascular endothelium or nitric oxide synthesis. Finally, arteries from both control and SAH animals dilated as intravascular pressure was elevated above 140 mmHg. This study provides evidence for a role of oxyhemoglobin in impaired autoregulation (i.e., enhanced myogenic tone) in small diameter cerebral arteries during SAH. Furthermore, therapeutic strategies that improve clinical outcome in SAH patients (e.g., supraphysiological intravascular pressure) are effective in dilating small diameter cerebral arteries isolated from SAH animals.  相似文献   

14.
We tested the hypothesis that endothelin acting through the endothelial ET(B) receptor subtype and the nitric oxide (NO) pathway accounts for reduced myogenic reactivity of the renal resistance vasculature during pregnancy. Small renal arteries (100-200 microm) were isolated from virgin and midterm pregnant rats when gestational renal hyperfiltration and vasodilation are maximal in this species. Myogenic reactivity (the adjustment of arterial diameter in response to a change in transmural pressure) was assessed with a pressurized myograph system. A rapid increase in transmural pressure from 60 to 80 mmHg resulted in a 2.4% diameter increase in vessels from virgin compared with an 8.1% increase in arteries from midgestation rats (n = 8 each, P < 0.05). Thus myogenic reactivity is markedly reduced during pregnancy. Incubation with the NO synthase inhibitors, an ET(B) receptor subtype antagonist (RES-701-1), the nonselective ET(A/B) receptor blocker (SB-209670), or endothelial removal abrogated the reduced myogenic reactivity of vessels from gravid rats without affecting myogenic reactivity in arteries from virgin animals. Thus the endothelium mediates the reduced myogenic reactivity of small renal arteries of midgestation rats most likely through the ET(B) receptor subtype and NO pathway.  相似文献   

15.
Estrogen protects females against cardiovascular diseases in both receptor-dependent, genomic or non-genomic manner. Although part of the protective effects is attributed to its enhancement of nitric oxide (NO) production and antioxidant properties, in vivo evidence is difficult to establish. We thus employed paraquat (PQ)-treated rats as a model for oxidative stress and to compare oxidative damage determined by malondialdehyde (MDA) contents as index for lipid peroxidation of various tissues. Samples from aorta, lung, and liver exhibited low but detectable MDA level in intact control rats; sham operation did not but PQ-treatment significantly enhanced the MDA levels of all tissues. Different hormonal status were achieved by comparing sham-operated (sham), sham treated with estrogen receptor antagonist ICI182,780 (ICI), and ovariectomized (OVX) rats. OVX significantly reduced plasma estrogen level, ICI effectively blocked estrous cycle without reducing estrogen level. Derived from rats subjected to identical PQ treatment, MDA level was significantly higher in OVX rats than that of sham in isolated aortic rings. In lung tissues, MDA level were similar in all groups. In liver tissues, ICI rats exhibited higher level of MDA than both sham and OVX rats. These data indicated that hormonal status could affect the degree of lipid peroxidation under similar oxidative stress induced by PQ, and that not all tissues responded identically.  相似文献   

16.
Eclampsia is thought to be similar to hypertensive encephalopathy, whereby acute elevations in intravascular pressure cause forced dilatation (FD) of intrinsic myogenic tone of cerebral arteries and arterioles, decreased cerebrovascular resistance, and hyperperfusion. In the present study, we tested the hypothesis that pregnancy and/or the postpartum period predispose cerebral arteries to FD by diminishing pressure-induced myogenic activity. We compared the reactivity to pressure (myogenic activity) as well as factors that modulate the level of tone of third-order branches (<200 microm) of the posterior cerebral artery (PCA) that were isolated from nonpregnant (NP, n = 7), late-pregnant (LP, 19 days, n = 10), and postpartum (PP, 3 days, n = 8) Sprague-Dawley rats under pressurized conditions. PCAs from all groups of animals developed spontaneous tone within the myogenic pressure range (50-150 mmHg) and constricted arteries at 100 mmHg (NP, 30 +/- 3; LP, 39 +/- 4; and PP, 42 +/- 7%; P > 0.05). This level of myogenic activity was maintained in the NP arteries at all pressures; however, both LP and PP arteries dilated at considerably lower pressures compared with NP, which lowered the pressure at which FD occurred from >175 for NP to 146 +/- 6.5 mmHg for LP (P < 0.01 vs. NP) and 162 +/- 7.7 mmHg for PP (P < 0.01 vs. NP). The amount of myogenic tone was also significantly diminished at 175 mmHg compared with NP: percent tone for NP, LP, and PP animals were 35 +/- 2, 11 +/- 3 (P < 0.01 vs. NP), and 20 +/- 7% (P < 0.01 vs. NP), respectively. Inhibition of nitric oxide (NO) with 0.1 mM N(omega)-nitro-l-arginine (l-NNA) caused constriction of all vessel types that was significantly increased in the PP arteries, which demonstrates significant basal NO production. Reactivity to 5-hydroxytryptamine (serotonin) was assessed in the presence of l-NNA and indomethacin. There was a differential response to serotonin: PCAs from NP animals dilated, whereas LP and PP arteries constricted. These results suggest that both pregnancy and the postpartum period predispose the cerebral circulation to FD at lower pressures, a response that may lower cerebrovascular resistance and promote hyperperfusion when blood pressure is elevated, as occurs during eclampsia.  相似文献   

17.
Gender differences in vascular reactivity have been suggested; however, the cellular mechanisms involved are unclear. We tested the hypothesis that the gender differences in vascular reactivity reflect gender-related, possibly estrogen-mediated, distinctions in the expression and activity of specific protein kinase C (PKC) isoforms in vascular smooth muscle. Aortic strips were isolated from intact and gonadectomized male and female Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). Isometric contraction was measured in endothelium-denuded aortic strips. PKC activity was measured in the cytosolic and particulate fractions, and the amount of PKC was measured using Western blots and isoform-specific anti-PKC antibodies. In intact male WKY rats, phenylephrine (Phe, 10(-5) M) and phorbol 12,13-dibutyrate (PDBu, 10(-6) M) stimulated contraction to 0.37 +/- 0.02 and 0.42 +/- 0.02 g/mg tissue wt, respectively. The basal particulate/cytosolic PKC activity ratio was 0.86 +/- 0.06, and Western blots revealed alpha-, delta-, and zeta-PKC isoforms. Phe and PDBu increased PKC activity and caused significant translocation of alpha- and delta-PKC from the cytosolic to particulate fraction. In intact female WKY rats, basal PKC activity, the amount of alpha-, delta-, and zeta-PKC, the Phe- and PDBu-induced contraction, and PKC activity and translocation of alpha- and delta-PKC were significantly reduced compared with intact male WKY rats. The basal PKC activity, the amount of alpha-, delta-, and zeta-PKC, the Phe and PDBu contraction, and PKC activity and alpha- and delta-PKC translocation were greater in SHR than WKY rats. The reduction in Phe and PDBu contraction and PKC activity in intact females compared with intact males was greater in SHR ( approximately 30%) than WKY rats ( approximately 20%). Phe and PDBu contraction and PKC activity were not significantly different between castrated males and intact males but were greater in ovariectomized (OVX) females than intact females. Treatment of OVX females or castrated males with 17 beta-estradiol, but not 17 alpha-estradiol, subcutaneous implants caused significant reduction in Phe and PDBu contraction and PKC activity that was greater in SHR than WKY rats. Phe and PDBu contraction and PKC activity in OVX females or castrated males treated with 17 beta-estradiol plus the estrogen receptor antagonist ICI-182,780 were not significantly different from untreated OVX females or castrated males. Thus a gender-related reduction in vascular smooth muscle contraction in female WKY rats with intact gonads compared with males is associated with reduction in the expression and activity of vascular alpha-, delta-, and zeta-PKC. The gender differences in vascular smooth muscle contraction and PKC activity are augmented in the SHR and are possibly mediated by estrogen.  相似文献   

18.
Simulated microgravity increases myogenic tone in rat cerebral arteries   总被引:2,自引:0,他引:2  
Adaptation ofthe cerebral circulation to microgravity was investigated in rat middlecerebral arteries after 20 days of hindlimb unweighting (HU). Myogenicresponses were measured in isolated, pressurized arteries from HU andcontrol animals. Maximal passive lumen diameters, obtained in theabsence of extracellular Ca2+ plusEDTA, were not significantly different between groups (249 vs. 258 µm). In physiological salt solution, arteries from both HU andcontrol animals maintained a constant lumen diameter when subjected toincremental increases in transmural pressure (20-80 mmHg).However, the diameter of arteries from HU animals was significantly smaller than that of arteries from control animals at all pressures; this difference could be eliminated by exposure to the nitric oxidesynthase inhibitorNG-nitro-L-argininemethyl ester. After HU treatment, transient distensibility of theartery wall in response to pressure was also significantly decreased,whereas the frequency and amplitude of vasomotion were increased. Thelatter changes were not affected byNG-nitro-L-argininemethyl ester. Thus simulated microgravity increases cerebral arterymyogenic tone through both nitric oxide synthase-dependent and-independent mechanisms.

  相似文献   

19.
Human studies suggest that anabolic androgenic steroid (AAS) users are aggressive towards women. This study used a rat model to evaluate whether AAS potentiated aggression towards females and the conditions under which this occurs. Gonadally intact pubertal male rats received one of the following AAS treatments (5 mg/kg s.c. 5 days/week for nine weeks): testosterone (T), stanozolol (S), testosterone + stanozolol (T + S), or vehicle control. Each rat was tested with 3 conspecific stimuli: ovariectomized females (OVX), estrogen only females (E), and estrogen + progesterone females (E + P). The response to physical provocation was tested under three conditions: without physical provocation, provocation of the experimental male, and provocation of the conspecific female. Provocation was a mild tail pinch. Both aggressive and sexual behaviors were measured during each test. In the absence of physical provocation, AAS males were not aggressive towards females. However, provocation significantly increased aggression in males treated with testosterone but only towards OVX females. In the presence of E or E + P females, all animals displayed sex behavior, not aggression. Thus, factors such as the nature of the AAS and the hormonal status of the females are important in determining whether male rats will be aggressive towards females. However, the most salient factor determining aggression towards females is the presence of provocation in combination with high levels of testosterone.  相似文献   

20.
In young adult females, estrogen treatment suppresses the cerebrovascular inflammatory response; this is mediated in part via NF-kappaB, a key regulator of inflammatory genes. To examine whether age modifies effects of estrogen on vascular inflammation in the brain, female rats, 3 and 12 mo of age, were ovariectomized; half were treated with estrogen for 4 wk. Cerebral blood vessels were isolated from the animals at 4 and 13 mo of age. Inflammation was induced by LPS, either injected in vivo or incubated with isolated vessels ex vivo. Basal levels of cytoplasmic NF-kappaB were significantly higher in cerebral vessels of young rats, but the ratio of nuclear to cytoplasmic levels was greater in middle-aged animals. LPS exposure increased nuclear NF-kappaB DNA binding activity, protein levels of inducible nitric oxide synthase and cyclooxygenase-2, and production of nitric oxide and PGE(2) in cerebral vessels. All effects of LPS were markedly greater in vessels from the older animals. Estrogen significantly inhibited the LPS-induced increase in NF-kappaB DNA binding activity in cerebral vessels from animals at both ages. In 4-mo-old rats, estrogen also significantly suppressed LPS induction of inducible nitric oxide synthase and cyclooxygenase-2 proteins, as well as production of nitric oxide and PGE(2). In contrast, in 13-mo-old females, estrogen did not significantly affect these indexes of cerebrovascular inflammation. Thus the protective, anti-inflammatory effect of estrogen on cerebral blood vessels that is observed in young adults may be attenuated in aged animals, which exhibit a greater overall cerebrovascular response to inflammatory stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号