首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We have recently synthesized a lipid conjugate of the anticancer agent methotrexate (MTX-DG) and showed that the conjugate is quantitatively included in the lipid bilayer of liposomes prepared by a standard extrusion technique from an 8 : 1 : 1 (mol) egg phosphatidylcholine-yeast phosphatidylinositol-MTX-DG mixture. Both the size of liposomes (126 +/- 30 nm) and the MTX-DG concentration (4.4 mM) are relevant for systemic injections in mammals. The liposomal formulation of MTX-DG was shown to overcome the resistance of tumor cells in vitro to methotrexate: the cytotoxic activities (IC50) of MTX in cultures of the human T-lymphoblastic leukemia cell line CEM-CCRF and the MTX-resistant subline CEM/MTX were 0.075 +/- 0.005 and 16.4 +/- 4.9 microM, respectively, while, in the case of liposomes loaded with MTX-DG, the IC50 values were much closer: 0.77 +/- 0.06 and 3.8 +/- 1.9 microM.  相似文献   

2.
The efficiency of the chemotherapeutic agent methotrexate (MTX) in cancer treatment is limited by the frequent development of the drug resistance of tumor cells. We had previously shown in vitro using human acute leukemia cells with various sensitivity to MTX (T-lymphoblastic CCRF-CEM line and resistant CEM/MTX subline) that MTX incorporation into liposomes in the form of a lipophilic prodrug, diglyceride conjugate (MTX-DG), allows for the overcoming of cell resistance due to the impaired active transmembrane transport. In this work, we have studied the profile of binding with carbohydrates of the cell lines mentioned using carbohydrate fluorescent probes (poly(acryl amide) conjugates). Lipophilic conjugates of tetrasaccharide SiaLeX, 6′-HSO3LacNAc, and also inactive pentaol for incorporation into liposomes, have been synthesized. The cytotoxicity of MTX-DG liposomes equipped with the SiaLeX ligand toward the sensitive CCRF-CEM cell culture was demonstrated to be 3.5 times higher than that of MTX-DG liposomes bearing the control inactive pentaol. The activity of MTX liposomes bearing 6′-HSO3LacNAc toward resistant CEM/MTX was 1.6-fold increased. The use of carbohydrate ligands as molecular addresses for drug-carrying liposomes as a potential method of treating heterogeneous tumor tissue is discussed.  相似文献   

3.
A series of 1-[(4′-chlorophenyl)carbonyl-4-(aryl)thiosemicarbazide derivatives 125 was synthesized and characterized by spectroscopic techniques such as EI-MS and 1H NMR. All compounds were screened for urease inhibitory activity in vitro and demonstrated excellent inhibitory activity in the range of IC50 = 0.32 ± 0.01–25.13 ± 0.13 μM as compared to the standard thiourea (IC50 = 21.25 ± 0.13 μM). Amongst the potent analogs, compounds 3 (IC50 = 2.31 ± 0.01 μM), 6 (IC50 = 2.14 ± 0.04 μM), 10 (IC50 = 1.14 ± 0.06 μM), 20 (IC50 = 2.15 ± 0.05 μM), and 25 (IC50 = 0.32 ± 0.01 μM) are many folds more active than the standard. Structure-activity relationship (SAR) was rationalized by looking at the effect of diversely substituted aryl ring on inhibitory potential which predicted that regardless of the nature of substituents, their positions on aryl ring is worth important for the potent activity. Furthermore, to verify these interpretations, in silico study was performed on all compounds and a good correlation was perceived between the biological evaluation and docking study of compounds.  相似文献   

4.
Twenty-five thiadiazole derivatives 125 were synthesized from methyl 4-methoxybenzoate via hydrazide and thio-hydrazide intermediates, and evaluated for their potential against β-glucuronidase enzyme. Most of the compounds including 1 (IC50 = 26.05 ± 0.60 μM), 2 (IC50 = 42.53 ± 0.80 μM), 4 (IC50 = 38.74 ± 0.70 μM), 5 (IC50 = 9.30 ± 0.29 μM), 6 (IC50 = 6.74 ± 0.26 μM), 7 (IC50 = 18.40 ± 0.66 μM), and 15 (IC50 = 18.10 ± 0.53 μM) exhibited superior activity potential than the standard d-saccharic acid-1,4-lactone (IC50 = 48.4 ± 1.25 μM). Molecular docking studies were conducted to correlate the in vitro results and to identify possible mode of interaction with enzyme active site.  相似文献   

5.
Herein we report an assessment of 24 1,2,3,4-tetrahydroisoquinoline derivatives for potential DNase I (deoxyribonuclease I) inhibitory properties in vitro. Four of them inhibited DNase I with IC50 values below 200 μM. The most potent was 1-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)propan-2-one ( 2 ) (IC50=134.35±11.38 μM) exhibiting slightly better IC50 value compared to three other active compounds, 2-[2-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl]-1-phenylethan-1-one ( 15 ) (IC50=147.51±14.87 μM), 2-[2-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl]cyclohexan-1-one ( 18 ) (IC50=149.07±2.98 μM) and 2-[6,7-dimethoxy-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl]cyclohexan-1-one ( 22 ) (IC50=148.31±2.96 μM). Cytotoxicity assessment of the active DNase I inhibitors revealed a lack of toxic effects on the healthy cell lines MRC-5. Molecular docking and molecular dynamics simulations suggest that interactions with Glu 39, His 134, Asn 170, Tyr 211, Asp 251 and His 252 are an important factor for inhibitors affinity toward the DNase I. Observed interactions would be beneficial for the discovery of new active 1,2,3,4-tetrahydroisoquinoline-based inhibitors of DNase I, but might also encourage researchers to further explore and utilize potential therapeutic application of DNase I inhibitors, based on a versatile role of DNase I during apoptotic cell death.  相似文献   

6.
A new cytochalasan alkaloid, westalsan ( 1 ), along with two known cytochalasan compounds, phomacin B ( 2 ) and 19-hydroxy-19,20-dihydrophomacin C ( 3 ), were isolated from the solid rice culture of Westerdykella nigra, a marine-derived endophytic fungus, isolated from the roots of mangrove Avicennia marina (Forssk.) Vierh. The structures of compounds 1 – 3 were established on the basis of extensive 1D and 2D NMR spectroscopic techniques in combination with HR-ESI-MS. The ability of the isolated compounds to inhibit acetylcholine esterase activity was evaluated. Compound 3 showed the highest acetylcholine esterase inhibitory activity (IC50 0.056±0.003 μM), followed by compound 1 (IC50 0.088±0.005 μM) and compound 2 (IC50 0.140±0.007 μM) compared to donepezil (IC50 0.035±0.002 μM). This was further confirmed by molecular docking experiment.  相似文献   

7.
Two new sorbicillinoids, 1 and 2 , together with a novel benzofuranone derivative named phialofurone ( 3 ), were isolated from a deep‐sea sediment‐derived fungus, Phialocephala sp. Their structures were established on the basis of spectroscopic data. All compounds displayed cytotoxic effects against P388 (IC50 values of 11.5±1.4, 0.1±0.1, and 0.2±0.01 μM , resp.) and K562 (IC50 values of 22.9±0.8, 4.8±0.3 and 22.4±0.9 μM , resp.) cell lines.  相似文献   

8.
Alpha-amylase and urease enzyme over expression endorses various complications like rheumatoid arthritis, urinary tract infection, colon cancer, metabolic disorder, cardiovascular risk, and chronic kidney disease. To overcome these complications, we have synthesized new arylhydrazide bearing Schiff bases/thiazolidinone analogues as α-amylase and urease inhibitors. The analogues 1a-r were evaluated for α-amylase inhibitory potential. All analogues were found active and show IC50 value ranging between 0.8 ± 0.05 and 12.50 ± 0.5 μM as compare to standard acarbose (IC50 = 1.70 ± 0.10 μM). Among the synthesized analogs, compound 1j, 1r, 1k, 1e, 1b and 1f having IC50 values 0.8 ± 0.05, 0.9 ± 0.05, 1.00 ± 0.05, 1.10 ± 0.10, 1.20 ± 0.10 and 1.30 ± 0.10 μM respectively showed an excellent inhibitory potential. Analogs 2a-o were evaluated against urease activity. All analogues were found active and show IC50 value ranging between 4.10 ± 0.02 and 38.20 ± 1.10 μM as compare to standard thiourea (IC50 = 21.40 ± 0.21 μM). Among the synthesized analogs, compound 2k, 2a, 2h, 2j, 2f, 2e, 2g, 2b and 2l having IC50 values 4.10 ± 0.02, 4.60 ± 0.02, 4.70 ± 0.03, 5.40 ± 0.02, 6.70 ± 0.05, 8.30 ± 0.3, 11.20 ± 0.04, 16.90 ± 0.8 and 19.80 ± 0.60 μM respectively showed an excellent inhibitory potential. All compounds were characterized through 1H, 13C NMR and HR-EIMS analysis. Structure activity relationship of the synthesized analogs were recognized and confirmed through molecular docking studies.  相似文献   

9.
In this study, we have synthesised (3,4-dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone and a series of its derivatives (5, 13–16) and tested the ability of these compounds to inhibit two metalloenzyme human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, hCA I and hCA II. The synthesised compounds showed inhibitory effect on hCA I and hCA II isozymes. The results showed that synthesised compounds (5, 13–16) demonstrated the best inhibition activity against hCA I (IC50: 3.22–54.28 μM) and hCA II (IC50: 18.52–142.01 μM). The compound 14 showed the highest inhibiton effect against hCA I (IC50: 3.22 μM; Ki: 1.19?±?1.4 μM). On the other hand, the compound 13 showed the highest inhibiton effect against hCA II (IC50: 18.52 μM; Ki: 3.25?±?1.13 μM).  相似文献   

10.
A novel series of pyrazolo[1,5-a]pyrimidines were synthesized and proved by their spectral and elemental analysis, some elected of the newly synthesized compounds were examined for their cytotoxic activity employing MTT assay on two cancer cell lines (Breast and Hela cancers). Compounds 5, 7e and 7i showed the higher cytotoxicity against two cancer cell lines with (IC50 = 13.91 ± 1.4 and 22.37 ± 1.8 μM/L), (IC50 = 6.56 ± 0.5 and 8.72 ± 0.9 μM/L) and (IC50 = 4.17 ± 0.2 and 5.57 ± 0.4 μM/L) for two cancer cell lines breast and hela respectively, using doxorubicin as a reference drug. The most potent cytotoxic active compounds 5, 7e and 7i presented inhibitory activity against KDM (histone lysine demethylases) with IC50 = 4.05, 1.91 and 2.31 μM, respectively. The most potent KDM inhibitor 7e (IC50 = 1.91 μM) showed to cause cell cycle arrest at G2/M phase by 4 folds than control and induce total apoptotic effect by 10 folds more than control. In silico studies performed on the more potent cytotoxic active compounds 5, 7e and 7i included lipinisk's rule of five. Moreover, molecular docking study was utilized to explore the binding mode of the most active compounds to the target enzyme (PDB-ID: 5IVE). Also, some bioinformatics studies were carried out for compounds 7e and 7i using Swiss ADME (Swiss Institute of bioinformatics 2018).  相似文献   

11.
The first natural S‐containing benzophenone dimer, named guignasulfide ( 3 ), was isolated from the culture of Guignardia sp. IFB‐E028, an endophytic fungus residing in healthy leaves of Hopea hainanensis. Its structure was determined through correlative analyses of its MS, 1D‐ and 2D‐NMR spectroscopic data. Two other known benzophenone derivatives, monomethylsulochrin and rhizoctonic acid ( 1 and 2 , resp.) were also isolated. Guignasulfide ( 3 ) was more active against the human liver cancer cell line HepG2 (IC50 value: 5.2±0.4 μM ) than metabolites 1 and 2 (IC50 values: 63.5±0.6 and 60.2±0.5 μM ); compounds 1 – 3 showed also moderately inhibitory effects on the human bacterial pathogen Helicobacter pylori with MIC values of 28.9±0.1, 60.2±0.4, and 42.9±0.5 μM , respectively.  相似文献   

12.
Scientific research based on medicinal plants has been highlighted as a complementary treatment to T2DM, stand out the Vochysiaceae family, which have been widely used in folk medicine by traditional South American communities to treat some diseases. Our study aimed to investigate the antioxidant and antiglycation activities of ethanol extracts of leaves (LF) and stem barks (SB) of Vochysiaceae species, evaluated their capacities to inhibit glycoside and lipid hydrolases related to T2DM and molecular identification by HPLC-ESI-MS/MS. Our main findings indicate that the ethanolic extract of four of eight analyzed plants such as LF and SB of Q. grandiflora, Q. parviflora, V. elliptica and Calisthene major exhibited, respectively, potential of α-amylase inhibition (IC50 of LF: 5.7 ± 0.6, 4.1 ± 0.5, 5.8 ± 0.5, 3.2 ± 0.6 and IC50 of SB: 3.3 ± 0.7, 6.2 ± 2.0, 121.0 ± 8.6 and 11.2 ± 2.8 μg/mL), capacities of antioxidant (ORAC of LF: 516.2 ± 0.1, 547.6 ± 4.9, 544.3 ± 6.1, 442.6 ± 2.4 and ORAC of SB: 593.6 ± 22.3, 497.7 ± 0.8, 578 ± 12.3, 593.6 ± 19.5 µmol trolox eq/g; FRAP of LF: 796.1 ± 0.9, 427.7 ± 22.0, 81.0 ± 1.9, 685 ± 37.9 and FRAP of SB: 947.4 ± 24.9, 738.6 ± 24.3, 98.8 ± 7.9, 970.8 ± 13.9 µmol trolox eq/g; DPPH IC50 of LF: 14.2 ± 1.8, 36.3 ± 6.9, 11.8 ± 1.9, 13.3 ± 1.2 and DPPH IC50 of SB: 16.0 ± 3.0, 15.5 ± 1.9, 126.1 ± 23. 6, 5.3 ± 0.3 μg/mL, respectively) and antiglycation (BSA/Frutose IC50 of LF: 43.1 ± 3.4, 52.1 ± 6.0, 175.5 ± 32, 8, 111.8 ± 14.7 and BSA/Frutose IC50 of SB:, 40.1 ± 11.9, 51.2 ± 16. 7, 46.6 ± 5.7, 53.5 ± 13.6 μg/mL) and presence of polyphenols, such as flavonoids and condensed tannins. The extracts presented low ability to inhibit α-glycosidase and lipase enzymes in the initial assays, with values below 40% of inhibition. In BSA/methylglyoxal, only Q. grandiflora SB, V. eliptica LF and V. tucanorum LF showed activity (IC50: 655.5 ± 208.5, 401.9 ± 135.2 and 617.1 ± 80.6 μg/mL, respectively) and only C. major LF and SB, in Arg/methylglyoxal (IC50: 485.1 ± 130.8 and 468.0 ± 150.5 μg/ml, respectively). This study presented new findings about the biological and pharmacological potential of some species of Vochysiaceae family, contributing to the understanding of the action and efficacy in use of these plants, in their management of postprandial hyperglycemia and in glycation and oxidative processes that contribute to managing diabetes mellitus.  相似文献   

13.
The bioassay-guided fractionation of H. oblongifolium has led to the isolation of potent urease inhibitors 1–3. The structures were elucidated by NMR and mass spectroscopic techniques. Compound 2 showed a potent enzyme inhibition activity (IC50 20.96?±?0.93), which is comparatively higher than that for the standard thiourea (IC50 21.01?±?0.51 μM). Compounds 1 and 3 also showed a significant activity, with IC50 37.95?±?1.93 and 138.43?±?1.23 μM, respectively. The sub crude fractions (F1, F2, F3, and F4) were tested in vitro for their urease inhibition activity. Fractions F2 and F4 showed significant activity with IC50 140.37?±?1.93 and 167.43?±?3.03 μM, respectively.  相似文献   

14.
Aminopeptidase N (APN/CD13) over expressed on tumour cells, plays a critical role in tumour invasion, metastasis and tumour angiogenesis. In this article, we described the design, synthesis and preliminary activity studies of novel 3-amino-2-hydroxyl-3-phenylpropanoic acid derivatives as APN inhibitors. The in vitro enzymatic inhibitions on APN from porcine kidney showed that compound 7e had the most potent inhibitory activity against APN with the IC50 value to 1.26?±?0.01 μM, which is better than that of bestatin (IC50?=?2.55?±?0.11 μM). In addition, compound 7e also showed better inhibitory activity against APN on human ovary clear cell carcinoma cell ES-2 than bestatin with the IC50 value to 30.19?±?1.02 μM versus 60.61?±?0.1 μM. Compound 7e could be used as the lead compound in the future for anti-cancer agent research.  相似文献   

15.
Twenty-five derivatives of 5-chloro-2-aryl benzo[d]thiazole (125) were synthesized and evaluated for their α-glucosidase (S. cerevisiae EC 3.2.1.20) inhibitory activity in vitro. Among them eight compounds showed potent activity with IC50 values between 22.1 ± 0.9 and 136.2 ± 5.7 μM, when compared with standard acarbose (IC50 = 840 ± 1.73 μM). The most potent compounds 4, 9, and 10 showed IC50 values in the range of 22.1 ± 0.9 to 25.6 ± 1.5 μM. Compounds 2, 5, 11, and 19 showed IC50 values within the range of 40.2 ± 0.5 to 60.9 ± 2.0 μM. Compounds 1 and 3 were also found to be good inhibitors with IC50 values 136.2 ± 5.7 and 104.8 ± 9.9 μM, respectively. Their activities were compared with α-glucosidase inhibitor drug acarbose (standard) (IC50 = 840 ± 1.73 μM). The remaining compounds were inactive. Structure-activity relationships (SAR) have also been established. Kinetics studies indicated compounds 2, 3, 10, 19, and 25 to be non-competitive, while 1, 5, 9, and 11 as competitive inhibitors of α-glucosidase enzyme. All the active compounds (15, 911, and 19) were also found to be non-cytotoxic, in comparison to the standard drug i.e., doxorubicin (IC50 = 0.80 ± 0.12 μM) in MTT assay. Furthermore, molecular interactions of active compounds with the enzyme binding sites were predicted through molecular modeling studies.  相似文献   

16.
We have synthesized seventeen Coumarin based derivatives (117), characterized by 1HNMR, 13CNMR and EI-MS and evaluated for α-glucosidase inhibitory potential. Among the series, all derivatives exhibited outstanding α-glucosidase inhibition with IC50 values ranging between 1.10 ± 0.01 and 36.46 ± 0.70 μM when compared with the standard inhibitor acarbose having IC50 value 39.45 ± 0.10 μM. The most potent derivative among the series is derivative 3 having IC50 value 1.10 ± 0.01 μM, which are many folds better than the standard acarbose. The structure activity relationship (SAR) was mainly based upon by bring about difference of substituent’s on phenyl part. Molecular docking studies were carried out to understand the binding interaction of the most active compounds.  相似文献   

17.
We have previously shown that whereas (RS)-2-amino-3-(3-hydroxy-5-phenylisoxazol-4-yl)propionic acid (APPA) shows the characteristics of a partial agonist at (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors, (S)-APPA is a full AMPA receptor agonist and (R)-APPA a weak competitive AMPA receptor antagonist. This observation led us to introduce the new pharmacological concept, functional partial agonism. Recently we have shown that the 2-pyridyl analogue of APPA, (RS)-2-amino-3-[3-hydroxy-5-(2-pyridyl)isoxazol-4-yl]propionic acid (2-Py-AMPA), is a potent and apparently full AMPA receptor agonist, and this compound has now been resolved into (+)- and (-)-2-Py-AMPA (ee ≥ 99.0%) by chiral HPLC using a Chirobiotic T column. The absolute stereochemistry of the enantiomers of APPA has previously been established by X-ray analysis, and on the basis of comparative studies of the circular dichroism spectra of the enantiomers of APPA and 2-Py-AMPA, (+)- and (-)-2-Py-AMPA were assigned the (S)- and (R)-configuration, respectively. In a series of receptor binding studies, neither enantiomer of 2-Py-AMPA showed detectable affinity for kainic acid receptor sites or different sites at the N-methyl-D-aspartic acid (NMDA) receptor complex. (+)-(S)-2-Py-AMPA was an effective inhibitor of [3H]AMPA binding (IC50 = 0.19 ± 0.06 μM) and a potent AMPA receptor agonist in the rat cortical wedge preparation (EC50 = 4.5 ± 0.3 μM) comparable with AMPA (IC50 = 0.040 ± 0.01 μM; EC50 = 3.5 ± 0.2 μM), but much more potent than (+)-(S)-APPA (IC50 = 5.5 ± 2.2 μM; EC50 = 230 ± 12 μM). Like (-)-(R)-APPA (IC50 > 100 μM), (-)-(R)-2-Py-AMPA (IC50 > 100 μM) did not significantly affect [3H]AMPA binding, and both compounds were week AMPA receptor antagonists (Ki = 270 ± 50 and 290 ± 20 μM, respectively). Chirality 9:274–280, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
Summary With a view to increasing drug incorporation without loss of antibody activity, tritium-labeled methotrexate (MTX) was covalently linked to a polyclonal rabbit IgG antibody against bovine serum albumin and a monoclonal mouse IgG antibody against human renal cancer (Dal K20) by a site-specific method based on hydrazone bond formation between MTX hydrazide and the aldehyde groups generated by periodate oxidation of carbohydrate moieties in IgG (which are uncommon in the antigen-binding region). These conjugates were compared with the corresponding non-site-specific MTX-IgG conjugates produced by the N-hydroxysuccinimide active-ester method with regard to synthesis, stability, retention of antibody activity, inhibition of the target enzyme dihydrofolate reductase and antitumor effect. Incorporation levels achieved with the hydrazide method were no greater than with the active-ester method, typically 6–7 mol MTX/mol IgG. Approximately the same dihydrofolate-reductase-inhibitory capacity was observed for MTX bound by either method. Hydrazide conjugates lost bound drug more rapidly than active-ester conjugates on freezing and thawing, on incubation at 37° C and 51° C, and in the presence of serum or rat liver homogenates. Exposure to rat liver homogenates at 37° C, pH 4.6, for 24 h led to the loss of 50%–60% of the bound drug from hydrazide conjugates compared to 20%–30% from the active ester conjugates. Bio-Gel P-2 chromatography of low-molecular-mass fractions, obtained after exposure of each of the conjugates to liver homogenates, revealed the presence of a compound that had the same elution volume and R F on thin-layer chromatography as free MTX. Enzyme-linked immunosorbent assay showed loss of antibody activity of both types of conjugates at 51° C and on freezing and thawing. In a clonogenic assay, the active-ester conjugate of Dal K20 appeared to be equally effective or slightly better as a tumor inhibitor than the corresponding hydrazide conjugate. The hydrazide method may be useful in linking MTX to those monoclonal antibodies that tend to denature when subjected to the active-ester method of linkage. Abbreviations used: aBSA, rabbit anti-(bovine serum albumin) IgG; EDCI, 3-ethyl-1-(3-dimethylaminopropyl)carbodiimide; ELISA, enzyme-linked immunosorbant assay; IC50, concentration giving 50% inhibition; MTX, methotrexate; MTXAE, N-hydroxy-succinimide-based active ester of MTX; MTXAE-IgG, MTX-IgG conjugate prepared by the active-ester method; MTXH, methotrexate hydrazide; MTXH-IgG, MTX-IgG conjugate prepared by the hydrazide method; PBS, 0.01 M sodium phosphate, pH 7.1, containing 0.145 M sodium chloride; TLC, thin-layer chromatography  相似文献   

19.
A new spirostane, namely neohelicomyine B ( 1 ), together with six known steroids ( 2 – 7 ) were isolated from the fermentation of fungus Neohelicomyces hyalosporus. The structures of these compounds were elucidated by extensive analyses of spectroscopic methods including 1D and 2D NMR and HR-ESI-MS. The absolute configuration of 1 was confirmed by single-crystal X-ray diffraction. The bioactivities of compounds 1 – 7 were evaluated using cellular assays. Compound 1 displayed moderate cytotoxicity against HepG2 cells (hepatoma cells) with IC50 value of 8.4±2.1 μM. Compound 7 also exhibited cytotoxic activity against HepG2 cells with the IC50 value of 3.0±0.2 μM.  相似文献   

20.
In this study, twenty new anthranilic acid hydrazones 6 – 9 ( a – e ) were synthesized and their structures were characterized by Fourier-transform Infrared (FT-IR), Nuclear Magnetic Resonance (1H-NMR – 13C-NMR), and High-resolution Mass Spectroscopy (HR-MS). The inhibitory effects of the compounds against COX-II were evaluated. IC50 values of the compounds were found in the range of >200–0.32 μM and compounds 6e , 8d , 8e , 9b , 9c , and 9e were determined to be the most effective inhibitors. Cytotoxic effects of the most potent compounds were investigated against human hepatoblastoma (Hep-G2) and human healthy embryonic kidney (Hek-293) cell lines. Doxorubicin (IC50: 8.68±0.16 μM for Hep-G2, 55.29±0.56 μM for Hek-293) was used as standard. 8e is the most active compound, with low IC50 against Hep-G2 (4.80±0.04 μM), high against Hek-293 (159.30±3.12), and high selectivity (33.15). Finally, molecular docking and dynamics studies were performed to understand ligand-protein interactions between the most potent compounds and COX II, Epidermal Growth Factor Receptor (EGFR), and Transforming Growth Factor beta II (TGF-βII). The docking scores were calculated in the range of −10.609–−6.705 kcal/mol for COX-II, −8.652–−7.743 kcal/mol for EGFR, and −10.708–−8.596 kcal/mol for TGF-βII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号