首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The origin of birds and powered flight is a classic major evolutionary transition. Research on their origin often focuses on the evolution of the wing with trends of forelimb elongation traced back through many nonavian maniraptoran dinosaurs. We present evidence that the relative forelimb elongation within avian antecedents is primarily due to allometry and is instead driven by a reduction in body size. Once body size is factored out, there is no trend of increasing forelimb length until the origin of birds. We report that early birds and nonavian theropods have significantly different scaling relationships within the forelimb and hindlimb skeleton. Ancestral forelimb and hindlimb allometric scaling to body size is rapidly decoupled at the origin of birds, when wings significantly elongate, by evolving a positive allometric relationship with body size from an ancestrally negative allometric pattern and legs significantly shorten by keeping a similar, near isometric relationship but with a reduced intercept. These results have implications for the evolution of powered flight and early diversification of birds. They suggest that their limb lengths first had to be dissociated from general body size scaling before expanding to the wide range of fore and hindlimb shapes and sizes present in today's birds.  相似文献   

2.
Birds are the most diverse living tetrapod group and are a model of large-scale adaptive radiation. Neontological studies suggest a radiation within the avian crown group, long after the origin of flight. However, deep time patterns of bird evolution remain obscure because only limited fossil data have been considered. We analyse cladogenesis and limb evolution on the entire tree of Mesozoic theropods, documenting the dinosaur–bird transition and immediate origins of powered flight. Mesozoic birds inherited constraints on forelimb evolution from non-flying ancestors, and species diversification rates did not accelerate in the earliest flying taxa. However, Early Cretaceous short-tailed birds exhibit both phenotypic release of the hindlimb and increased diversification rates, unparalleled in magnitude at any other time in the first 155 Myr of theropod evolution. Thus, a Cretaceous adaptive radiation of stem-group birds was enabled by restructuring of the terrestrial locomotor module, which represents a key innovation. Our results suggest two phases of radiation in Avialae: with the Cretaceous diversification overwritten by extinctions of stem-group birds at the Cretaceous–Palaeogene boundary, and subsequent diversification of the crown group. Our findings illustrate the importance of fossil data for understanding the macroevolutionary processes generating modern biodiversity.  相似文献   

3.
Using an inverse dynamics biomechanical analysis that was previously validated for extant bipeds, I calculated the minimum amount of actively contracting hindlimb extensor muscle that would have been needed for rapid bipedal running in several extinct dinosaur taxa. I analyzed models of nine theropod dinosaurs (including birds) covering over five orders of magnitude in size. My results uphold previous findings that large theropods such as Tyrannosaurus could not run very quickly, whereas smaller theropods (including some extinct birds) were adept runners. Furthermore, my results strengthen the contention that many nonavian theropods, especially larger individuals, used fairly upright limb orientations, which would have reduced required muscular force, and hence muscle mass. Additional sensitivity analysis of muscle fascicle lengths, moment arms, and limb orientation supports these conclusions and points out directions for future research on the musculoskeletal limits on running ability. Although ankle extensor muscle support is shown to have been important for all taxa, the ability of hip extensor muscles to support the body appears to be a crucial limit for running capacity in larger taxa. I discuss what speeds were possible for different theropod dinosaurs, and how running ability evolved in an inverse relationship to body size in archosaurs.  相似文献   

4.
The origin of birds from non-avian theropod dinosaurs is one of the greatest transitions in evolution. Shortly after diverging from other theropods in the Late Jurassic, Mesozoic birds diversified into two major clades—the Enantiornithes and Ornithuromorpha—acquiring many features previously considered unique to the crown group along the way. Here, we present a comparative phylogenetic study of the patterns and modes of Mesozoic bird skeletal morphology and limb proportions. Our results show that the major Mesozoic avian groups are distinctive in discrete character space, but constrained in a morphospace defined by limb proportions. The Enantiornithines, despite being the most speciose group of Mesozoic birds, are much less morphologically disparate than their sister clade, the Ornithuromorpha—the clade that gave rise to living birds, showing disparity and diversity were decoupled in avian history. This relatively low disparity suggests that diversification of enantiornithines was characterized in exhausting fine morphologies, whereas ornithuromorphs continuously explored a broader array of morphologies and ecological opportunities. We suggest this clade-specific evolutionary versatility contributed to their sole survival of the end-Cretaceous mass extinction.  相似文献   

5.
The furcula is a structure formed by the midline fusion of the clavicles. This is the element which is unique to theropods and is important for understanding the link between birds and other theropods. New specimens from basal theropods suggest that the furcula appeared very early in theropod history. We review furcula development, function, and morphology, as well as the anatomical terminology applied to it. Furcular morphology is highly variable in crown‐group avians but is rather conserved among nonavian theropods. Here we review, or describe for the first time, the furculae in many nonavian theropods. Furculae occur in nearly all major clades of theropods, as shown by new theropod specimens from the Early Cretaceous of China and a close inspection of previously collected specimens. Informative phylogenetic characters pertaining to the furcula occur throughout Theropoda, though care should betake to consider taphonomic effects when describing furcular morphology. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Theropod forelimb design and evolution   总被引:4,自引:1,他引:3  
We examined the relationship between forelimb design and function across the 230-million-year history of theropod evolution. Forelimb disparity was assessed by plotting the relative contributions of the three main limb elements on a ternary diagram. Theropods were divided into five functional groups: predatory, reduced, flying, wing-propelled diving, and flighdess. Forelimbs which maintained their primitive function, predation, are similarly proportioned, but non-avian theropods with highly reduced forelimbs have relatively longer humeri. Despite the dramatically different forces imparted by the evolution of flight, forelimb proportions of basal birds are only slighdy different from those of their non-avian relatives. An increase in disparity accompanied the subsequent radiation of birds. Each transition to flightlessness has been accompanied by an increase in relative humeral length, which results from relatively short distal limb elements. We introduce theoretical predictions based on five biomechanical and developmental factors that may have influenced the evolution of theropod limb proportions.  相似文献   

7.
We examine the relationships between primary feather length (f(prim)) and total arm length (ta) (sum of humerus, ulna and manus lengths) in Mesozoic fossil birds to address one aspect of avian wing shape evolution. Analyses show that there are significant differences in the composition of the wing between the known lineages of basal birds and that mean f(prim) (relative to ta length) is significantly shorter in Archaeopteryx and enantiornithines than it is in Confuciusornithidae and in living birds. Based on outgroup comparisons with nonavian theropods that preserve forelimb primary feathers, we show that the possession of a relatively shorter f(prim) (relative to ta length) must be the primitive condition for Aves. There is also a clear phylogenetic trend in relative primary feather length throughout bird evolution: our analyses demonstrate that the f(prim)/ta ratio increases among successive lineages of Mesozoic birds towards the crown of the tree ('modern birds'; Neornithes). Variance in this ratio also coincides with the enormous evolutionary radiation at the base of Neornithes. Because the f(prim)/ta ratio is linked to flight mode and performance in living birds, further comparisons of wing proportions among Mesozoic avians will prove informative and certainly imply that the aerial locomotion of the Early Cretaceous Confuciusornis was very different to other extinct and living birds.  相似文献   

8.
Shared behavioural, morphological and physiological characteristics are indicative of the evolution of extant birds from nonavian maniraptoran dinosaurs. One such shared character is the presence of uncinate processes and respiratory structures in extant birds. Recent research has suggested a respiratory role for these processes found in oviraptorid and dromaeosaurid dinosaurs. By measuring the geometry of fossil rib cage morphology, we demonstrate that the mechanical advantage, conferred by uncinate processes, for movements of the ribs in the oviraptorid theropod dinosaur, Citipati osmolskae, basal avialan species Zhongjianornis yangi, Confuciusornis sanctus and the more derived ornithurine Yixianornis grabaui, is of the same magnitude as found in extant birds. These skeletal characteristics provide further evidence of a flow-through respiratory system in nonavian theropod dinosaurs and basal avialans, and indicate that uncinate processes are a key adaptation facilitating the ventilation of a lung air sac system that diverged earlier than extant birds.  相似文献   

9.
Theropod Locomotion   总被引:1,自引:0,他引:1  
Theropod (carnivorous) dinosaurs spanned a range from chicken-sizedto elephant-sized animals. The primary mode of locomotion inthese dinosaurs was fairly conservative: Theropods were erect,digitigrade, striding bipeds. Even so, during theropod evolutionthere were changes in the hip, tail, and hindlimb that undoubtedlyaffected the way these dinosaurs walked and ran, a trend thatreached its extreme in the evolution of birds. Some derivednon-avian theropods developed hindlimb proportions that suggesta greater degree of cursoriality than in more primitive groups.Despite this, fossilized trackways provide no evidence for changesin stride lengths of early as opposed to later non-avian theropods.However, these dinosaurs did take relatively longer strides—atleast compared with footprint length—than bipedal ornithischiandinosaurs or ground birds. Judging from trackway evidence, non-aviantheropods usually walked, and seldom used faster gaits. Thelargest theropods were probably not as fleet as their smallerrelatives.  相似文献   

10.
《Annales de Paléontologie》2019,105(3):201-215
Several non-avian theropod dinosaurs, as well as some Mesozoic birds, have been reported from Southeast Asia. The fossils are dominantly found in northeastern Thailand, however, one bizarre theropod has been described from Laos, one theropod has been reported from Malaysia, and some avian and non-avian theropods have been recently reported from Myanmar. The temporal distribution of Southeast Asian theropods ranges from the Late Jurassic to the mid-Cretaceous. All non-avian theropod faunas from Southeast Asia consist of non-maniraptoran tetanurans. They show similarity to Chinese plus Japanese theropods during the Early Cretaceous in broad systematic terms. During this time, megaraptorans can be found only in Japan, Australia, Brazil, and possibly Thailand, whereas tyrannosauroids can be found in China, Europe, possibly Brazil and Australia. Spinosaurids, carcharodontosaurians, and some coelurosaurs such as ornithomimosaurs were almost cosmopolitan. Metriacanthosaurids, on the other hand, were endemic to Europe and Asia including China and Thailand during the Middle to Late Jurassic.  相似文献   

11.
The evolution of avian flight can be interpreted by analyzing the sequence of modifications of the primitive tetrapod locomotor system through time. Herein, we introduce the term “locomotor module” to identify anatomical subregions of the musculoskeletal system that are highly integrated and act as functional units during locomotion. The first tetrapods, which employed lateral undulations of the entire body and appendages, had one large locomotor module. Basal dinosaurs and theropods were bipedal and possessed a smaller locomotor module consisting of the hind limb and tail. Bird flight evolved as the superimposition of a second (aerial) locomotor capability onto the ancestral (terrestrial) theropod body plan. Although the origin of the wing module was the primary innovation, alterations in the terrestrial system were also significant. We propose that the primitive theropod locomotor module was functionally and anatomically subdivided into separate pelvic and caudal locomotor modules. This decoupling freed the tail to attain a new and intimate affiliation with the forelimb during flight, a configuration unique to birds. Thus, the evolution of flight can be viewed as the origin and novel association of locomotor modules. Differential elaboration of these modules in various lineages has produced the diverse locomotor abilities of modern birds.  相似文献   

12.
The hypothesis of the direct origin of birds from theropod dinosaurs has recently become widespread. Direct sisterly relationships between theropods and birds were assumed in the basis of random and formal synapomorphies, such as the number of caudal vertebrae, relative length of the humerus, and flattening of the dorsal margin of the pubis. In essence, this hypothesis is supported by the characters of theropods and birds, such as the presence of feathering, furcula, uncinate processes of ribs, pygostyle, double-condyled dorsal joint of the quadrate, and posteriorly turned pubis, which are recognized as homologies. Until recently, these characters have been regarded as avian apomorphies; however, they are presently known in various coelurosaurian groups. At the same time, they occur in various combinations in the Dromaeosauridae, Troodontidae, Oviraptoridae, Therizinosauridae, and Tyrannosauridae. None of the theropod groups possesses the entire set of these characters. This suggests that theropods and birds acquired them in parallel. Theropod dinosaurs and Sauriurae (Archaeornithes and Enantiornithes) show a number of important system synapomorphies, which indicate that they are closely related. Ornithurine birds lack such synapomorphies; however, their monophyly is supported by a large number of diagnostic characters. The hypothesis of independent origin of Sauriurae and Ornithurae is substantiated; the former are considered to have evolved from theropods in the Jurassic, while the latter deviated from a basal archosauromorph group in the Late Triassic. The hypothesis that birds existed in the Early Mesozoic is supported by the findings of small avian footprints in the Upper Triassic and Lower Jurassic of different continents.  相似文献   

13.
PHIL SENTER 《Palaeontology》2006,49(5):1029-1034
Abstract:  Ornitholestes hermanni is a Late Jurassic theropod dinosaur from North America. This kinematic study of Ornitholestes uses manual manipulations of forelimb casts to determine range of motion. The manual phalanges of the O. hermanni holotype, previously unidentified, are here identified as phalanges I-1, I-2 (ungual), II-2 and II-3 (ungual). At all represented manual joints, hyperextensibility is small or absent, whereas flexion is strong, as in most other theropods. The elbow can be strongly flexed beyond a right angle. When data on range of forelimb motion in Ornitholestes are added to such data from other theropods, high elbow flexion is present in maniraptoriform coelurosaurs but not in basal theropods. Forelimb functions requiring strong elbow flexion (such as holding objects to the chest, or tucking the forearms in for their protection or to reduce wind resistance or heat loss) were therefore available to maniraptoriform coelurosaurs but not to basal theropods.  相似文献   

14.
During mammalian evolution, fore- and hindlimbs underwent a fundamental reorganization in the transformation from the sprawled to the parasagittal condition. This caused a dissociation between serial and functional homologues. The mobilized scapula functions as the new proximal forelimb element and is functionally analogous to the femur of the hindlimb. Tarsus and metatarsus built a new functional hindlimb element that is functionally analogous to the forearm of the forelimb. Morphological covariation between serially homologous fore- and hindlimb elements can conflict with biomechanical demands when certain intralimb proportions are required for the postural stability of motion. The limb proportions of 189 mammalian species were examined to test whether intralimb proportions are governed by a general principle that corresponds to biomechanical predictions. Morphological covariation between functionally analogous and serially homologous fore- and hindlimb elements was tested by a correlation analysis. A clear relationship exists between the proportions of the first and the third elements of each limb, while the middle element is less involved in alterations of intralimb proportions. Hindlimb proportions are largely uniform across mammals and correspond to biomechanical predictions regarding postural stability. The greater variability in forelimb proportion is likely be the expression of various adaptations but might results also from constraints due to the shared developmental programs with the hindlimb.  相似文献   

15.
Abstract:  A phylogenetic analysis of reproductive and oological (egg) traits of theropod taxa allows determination of the sequence in which these traits evolved in Theropoda. Our results indicate that several avian reproductive traits, such as adults sitting on eggs, asymmetrical eggs, unornamented eggshell surface, and complex eggshell ultrastructure, were already present in non-avian maniraptorans, and could have evolved in more basal theropods. In addition, non-avian maniraptorans laid two eggs at a time and orientated their eggs subvertically or subhorizontally in their nests, features not retained by neornithine birds. Based on our cladistic analysis it is also possible to infer the phylogenetic affinity of ootaxa of unknown parentage: Protoceratopsidovum was laid by a maniraptoran more derived than oviraptorids, and Parvoolithus probably belonged to a Cretaceous bird. Finally, our analysis reveals that many of the high-level categories of egg parataxonomy (morphotypes and basic types) are unnatural groupings (i.e. non-monophyletic). We recommend that these high-level categories be abandoned because oofamilies are sufficient to categorize egg taxa.  相似文献   

16.
重新研究了产于辽西义县组下部的带羽毛小型兽脚类恐龙长掌义县龙(Yixianosaurus longimanus) 的不完整骨架。系统发育分析得出义县龙属于手盗龙类基干类群,与阿尔瓦雷斯龙( Alvarezsaurus) 、镰刀龙类、除阿尔瓦雷斯龙之外的其他阿尔瓦雷斯龙类以及由窃蛋龙类和副鸟龙类等进步手盗龙类组成的一个类群形成多分支状态。义县龙既有原始特征,如臂指数低,第三指强壮; 也有进步特征,如乌喙骨近长方形,表明在手盗龙类当中,前肢演化呈现出比以前认为的更加复杂的镶嵌现象。强壮的前肢骨骼以及厚重、弯曲而尖利的手爪表明义县龙是捕食者,尽管这一认识尚待该属种更完整化石的发现来证实。义县龙在手盗龙类系统发育中的基部位置暗示,在虚骨龙类演化的这一节点上,前肢形态的变异范围更大。在许多方面,义县龙强壮的前肢和过度增大的弯曲爪子与长臂猎龙(Tanycolagreus) 和虚骨龙(Coelurus) 的相似,可能代表了这些属种与基干镰刀龙类和窃蛋龙类之间的过渡形态。义县龙保存了大的片状体羽,表明这些皮肤衍生物在虚骨龙类中的起源可能比以前报道的要早。最后,强壮而伸长的前肢暗示了其生态功能与根据同一区域的其他小型兽脚类推测的不同,支持了热河生物群的小型非鸟兽脚类中存在小生境划分的观点。  相似文献   

17.
Allosaurus is one of the most common Mesozoic theropod dinosaurs. We present a histological analysis to assess its growth strategy and ontogenetic limb bone scaling. Based on an ontogenetic series of humeral, ulnar, femoral, and tibial sections of fibrolamellar bone, we estimate the ages of the largest individuals in the sample to be between 13-19 years. Growth curve reconstruction suggests that maximum growth occurred at 15 years, when body mass increased 148 kg/year. Based on larger bones of Allosaurus, we estimate an upper age limit of between 22-28 years of age, which is similar to preliminary data for other large theropods. Both Model I and Model II regression analyses suggest that relative to the length of the femur, the lengths of the humerus, ulna, and tibia increase in length more slowly than isometry predicts. That pattern of limb scaling in Allosaurus is similar to those in other large theropods such as the tyrannosaurids. Phylogenetic optimization suggests that large theropods independently evolved reduced humeral, ulnar, and tibial lengths by a phyletic reduction in longitudinal growth relative to the femur.  相似文献   

18.
Dromaeosauridae is the sister taxon of the Avialae; thus, an investigation of dromaeosaur shoulder girdle musculature and forelimb function provides substantial information regarding changes in the size and performance of the theropod shoulder girdle musculature leading to avian powered flight. Twenty-two shoulder girdle muscles were reconstructed for the dromaeosaurid shoulder apparatus, based on phylogenetic inference, which involves the comparison of lepidosaurian, crocodilian and avian musculature, and extrapolatory inference, which involves a secondary comparison with functional analogues of theropods. In addition to these comparative methodologies, osteological correlates of shoulder musculature preserved in eumaniraptorans are identified, and comparisons with those of extant archosaurs allow these muscles to be definitively inferred in dromaeosaurids. This muscle reconstruction provides a foundation for subsequent investigation of differences in muscular attachment and function, based on scapulocoracoid morphology, across the theropod lineage leading to birds.  © 2006 The Linnean Society of London, Zoological Journal of the Linnean Society , 2006, 146 , 301–344.  相似文献   

19.
ENRIC VICENS 《Palaeontology》2012,55(2):325-339
Abstract: A new type of small, ovoid dinosaur egg, Sankofa pyrenaica oogen. nov. oosp. nov., with a prismatic type eggshell is described from upper Cretaceous (upper Campanian–Maastrichtian) deposits of the Montsec area, South Pyrenean Central Unit, Lleida, Catalonia, Spain. This egg type was sub‐vertically laid in only two rich monospecific sites of a single stratigraphic layer from coastal deposits of the Aren Formation, interpreted as an emerged beach ridge of a barrier island – lagoon depositional system. The size and shape of these eggs with their asymmetric poles are roughly similar to modern hen eggs, which is unusual in the Cretaceous fossil egg record. Its phylogenetic position clusters with bird and Troodontid eggs. A morphospace analysis of egg shapes shows the similarity of the new egg to a Campanian fossil bird egg from Argentina, both being intermediate between modern‐bird eggs and extinct nonavian theropod eggs. However, the eggshell microstructure of Sankofa pyrenaica differs from that of bird eggs in its incipient squamatic texture. It has a peculiar pattern of interlocking small crystals in the middle of the palisade layer, instead of the thick squamatic structure commonly present in modern avian eggshells. This new egg type is attributed to a small theropod, probably with a single oviduct like birds and whose mosaic distribution of features is a combination between that of birds and nonavian theropods. This enhances the arguments supporting the close phylogenetic relationships between both groups.  相似文献   

20.
Despite the wide range of locomotor adaptations in birds, little detailed attention has been given to the relationships between the quantitative structural characteristics of avian limb bones and bird behaviour. Possible differences in forelimb relative to hindlimb strength across species have been especially neglected. We generated cross‐sectional, geometric data from peripheral quantitative computed tomography scans of the humerus and femur of 127 avian skeletons, representing 15 species of extant birds in 13 families. The sample includes terrestrial runners, arboreal perchers, hindlimb‐propelled divers, forelimb‐propelled divers and dynamic soarers. The hindlimb‐propelled diving class includes a recently flightless island form. Our results demonstrate that locomotor dynamics can be differentiated in most cases based on cross‐sectional properties, and that structural proportions are often more informative than bone length proportions for determining behaviour and locomotion. Recently flightless forms, for example, are more easily distinguished using structural ratios than using length ratios. A proper phylogenetic context is important for correctly interpreting structural characteristics, especially for recently flightless forms. Some of the most extreme adaptations to mechanical loading are seen in aquatic forms. Penguins have forelimbs adapted to very high loads. Aquatic species differ from non‐aquatic species on the basis of relative cortical thickness. The combination of bone structural strength and relative cortical area of the humerus successfully differentiates all of our locomotor groups. The methods used in this study are highly applicable to fossil taxa, for which morphology is known but behaviour is not. The use of bone structural characteristics is particularly useful in palaeontology not only because it generates strong signals for many locomotor guilds, but also because analysing such traits does not require knowledge of body mass, which can be difficult to estimate reliably for fossil taxa. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 153 , 601–624.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号