首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The two cysteine residues (Cys-35 and Cys-84) of bovine cardiac troponin C (cTnC) were labeled with the pyrene-containing SH-reactive compounds, N-(1-pyrene) maleimide, and N-(1-pyrene)iodoacetamide in order to study conformational changes in the regulatory domain of cTnC associated with cation binding and cross-bridge attachment. The labeled cTnC exhibits the characteristic fluorescence spectrum of pyrene with two sharp monomer fluorescence peaks and one broad excimer fluorescence peak. The excimer fluorescence results from dimerization of adjacent pyrene groups. With metal binding (Mg2+ or Ca2+) to the high affinity sites of cTnC (sites III and IV), there is a small decrease in monomer fluorescence but no effect on excimer fluorescence. In contrast, Ca2+ binding to the low affinity regulatory (site II) site elicits an increase in monomer fluorescence and a reduction in excimer fluorescence. These results can be accounted for by assuming that the pyrene attached to Cys-84 is drawn into a hydrophobic pocket formed by the binding of Ca2+ to site II. When the labeled cTnC is incorporated into the troponin complex or substituted into cardiac myofibrils the monomer fluorescence is enhanced while the excimer fluorescence is reduced. This suggests that the association with other regulatory components in the thin filament might influence the proximity (or mobility) of the two pyrene groups in a way similar to that of Ca2+ binding. With the binding of Ca2+ to site II the excimer fluorescence is further reduced while the monomer fluorescence is not changed significantly. In myofibrils, cross-bridge detachment (5 mM MgATP, pCa 8.0) causes a reduction in monomer fluorescence but has no effect on excimer fluorescence. However, saturation of the cTnC with Ca2+ reduces excimer fluorescence but causes no further change in monomer fluorescence. Thus, the pyrene fluorescence spectra define the different conformations of cTnC associated with weak-binding, cycling, and rigor cross-bridges.  相似文献   

2.
The time-resolved extrinsic fluorescence of rabbit skeletal troponin C was studied with the protein labeled at Cys-98 with N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine. Both the intensity and anisotropy decays followed a biexponential decay law, regardless of the ionic condition, pH, viscosity or temperature. The lifetimes and their fractional amplitudes were insensitive to Mg2+, and the lifetimes were also insensitive to Ca2+. In response to Ca2+ binding to all four sites, the fractional amplitude (alpha 1) associated with the short lifetime (tau 1) decreased by a factor of two, thus increasing the ratio of the two amplitudes alpha 2/alpha 1 from 1.6 to 4.3. These amplitude changes suggest the existence of two conformational states of TnC-IAEDANS, with the conformation associated with the long-decay component (tau 2) being promoted by saturation of the two Ca(2+)-specific sites. At pH 5.2 the ratio alpha 2/alpha 1 for the apo-protein was 3.5 indicating different relative populations of the two decay components when compared with pH 7.2. In the presence of Ca2+ at the lower pH, alpha 2/alpha 1 decreased to 2.1, suggesting a shift of the conformations in favor of the short-decay component. Thus Ca2+ elicited different conformational changes in TnC at the two pH values. The recovered anisotropies suggest that there were fast molecular motions that were not resolved in the present experiments, and some of these motions were sensitive to Ca2+ binding to the specific sites. These results support the notion of communication between the N-domain and the C-terminal end of the central helix of troponin C.  相似文献   

3.
H C Cheung  C K Wang  N A Malik 《Biochemistry》1987,26(18):5904-5907
We have determined the free energy of formation of the binary complexes formed between skeletal troponin C and troponin T (TnC.TnT) and between troponin T and troponin I (TnT.TnI). This was accomplished by using TnC fluorescently modified at Cys-98 with N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine for the first complex and TnI labeled at Cys-133 with the same probe for the other complex. The free energy of the ternary complex formed between troponin C and the binary complex TnT.TnI [TnC.(TnT.TnI)] was also measured by monitoring the emission of 5-(iodoacetamido)eosin attached to Cys-133 of the troponin I in TnT.TnI. The free energies were -9.0 kcal.mol-1 for TnC.TnT, -9.2 kcal.mol-1 for TnT.TnI, and -8.7 kcal.mol-1 for TnC.(TnT.TnI). In the presence of Mg2+ the free energies of TnC.TnT and TnC.(TnT.TnI) were -10.3 and -10.9 kcal.mol-1, respectively; in the presence of Ca2+ the corresponding free energies were -10.6 and -13.5 kcal.mol-1. Mg2+ and Ca2+ had negligible effect on the free energy of TnT.TnI. From these results the free energies of the formation of troponin from the three subunits were found to be -16.8 kcal.mol-1, -18.9 kcal.mol-1, and -21.6 kcal.mol-1 in the presence of EGTA, Mg2+, and Ca2+, respectively. Most of the free energy decrease caused by Ca2+ binding to the Ca2+-specific sites is derived from stabilization of the TnI-TnC linkage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The goal of this study was to relate conformational changes in the N-terminal domain of chicken troponin I (TnI) to Ca2+ activation of the actin-myosin interaction. The two cysteine residues in this region (Cys48 and Cys64) were labeled with two sulfhydryl-reactive pyrene-containing fluorophores [N-(1-pyrene)maleimide, and N-(1-pyrene)iodoacetamide]. The labeled TnI showed a typical fluorescence spectrum: two sharp peaks of monomer fluorescence and a broad peak of excimer fluorescence arising from the formation of an excited dimer (excimer). Results obtained show that forming a binary complex of labeled TnI with skeletal TnC (sTnC) in the absence of Ca2+ decreases the excimer fluorescence, indicating a separation of the two residues. This reduction in excimer fluorescence does not occur when labeled TnI is complexed with cardiac TnC (cTnC). The latter causes only partial activation of the Ca2+-dependent myofibrillar ATPase. The binding of Ca2+ to the two N-terminal sites of sTnC causes a significant decrease in excimer fluorescence and an increase in monomer fluorescence in complexes of labeled TnI with skeletal TnC or TnC/TnT, while Ca2+ binding to site II of cTnC only causes an increase in monomer fluorescence but no change in excimer fluorescence. Thus a conformational change in the N-terminal region of TnI may be necessary for full activation of muscle contraction.  相似文献   

5.
Troponin I (TnI) from rabbit white skeletal muscle was labeled at cysteines 48 and 64 with the fluorescent reagent N-(1-pyrene)maleimide. The fluorescence spectra of pyrene-labeled TnI (pyr-TnI) exhibit peaks characteristic of pyrene in its monomeric form and an additional peak resulting from formation of excited dimers (excimers), indicating that the labeled cysteines are close together. Formation of a pyr-TnI-TnC complex in the absence of Ca2+ has little effect on the spectrum, but when Ca2+ is bound to the low-affinity sites of TnC there is a substantial decrease in excimer and a corresponding increase in monomer fluorescence. The involvement of the low-affinity sites in the Ca2+-induced effect is consistent with the fact that Mg2+ has no effect on pyrene fluorescence. On rapid mixing of the pyr-TnI-TnC complex with Ca2+ in a stopped-flow apparatus, most of the excimer decrease is complete within the instrumental dead time, indicating a rate constant k greater than 350 s-1, which is comparable to that of the conformational change in TnC resulting from Ca2+ binding to the low-affinity sites. Rapid mixing of the Mg2-TnC-pyr-TnI complex with Ca2+ yields similar results, suggesting that the type of metal ion present at the high-affinity sites has little, if any, effect on the probe. It has been suggested previously that Cys 48 and 64 are located in a TnT-binding region of TnI (Chong P.C.S. and Hodges, R.S. (1982) J. Biol. Chem. 255, 3757). Our results suggest that a Ca2+-induced structural change in the TnI-binding region of TnC could be transmitted to TnT by affecting the TnT-binding region of TnI as part of the chain of events in the regulation of muscle contraction.  相似文献   

6.
The Ca2+ binding component (TnC) of troponin has been selectively labeled with either a spin label, N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl) iodoacetamide, or with a fluorescent probe, S-mercuric-N-dansyl cysteine, presumably at its single cysteine residue (Cys-98) in order to probe the interactions of TnC with divalent metals and with other subunits of troponin. The modified protein has the same Ca2+ binding properties as native TnC (Potter, J. D., and Gergely, J. (1975) J. Biol. Chem. 250, 4628), viz. two Ca2+ binding sites at which Mg2+ appears to compete (Ca2+-Mg2+ sites, KCa = 2 X 10(7) M-1) and two sites at which Mg2+ does not compete (Ca2+-specific sites, KCa = 2 X 10(5) M-1). Either Ca2+ or Mg2+ alters the ESR spectrum of spin-labeled TnC in a manner that indicates a decrease in the mobility of the label, Ca2+ having a slightly greater effect. In systems containing both Ca2+ and Mg2+ the mobility of the spin label is identical with that in systems containing Ca2+ alone. The binding constants for Ca2+ and Mg2+ deduced from ESR spectral changes are 10(7) and 10(3) M-1, respectively, and the apparent affinity for Ca2+ decreases by about an order of magnitude on adding 2 mM Mg2+. Thus, the ESR spectral change is associated with binding of Ca2+ to one or both of the Ca2+-Mg2+ sites. Addition of Ca2+ to the binary complexes of spin-labeled TnC with either troponin T (TnT) or troponin I (TnI) produces greater reduction in the mobility of the spin label than in the case of spin-labeled TnC alone, and in the case of the complex with TnI the affinity for Ca2+ is increased by an order of magnitude. The fluorescence of dansyl (5-dimethylaminonaphthalene-1-sulfonyl)-labeled TnC is enhanced by Ca2+ binding to both high and low affinity sites with apparent binding constants of 2.6 X 10(7) M-1 and 2.9 X 10(5) M-1, respectively, calculated from the transition midpoints. The presence of 2 mM Mg2+, which produces no effect on dansyl fluorescence itself, in contrast to its effect on the spin label, shifts the high affinity constant to 2 X 10(6) M-1. Spectral changes produced by Ca2+ binding to the TnC-TnI complex furnish evidence that the affinity of TnC for Ca2+ is increased in the complex. The reactivity of Cys-98 to the labels and to 5,5'-dithiobis(2-nitrobenzoic acid) (Nbs2) is decreased by Ca2+ or Mg2+ both with native TnC and in 6 M urea. The reaction rate between Cys-98 and Nbs2 decreases to one-half the maximal value at a Ca2+ concentration that suggests binding to the Ca2+-Mg2+ sites. Formation of a binary complex between TnI and TnC reduces the rate of reaction, and there is a further reduction by Ca2+. The effect of Ca2+ takes place at concentrations that are 1 order of magnitude lower than in the case of TnC alone. These results suggest that the Ca2+ binding site adjacent to Cys-98 is one of the Ca2+-Mg2+ binding sites.  相似文献   

7.
Residues 89-100 of troponin C (C89-100) and 96-116 of troponin I (I96-116) interact with each other in the troponin complex (Dalgarno, D.C., Grand, R.J.A., Levine, B.A. Moir, A., J.G., Scott, G.M.M., and Perry, S.V. (1982) FEBS Lett. 150, 54-58) and are necessary for the Ca2+ sensitivity of actomyosin ATPase (Syska, H., Wilkinson, J.M., Grand, R.J.A., and Perry, S.V. (1976) Biochem. J. 153, 375-387 and Grabarek, Z., Drabikowski, W., Leavis, P.C., Rosenfeld, S.S., and Gergely, J. (1981) J. Biol. Chem. 256, 13121-13127). We have studied Ca2+-induced changes in the region C89-100 by monitoring the fluorescence of troponin C (TnC) labeled at Cys-98 with 5-(iodoacetamidoethyl)aminonaphthalene-1-sulfonic acid. Equilibrium titration of the labeled TnC with Ca2+ indicates that the probe is sensitive to binding to both classes of sites in free TnC as well as in its complex with TnI. When Mg2 X TnC is mixed with Ca2+ in a stopped flow apparatus, there is a rapid fluorescence increase related to Ca2+ binding to the unoccupied sites I and II followed by a slower increase (k = 9.9 s-1) that represents Mg2+-Ca2+ exchange at sites III and IV. In the TnC X TnI complex, the fast phase is much larger and the Mg2+-Ca2+ exchange at sites III and IV results in a small decrease rather than an increase in the fluorescence of the probe. The possibility is discussed that the fast change in the environment of Cys-98 upon Ca2+ binding to sites I and II may be instrumental in triggering activation of the thin filament by facilitating a contact between C89-100 and I96-116.  相似文献   

8.
We have used resonance energy transfer to study the spatial relationship between Cys-98 of rabbit skeletal troponin C and Cys-133 of rabbit skeletal troponin I in the reconstituted ternary troponin complex. The donor was introduced by labeling either troponin C or troponin I with N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine, while the acceptor was introduced by labeling either protein with N-[4-(dimethylamino)phenyl-4'-azophenyl]maleimide. The extent of energy transfer was determined by measuring the quenching of the donor fluorescence decay. The results indicate first that the distance between these two sites is not fixed, suggesting that the protein regions involved possess considerable segmental flexibility. Second, the mean distance between the two sites is dependent on the metal-binding state of troponin C, being 39.1 A when none of the metal-binding sites are occupied, 41.0 A when Mg2+ ions bind at the high-affinity sites, and 35.5 A when Ca2+ ions bind to the low-affinity sites. Neither the magnitude of the distances nor the trend of change with metal ions differs greatly when the locations of the probes are switched or when steady-state fluorometry was used to determine the transfer efficiency. Since the low-affinity sites have been implicated as the physiological triggering sites, our findings suggest that one of the key events in Ca2+ activation of skeletal muscle contraction is a approximately 5-A decrease in the distance between the Cys-98 region of troponin C and the Cys-133 region of troponin I.  相似文献   

9.
Calmodulin from phosphorylase kinase (the delta subunit) was obtained as a homogeneous protein in a spectroscopically pure form, and its interaction with Ca2+ and Mg2+ was studied. 1. Determination of the binding of Ca2+ to calmodulin in a buffer of low ionic strength (0.001 M) show that it contained six binding sites for this divalent cation. 2. Employment of a buffer of high ionic strength (0.18 M) allowed two Ca2+/Mg2+-binding sites (KdCa2+ = 4.0 microM), which showed Ca2+ - Mg2+ competition (KdMg2+ = 0.75 mM), to be distinguished from two Ca2+-specific binding sites (KdCa2+ = 40 microM). The remaining two Ca2+-binding sites are not observed under these conditions and are probably Mg2+-specific binding sites. Thus, the binding sites on calmodulin are remarkably similar to those of the homologous Ca2+-binding protein, troponin C [Potter and Gergely (1975) J. Biol. Chem. 250, 4628, 4633]. 3. The conformational states of calmodulin are defined by Ca2+, Mg2+ and salt concentrations, which can be differentiated by their Ca2+ affinity and their relative tyrosine fluorescence intensity. In a buffer of high ionic strength, Mg2+ induces a conformation which enhances the apparent affinity for Ca2+. Addition of Ca2+ leads to an enhancement of the tyrosine fluorescence intensity, which remains enhanced even upon removal of Ca2+ by chelation with EGTA. Only additional chelation of Mg2+ with EDTA reduces the tyrosine fluorescence intensity. 4. Comparison of the Ca2+-binding parameters of phosphorylase kinase, which were previously determined under identical experimental conditions [Kilimann and Heilmeyer (1977) Eur. J. Biochem. 73, 191-197], with those reported here on calmodulin isolated from this enzyme, allows the conclusion that Ca2+ binding to the holoenzyme occurs by binding to the delta subunit exclusively. 5. Ca2+ binding and Ca2+ activation of phosphorylase kinase are compared and discussed in relation to the Ca2+ and Mg2+-induced conformation changes of calmodulin.  相似文献   

10.
Microcalorimetic titrations were carried out to measure the thermodynamic functions of bullfrog skeletal muscle troponin C (TnC) in the interaction with Ca2+ and Mg2+, at 25 degrees C and at pH 7.0. Enthalpy titration curves with Ca2+ were composed of three stages both in the presence and in the absence of Mg2+. The first (0-2 mol Ca2+/mol TnC) and the third (greater than 3 mol Ca2+/mol TnC) stages were exothermic and the second stage (2-3 mol Ca2+/mol TnC) was endothermic. Mg2+ affected the first stage to decrease the amount of heat produced but not the second and third stages. The enthalpy titration with Mg2+, in the absence of Ca2+, was slightly exothermic initially and then became endothermic beyond 2-3 mol Mg2+/mol TnC. Absorption of heat was observed throughout the additions of Mg2+ in the presence of 1 mM Ca2+. The results indicate that bullfrog TnC has two high-affinity Ca2+-Mg2+ sites, two low-affinity Ca2(+)-specific sites, and two or around two Mg2(+)-specific sites. Based on the enthalpy and entropy changes, the Ca2+ binding reactions of TnC were classified into three types, indicating thermodynamic variety in the binding sites of the molecule.  相似文献   

11.
We used frequency domain measurements of fluorescence resonance energy transfer to recover the distribution of distances between Met 25 and Cys 98 in rabbit skeletal troponin C. These residues were labeled with dansylaziridine as energy donor and 5-(iodoacetamido)eosin as acceptor and are located on the N- and C-terminal lobes of the two-domain protein, respectively. We developed a procedure to correct for the fraction of the sample that was incompletely labeled with the acceptor independent of chemical data. At pH 7.5 and in the presence of Mg2+, the mean distance was near 15 A with a half-width of the distribution of 15 A; when Mg2+ was replaced by Ca2+, the mean distance increased to 22 A with a decrease in the half-width by 4 A. Similar but less pronounced differences in the mean distance and half-width between samples containing Mg2+ and Ca2+ were also observed with troponin C complexed to troponin I. The results suggest that the conformation of troponin C is altered by Ca2+ binding to the Ca(2+)-specific sites and displacing bound Mg2+ at the Ca2+/Mg2+ sites. This alteration may play an important role in Ca2+ signaling in muscle. At pH 7.5, the anisotropy decays of the donor-labeled troponin C showed two components, with the long rotational correlation time (12 ns) reflecting the overall motion of the protein. When the pH was lowered from 7.5 to 5.2, the mean distribution distance of apotroponin C increased from 22 to 32 A and the half-width decreased by a factor of 2 from 13 to 7 A. The long correlation time of apotroponin C increased to 19 ns at the acidic pH. These results are discussed in terms of a model in which skeletal troponin C is a dimer at low pH and enable comparison of the solution conformation of the protein at neutral pH with a crystal structure obtained at pH 5.2. While the conformation of the monomeric unit of troponin C dimer at pH 5.2 is extended and consistent with the crystal structure, the conformation at neutral pH is likely more compact than the crystal structure predicts.  相似文献   

12.
The fluorescence titration curve of skeletal muscle troponin containing TnI with 2-[4'-iodoacetamido)anilino)naphthalene-6-sulfonic acid-labeled Cys-48 and/or Cys-64 was composed of two transition curves. One transition occurred at the pCa region higher than 8.0, and the other between pCa 8.0 and 6.0. The transition at the lower pCa region had a midpoint of pCa 6.85, and the midpoint did not depend on Mg2+. The time course of the fluorescence change subsequent to the rapid pCa-jump of the solution was biphasic. The fast phase was due to the transition at the lower pCa region, and the rate constant of the process was characteristic of the conformational change of the protein induced by Ca2+ binding to the low affinity Ca2+-binding sites of TnC. The slow phase was from the transition at the higher pCa region, and its rate constant was characteristic of the conformational change of the protein induced by Ca2+ binding to the high affinity Ca2+-binding sites of TnC. Therefore we can conclude that the fluorescence probe bound to Cys-48 and/or Cys-64 of TnI detects the conformational change of the Tn complex induced by Ca2+ binding to both the low and high affinity Ca2+-binding sites of TnC. The fluorescence probe bound to Cys-133 of TnI or Met residues of TnT detected the conformational change of the Tn complex induced by Ca2+ binding to the low affinity Ca2+-binding sites of TnC.  相似文献   

13.
The sarcoplasmic calcium-binding protein (SCP) of the sandworm Nereis possesses three Ca2(+)-Mg2+ sites but no Ca2(+)-specific site. Binding of Mg2+, but not of Ca2+, displays a marked positive cooperativity. The apparent cooperativity of Ca2+ binding in the presence of Mg2+ results from the allostery in Mg2+ dissociation. Binding of the first Ca2+ or Mg2+ induces all the conformational change, monitored by Trp fluorescence. In displacement reactions the conformational changes occur in the step SCP.Mg3----SCP.Ca1Mg2. Stopped-flow experiments indicate that Trp fluorescence changes upon Ca2(+)-binding are instantaneous whereas Mg2(+)-binding involves a fast pre-equilibrium (Keq = 28 M-1), followed by two slow consecutive conformational changes with k1 = 13.5 s-1 and k2 = 0.21 s-1. The fluorescence change after dissociation of Ca2+ from SCP is monophasic with k = 0.02 s-1; that after Mg2+ dissociation is biphasic with k1 = 0.8 s-1 and k2 = 0.1 s-1. Trp life time measurements also indicate that Ca2(+)- and Mg2(+)-induced conformational changes are completely different. Displacement of bound Ca2+ by Mg2+ can be described by two consecutive reactions in which the first (without fluorescence change) corresponds to the dissociation of the last Ca2+ (k1 = 2.4 s-1) and the second (k2 = 0.45 s-1) to the final conformational change observed upon direct Mg2+ binding. Displacement of bound Mg2+ by Ca2+ follows the kinetic scheme of simple competition; the conformational rate constant approaches asymptotically (up to the limit of 129 s-1) the dissociation rate of Mg2+ as the concentration of Ca2+ increases. In summary, after fast dissociation of Ca2+ or Mg2+, Nereis SCP slowly converts to the metal-free configuration, but in Ca2(+)-Mg2+ exchange reactions, the conformational changes are nearly as fast as the cation dissociation reactions.  相似文献   

14.
The interactions between troponin subunits have been studied by intrinsic fluorescence and electron spin resonance (ESR) spectroscopy. The tryptophan fluorescence of troponin T (TnT) and troponin I (TnI) when complexed with troponin C (TnC) undergoes a Ca2+-dependent transition. The midpoints of such spectral changes occur at pCa approximately equal to 6, suggesting that the conformational change of TnT and TnI is induced by Ca2+ binding to the low-affinity sites of TnC. When TnC is labelled at Cys-98 with a maleimide spin probe (MSL), the spin signal is sensitive to Ca2+ binding to both the high and the low-affinity sites of TnC in the presence of either or both of the other two troponin subunits. Since Cys-98 is located in the vicinity of one of the high-affinity sites, these results are indicative of a long-range interaction between the two halves of the TnC molecule. Our earlier kinetic studies [Wang, C.-L. A., Leavis, P. C. & Gergely, J. (1983) J. Biol. Chem. 258, 9175-9177] have shown such interactions in TnC alone. Since the ESR spectral change associated with metal binding to the low-affinity sites is only observed when MSL-TnC is complexed with TnT and/or TnI, this long-range interaction within TnC appears to be mediated through the other troponin subunits.  相似文献   

15.
We determined the free energy of interaction between rabbit skeletal troponin I (TNI) and troponin C (TNC) at 10 degrees and 20 degrees C with fluorescently labeled proteins. The sulfhydryl probe 5-iodoacetamidoeosin (IAE) was attached to cysteine (Cys)-98 of TNC and to Cys-133 of TNI, and each of the labeled proteins was titrated with the other unlabeled protein. The association constant for formation of the complex between labeled TNC (TNC*) and TNI was 6.67 X 10(5) M-1 in 0.3 M KCl, and pH 7.5 at 20 degrees C. In the presence of bound Mg2+, the binding constant increased to 4.58 X 10(7) M-1 and in the presence of excess of Ca2+, the association constant was 5.58 X 10(9) M-1. Very similar association constants were obtained when labeled TNI was titrated with unlabeled TNC. The energetics of Ca2+ binding to TNC* and the complex TNI X TNC* were also determined at 20 degrees C. The two sets of results were used to separately determine the coupling free energy for binding TNI and Mg2+, or Ca2+ to TNC. The results yielded a total coupling free energy of -5.4 kcal. This free energy appeared evenly partitioned into the two species: TNI X TNC(Mg)2 or TNI X TNC(Ca)2, and TNI X TNC(Ca)4. The first two species were each stabilized by -2.6 kcal, with respect to the Ca2+ free TNI X TNC complex, and TNI X TNC(Ca)4 was stabilized by -2.8 kcal, respect to TNI X TNC(Ca)2 or TNI X TNC(Mg)2. The coupling free energy was shown to produce cooperatively complexes formed between TNI and TNC in which the high affinity sites were initially saturated as a function of free Ca2+ to yield TNI X TNC(Ca)4. This saturation occurred in the free Ca2+ concentration range 10(-7) to 10(-5) M. The cooperative strengthening of the linkage between TNI and TNC induced by Ca2+ binding to the Ca2+-specific sites of TNC may have a direct relationship to activation of actomyosin ATPase. The nature of the forces involved in the Ca2+-induced strengthening of the complex is discussed.  相似文献   

16.
Glycerinated rabbit fast skeletal muscle fibers were chemically skinned with 1% Brij 35 and partially depleted of endogenous troponin C subunit (TnC) by exposure of the fibers to EDTA (Zot, H. G., and Potter, J. D. (1982) J. Biol. Chem. 257, 7678-7683). The TnC-depleted fibers exhibited a decrease in maximal tension that was mostly restored by readdition of TnC or by the addition of the fluorescent 5-dimethylaminonaphthalene-1-sulfonyl aziridine analogue, TnCDanz. TnCDanz is known to undergo an increase in fluorescence intensity when Ca2+ binds to the two low affinity Ca2+-specific regulatory sites of TnC. Steady-state fractional fluorescence and tension changes were measured simultaneously as a function of Ca2+. The Ca2+ sensitivity of the fluorescence curve was about 0.6 log unit greater than the tension curve. This difference in sensitivity could be explained if separate conformational states of TnC, brought about by Ca2+ binding to the Ca2+-specific sites, produce the fluorescence and tension changes. TnC-depleted fibers were also reconstituted with the fluorescent 2-[(4'-iodoacetamido)analino]naphthalene-6-sulfonic acid analogue, cardiac TnCIaans, which undergoes an increase in fluorescence intensity when Ca2+ binds to the single Ca2+- specific regulatory site. The steady-state fractional fluorescence and tension curves for fibers reconstituted with cardiac TnCIaans had nearly the same Ca2+ sensitivity. The steady-state fractional fluorescence of myofibrils reconstituted with TnCDanz was found to have a greater sensitivity to Ca2+ than the simultaneously measured ATPase. In all cases paired fractional fluorescence and activity curves tended to have parallel dependence on Ca2+. These procedures make it possible to study the Ca2+ binding properties of the Ca2+- specific sites in intact myofibrils and skinned fibers; the results presented suggest that the Ca2+ affinity of the Ca2+-specific sites of troponin are reduced in the thin filament compared to that of troponin in solution.  相似文献   

17.
Crayfish tail muscle troponin C (TnC) has been fractionated into its five components and the Ca2+-binding properties of the two major isoforms (alpha and gamma) determined by equilibrium dialysis. alpha-TnC contains one Ca2+-binding site with a binding constant of 1 x 10(6) M-1 and one Ca2+ site with a binding constant of 1 x 10(4) M-1. In the complex of alpha-TnC with troponin I (TnI) or with TnI and troponin T (TnT), both sites bind Ca2+ with a single affinity constant of 2-4 x 10(6) M-1. gamma-TnC contains two Ca2+-binding sites with a binding constant of 2 x 10(4) M-1. In the gamma-TnC.TnI and gamma-TnC.TnI.TnT complexes, the binding constant of one of the sites is increased to 4-5 x 10(6) M-1, while Ca2+ binding to the second site is hardly affected (KCa = 4-7 x 10(4) M-1). In the presence of 10 mM MgCl2, the two Ca2+-binding sites of both TnC isoforms exhibit a 2-3-fold lower affinity. Assuming competition between Ca2+ and Mg2+ for these sites, their binding constants for Mg2+ were 120-230 M-1. In the absence of Ca2+, however, alpha-TnC and gamma-TnC bind 4-5 mol of Mg2+/mol with a binding constant of 1 x 10(3) M-1. These results suggest that the effect of Mg2+ on Ca2+ binding at the two Ca2+ sites is noncompetitive, i.e. Mg2+ does not bind directly to these sites (Ca2+-specific sites). Since the formation of the complex of crayfish TnI with alpha-TnC or gamma-TnC increases significantly the affinity of one of their two Ca2+-specific sites, I conclude that the binding of Ca2+ to only one site (regulatory Ca2+-specific site) controls the Ca2+-dependent interaction between crayfish TnCs and TnI.  相似文献   

18.
The Ca2+-binding component of troponin (TnC) and its proteolytic fragments containing Ca2+-binding sites I-III (TH1) or sites III and IV (TR2C) have been labeled with the fluorescent probes dansylaziridine (DANZ) at methionine 25 or 5-(iodoacetamidoethyl)amino-naphthalene-1-sulfonic acid (AEDANS) at cysteine-98. These probes report binding of Ca2+ to the low and high affinity sites, respectively. Fluorescence changes as a function of [Ca2+] were measured for the free peptides, their complexes with troponin I + troponin T, and these complexes bound to actin-tropomyosin in the presence of Mg2+ and ATP with and without myosin. An apparent Hill coefficient of 1.0-1.1 has been obtained for the Ca2+-induced fluorescence changes in TnC, its fragments, and their ternary complexes regardless of the label used. When a ternary complex containing appropriately labeled TnC or its fragment is bound to the actin-tropomyosin complex, the Hill coefficient for the titration of the low affinity sites increases to 1.5-1.6 and further increases to greater than 2 in the presence of myosin. To interpret the apparent Hill coefficients, we used a model containing two binding sites and a single reporter of the conformational change. Hill coefficients between 1.0 and 1.2 can be obtained for the fluorescence change without true cooperativity in metal binding, depending on the mechanism of the fluorescence change; i.e. the contribution of the singly or doubly occupied species to the fluorescence change. A Hill coefficient between 1.2 and 2, however, always indicates cooperativity in binding independently of the mechanism. Thus, our finding that fluorescence titrations of Ca2+ binding to TnCDANZ bound to actin-tropomyosin exhibit a Hill coefficient of 1.5 in the absence of myosin and 2.4 in its presence indicates the existence of true positive cooperativity in metal binding to sites I and II. No cooperativity was observed for AEDANS-labeled complexes that reflect Ca2+-binding to the high affinity sites. Plots of the Ca2+ dependence of myosin ATPase activity activated by actin-tropomyosin in the presence of any of the troponin complexes used had apparent Hill coefficients of approximately 4. The higher value suggests cooperative interactions in the activation of ATPase beyond those involved in Ca2+-binding to the Ca2+-specific sites.  相似文献   

19.
The trigger Ca2+-binding sites in troponin C, those which initiate muscle contraction, are thought to be the first two of four potential sites (sites I-IV). In cardiac troponin C, the first Ca2+-binding site is inactive, and initiation of contraction in cardiac muscle appears to involve only the second site. To study this phenomenon and associated Ca2+-dependent protein conformational changes in cardiac troponin C, the cDNA for the chicken protein was incorporated into a bacterial expression plasmid to allow site-specific mutagenesis. Ca2+-binding site I was activated by deletion of Val-28 and conversion of amino acids 29-32 to those found at the first four positions in the active site I of fast skeletal troponin C. In a series of proteins, Ca2+-binding site II was inactivated by mutation of amino acids Asp-65, Asp-67, and Gly-70. All mutated proteins exhibited the predicted calcium-binding characteristics. The single mutation of converting Asp-65 to Ala was sufficient to inactivate site II. Ca2+-dependent conformational changes in the normal and mutated proteins were monitored by labeling with a sulfhydryl-specific fluorescent dye. Activation of Ca2+-binding site I or inactivation of site II, eliminated the large Ca2+-dependent increase in fluorescence seen in the wild type protein and there was, instead, a Ca2+-dependent decrease in fluorescence. All mutant proteins could associate with troponin I and troponin T to form a troponin complex. Activation of Ca2+-binding site I changed the characteristics of contraction in skinned slow skeletal muscle fibers such that the response to Ca2+ was more cooperative. Inactivation of Ca2+-binding site II abolished Ca2+-dependent contraction in skinned muscle fibers. The data provide a direct demonstration that Ca2+-binding site II in cardiac troponin C is essential for triggering muscle contraction and support the hypothesis that site I functions to modify the characteristics of contraction.  相似文献   

20.
The spectral properties of three tryptophan-substituted mutants of recombinant chicken troponin C are compared. Site-specific mutagenesis was used to introduce a tryptophan residue into the high-affinity (Ca2+/Mg2+) domain of troponin C at residue position 105, thereby creating the mutant phenylalanine-105 to tryptophan (F105W). The spectral properties of F105W and a double mutant, F29W/F105W, were compared with the mutant phenylalanine-29 to tryptophan (F29W). Since wild-type chicken troponin C does not naturally contain either tyrosine or tryptophan residues, the tryptophan substitutions behaved as site-specific reporters of metal ion binding and conformational change. The residues that occupy positions 29 and 105 are at homologous locations in low-affinity and high-affinity domains, preceding the first liganding residues of binding loops I and III, respectively. Mutant proteins were examined by a combination of absorbance and fluorescence methods. Calcium induced significant changes in the near-UV absorbance spectra, fluorescence emission spectra, and far-UV circular dichroism of all three mutant proteins. Magnesium induced significant changes in the spectral properties of only F105W and F29W/F105W proteins. Tryptophan substitutions allowed Ca(2+)-specific and Ca(2+)/Mg(2+) sites to be titrated independently of one another. Results indicate that there is no interaction between the two binding domains under conditions where troponin C is isolated from the troponin complex. Magnesium-induced changes in the environment of the tryptophan reporter at position 105 were significantly different from those induced by calcium. This suggests that calcium and magnesium differ in their influence on the conformation of the high-affinity, Ca(2+)/Mg(2+) sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号