首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Summary Glucose is actively absorbed in the intestine by the action of the Na+-dependent glucose transporter. Using an antibody against the rabbit intestinal Na+-dependent glucose transporter (SGLT1), we examined the localization of SGLT1 immunohistochemically along the rat digestive tract (oesophagus, stomach, duodenum, jejunum, ileum, colon and rectum). SGLT1 was detected in the small intestine (duodenum, jejunum and ileum), but not in the oesophagus, stomach, colon or rectum. SGLT1 was localized at the brush border of the absorptive epithelium cells in the small intestine. Electron microscopical examination showed that SGLT1 was localized at the apical plasma membrane of the absorptive epithelial cells. SGLT1 was not detected at the basolateral plasma membrane. Along the crypt-villus axis, all the absorptive epithelial cells in the villus were positive for SGLT1, whose amount increased from the bottom of the villus to its tip. On the other hand, cells in the crypts exhibited little or no staining for SGLT1. Goblet cells scattered throughout the intestinal epithelium were negative for SGLT1. These observations show that SGLT1 is specific to the apical plasma membrane of differentiated absorptive epithelial cells in the small intestine, and suggest that active uptake of glucose occurs mainly in the absorptive epithelial cells in the small intestine.  相似文献   

2.
Gut apical Na(+)-glucose cotransporter 1 (SGLT1) activity is high at the birth and during suckling, thus contributing substantially to neonatal glucose homeostasis. We hypothesize that neonates possess high SGLT1 maximal activity by expressing apical SGLT1 protein along the intestinal crypt-villus axis via unique control mechanisms. Kinetics of SGLT1 activity in apical membrane vesicles, prepared from epithelial cells sequentially isolated along the jejunal crypt-villus axis from neonatal piglets by the distended intestinal sac method, were measured. High levels of maximal SGLT1 uptake activity were shown to exist along the jejunal crypt-villus axis in the piglets. Real-time RT-PCR analyses showed that SGLT1 mRNA abundance was lower (P < 0.05) by 30-35% in crypt cells than in villus cells. There were no significant differences in SGLT1 protein abundances on the jejunal apical membrane among upper villus, middle villus, and crypt cells, consistent with the immunohistochemical staining pattern. Higher abundances (P < 0.05) of total eukaryotic initiation factor 4E (eIF4E) protein and eIE4E-binding protein 1 γ-isoform in contrast to a lower (P < 0.05) abundance of phosphorylated (Pi) eukaryotic elongation factor 2 (eEF2) protein and the eEF2-Pi to total eEF2 abundance ratio suggest higher global protein translational efficiency in the crypt cells than in the upper villus cells. In conclusion, neonates have high intestinal apical SGLT1 uptake activity by abundantly expressing SGLT1 protein in the epithelia and on the apical membrane along the entire crypt-villus axis in association with enhanced protein translational control mechanisms in the crypt cells.  相似文献   

3.
Peptide transporter-1 is a H+/peptide cotransporter responsible for the uptake of small peptides and peptide-like drugs, and is present in the absorptive epithelial cells of the villi in the small intestine (duodenum, jejunum, and ileum). It has been localized to the apical microvillous plasma membrane of the absorptive epithelial cells of the rat small intestine using the immunogold electron microscopic technique. Digital image analysis of the jejunum revealed that the transporter protein was abundant at the tip of the villus and that the amount decreased from the tip of the villus to its base. The effect of dietary administration of amino acids and starvation on the expression of PepT1 in the jejunum was examined by immunoblotting and image analysis of immunofluorescence. Starvation markedly increased the amount of peptide transporter present, whereas dietary administration of amino acids reduced it. The gradient of the transporter protein along the crypt-villus axis was maintained under either condition. These observations show that it is specific to the microvillous plasma membrane and that its expression is regulated by the nutritional condition.  相似文献   

4.
5.
6.
Abstract. The distribution of the mRNA encoding for villin, the major actin-binding protein of intestinal brush border, was studied during the differentiation of mouse intestinal epithelial cells and compared to the distribution of the protein. In situ hybridization using a cRNA clone specific for villin indicated that the distribution of the mRNA did not fully parallel that of the protein, although the overall labeling pattern for mRNA and protein along the crypt-villus axis was similar. While villin was present in equal amounts in all cells along the villi, villin-specific mRNA was mainly accumulated in the cells at the villus base, the area of the epithelium where terminal differentiation takes place and where the brush border is formed.  相似文献   

7.
Hamid A  Wani NA  Rana S  Vaiphei K  Mahmood A  Kaur J 《The FEBS journal》2007,274(24):6317-6328
Folate plays a critical role in maintaining normal metabolic, energy, differentiation and growth status of all mammalian cells. The intestinal folate uptake is tightly and diversely regulated, and disturbances in folate homeostasis are observed in alcoholism, attributable, in part, to intestinal malabsorption of folate. The aim of this study was to delineate the regulatory mechanisms of folate transport in intestinal absorptive epithelia in order to obtain insights into folate malabsorption in a rat model of alcoholism. The rats were fed 1 g.kg(-1) body weight of ethanol daily for 3 months. A reduced uptake of [(3)H]folic acid in intestinal brush border membrane was observed over the course of ethanol administration for 3 months. Folate transport exhibited saturable kinetics and the decreased intestinal brush border membrane folate transport in chronic alcoholism was associated with an increased K(m) value and a low V(max) value. Importantly, the lower intestinal [(3)H]folic acid uptake in ethanol-fed rats was observed in all cell fractions corresponding to villus tip, mid-villus and crypt base. RT-PCR analysis for reduced folate carrier, the major folate transporter, revealed that reduced folate carrier mRNA levels were decreased in jejunal tissue derived from ethanol-fed rats. Parallel changes were observed in reduced folate carrier protein levels in brush border membrane along the entire crypt-villus axis. In addition, immunohistochemical staining for reduced folate carrier protein showed that, in alcoholic conditions, deranged reduced folate carrier localization was observed along the entire crypt-villus axis, with a more prominent effect in differentiating crypt base stem cells. These changes in functional activity of the membrane transport system were not caused by a general loss of intestinal architecture, and hence can be attributed to the specific effect of ethanol ingestion on the folate transport system. The low folate uptake activity observed in ethanol-fed rats was found to be associated with decreased serum and red blood cell folate levels, which might explain the observed jejunal genomic hypomethylation. These findings offer possible mechanistic insights into folate malabsorption during alcoholism.  相似文献   

8.
The mechanisms by which the duodenal mucosa absorbs iron are unknown. Insorption into absorptive cells of luminal iron bound to transferrin via receptor-mediated endocytosis has been hypothesized, but transferrin and transferrin receptor are absent in apical microvillous brush borders of small bowel biopsies taken from fasted patients and normal volunteers. We hypothesized that a normal iron-containing diet might induce the transient appearance of transferrin and transferrin receptor in apical brush borders of small intestinal absorptive cells in a normal mouse that was provided iron-containing chow until the moment of sacrifice. Light and electron microscopic immunolocalization of transferrin and transferrin receptor in proximal small intestinal absorptive cells was limited to basolateral membranes and coated pits of cells predominantly in the crypts and basal regions of the villi. Transferrin and transferrin receptor were not detected in apical microvillous brush border membranes of these enterocytes. In parallel immunolocalization protocols designed to show the ability to immunodetect other antigens at these locations, maltase and proteoglycan were demonstrated in apical microvillous brush border membranes and in basolateral membranes, respectively, in absorptive cells of small intestinal villous tip, base, and crypt regions. Furthermore, transferrin and transferrin receptor were immunolocalized in hepatocyte sinusoidal microvillus membranes. We conclude that food does not induce the appearance of immunodetectable transferrin and transferrin receptor in the apical microvilli of small intestinal absorptive cells and, therefore, that these iron transport proteins are not involved in the apical microvillous membrane transport of luminal dietary iron.  相似文献   

9.
Numb is highly expressed throughout the crypt-villus axis of intestinal mucosa and functions as cell fate determinant and integrator of cell-to-cell adhesion. Increased paracellular permeability of intestinal epithelial cells is associated with the epithelial barrier dysfunction of inflammatory bowel diseases (IBDs). The apical junctional complex (AJC) assembly and myosin light chain (MLC) phosphorylation regulate adherens junctions (AJ) and tight junctions (TJ). We determined whether and how Numb modulate the paracellular permeability of intestinal epithelial cells. Caco-2 intestinal epithelial cells and their Numb-interfered counterparts were used in the study for physiological, morphological and biological analyses. Numb, expressed in intestinal epithelial cells and located at the plasma membrane of Caco-2 cells in a basolateral to apical distribution, increased in the intestinal epithelial cells with the formation of the intestinal epithelial barrier. Numb expression decreased and accumulated in the cytoplasm of intestinal epithelial cells in a DSS-induced colitis mouse model. Numb co-localized with E-cadherin, ZO-1 and Par3 at the plasma membrane and interacted with E-cadherin and Par3. Knockdown of Numb in Caco-2 cells altered the F-actin structure during the Ca2+ switch assay, enhanced TNFα-/INF-γ-induced intestinal epithelial barrier dysfunction and TJ destruction, and increased the Claudin-2 protein level. Immunofluorescence experiments revealed that NMIIA and F-actin co-localized at the cell surface of Caco-2 cells. Numb knockdown in Caco-2 cells increased F-actin contraction and the abundance of phosphorylated MLC. Numb modulated the intestinal epithelial barrier in a Notch signaling-independent manner. These findings suggest that Numb modulates the paracellular permeability by affecting AJC assembly and MLC phosphorylation.  相似文献   

10.
11.
Polarized epithelial cells of multicellular organisms confront the environment with a highly specialized apical cell membrane that differs in composition and function from that facing the internal milieu. In the case of absorptive cells, such as the small intestinal enterocyte and the kidney proximal tubule cell, the apical cell membrane is formed as a brush border, composed of regular, dense arrays of microvilli. Hydrolytic ectoenzymes make up the bulk of the microvillar membrane proteins, endowing the brush border with a huge digestive capacity. Several of the major enzymes are localized in lipid rafts, which, for the enterocyte in particular, are organized in a unique fashion. Glycolipids, rather than cholesterol, together with the divalent lectin galectin-4, define these rafts, which are stable and probably quite large. The architecture of these rafts supports a digestive/absorptive strategy for nutrient assimilation, but also serves as a portal for a large number of pathogens. Caveolae are well-known vehicles for internalization of lipid rafts, but in the enterocyte brush border, binding of cholera toxin is followed by uptake via a clathrin-dependent mechanism. Recently, 'anti-glycosyl' antibodies were shown to be deposited in the enterocyte brush border. When the antibodies were removed from the membrane, other carbohydrate-binding proteins, including cholera toxin, increased their binding to the brush border. Thus, anti-glycosyl antibodies may serve as guardians of glycolipid-based rafts, protecting them from lumenal pathogens and in this way be part of an ongoing 'cross-talk' between indigenous bacteria and the host.  相似文献   

12.
Folate is an essential cofactor for normal cellular proliferation and tissue regeneration. Alcohol-associated folate deficiency is common, primarily due to intestinal malabsorption, the mechanism of which needs attention. The aim of the present study was to evaluate the regulatory events of folate transport in experimental alcohol ingestion. For this, male Wistar rats were fed 1 g/kg body weight/day ethanol (20% solution) orally for 3 months and folate transport was studied in isolated intestinal epithelial cells across the crypt-villus axis. The role of different signaling pathways in folate transport regulation was evaluated independently to that of reduced folate carrier (RFC) expression. The results showed that differentiated cells of villus possess high folate uptake activity as compared to mid villus and crypt base cells. During chronic ethanol ingestion, decrease in transport was observed all along the crypt-villus axis but was more pronounced at proliferating crypt base stem cells. Studying the effect of modulators of signaling pathways revealed the folate transport system to be under the regulation of cAMP-dependent protein kinase A (PKA), the activity of which was observed to decrease upon alcohol ingestion. In addition, protein kinase C might have a role in folate transport regulation during alcoholic conditions. The deregulation in the folate transport system was associated with a decrease in RFC expression, which may result in lower transport efficiency observed at absorptive surface in alcohol-fed rats. The study highlights the role that perturbed regulatory pathways and RFC expression play in the decreased folate transport at brush border surface during alcohol ingestion.  相似文献   

13.
Summary The vitamin D-dependent calcium-binding protein (CaBP) was studied in relation to the age of the cell, in isolated epithelial cell populations removed from rat duodenum. Alkaline phosphatase and thymidine kinase activities were used as markers to characterize differentiated villus cells and undifferentiated (mitotically active) crypt cells, respectively. CaBP distribution along the length of the villus, as established by radioimmunoassay, appears as a gradient increasing from the crypt to the tip of the villus. CaBP concentration in cells is shown to be (i) negatively correlated with the thymidine kinase activity of cells, and (ii) positively correlated with the alkaline phosphatase activity of cells. This indicates that CaBP is absent in crypt cells and appears in differentiated cells with the development of the brush border. Thus CaBP, like alkaline phosphatase, can be considered as an indicator of enterocyte maturation. These data were also confirmed by studying the cellular localization of the protein. In addition both indirect immunofluorescence and immunoperoxidase staining methods reveal that antibody against CaBP decorates the terminal web, but not the microvilli of the brush border of mature absorptive cells. The results suggest that CaBP may act as a modulator of some Ca2+-mediated biochemical processes at the level of the enterocyte brush border.Portions of this work were presented at the Fourth International Workshop on Calcified Tissues, Israel (March 1980)  相似文献   

14.
An experimental model was designed to analyze the effect of fetal gut mesenchyme on the cytodifferentiation of crypt cells and of embryonic progenitor cells. The cells used were the rat intestinal crypt cell line, IEC-17, and primary cell cultures prepared form isolated 14-day-old fetal intestinal endoderm (EC). Both cultures prepared from isolated 14-day-old fetal rat intestinal endoderm (EC). Both types of cells were associated with 14-day-old fetal rat gut mesenchyme (Rm) and grafted under the kidney capsule of adult rats. Seventy percent of the Rm/EC and ten percent of the Rm/IEC recombinants, recovered after 9 days, exhibited well-vascularized structures in which the mesenchyme had induced morphogenesis of the cells into a villus epithelium. The four main intestinal epithelial cell types, absorptive, goblet, endocrine, and Paneth cells, were identified using electron microscopy. Biochemical determinations of enzyme activities associated with brush border membranes revealed that alkaline phosphatase, lactase, sucrase, and maltase were expressed in both types of associations. These results were confirmed by immunofluorescence staining using monoclonal antibodies to brush border enzymes. Both enzyme assays and immunocytochemistry showed that the amount of enzymes present in the brush border membrane of Rm/IEC grafts was in general lower than that of the Rm/EC recombinants. The results indicate that fetal rat gut mesenchyme enables morphogenesis and cytodifferentiation of both crypt and embryonic progenitor cells.  相似文献   

15.
Uptake of cholesterol by the intestinal absorptive epithelium can be selectively blocked by specific small molecules, like the sterol glycoside, L-166,143. Furthermore, (3)H-labeled L-166,143 administered orally to hamsters binds specifically to the intestinal mucosa, suggesting the existence of a cholesterol transporter. Using autoradiography, the binding site of (3)H-L-166,143 in the hamster small intestine was localized to the very apical aspect of the absorptive epithelial cells. Label was competed by non-radioactive L-166,143 and two structurally distinct cholesterol absorption inhibitors, suggesting a common site of action for these compounds. L-166,143 blocked uptake of (3)H-cholesterol into enterocytes in vivo, as demonstrated by autoradiography, suggesting that it inhibits a very early step of cholesterol absorption, incorporation into the brush border membrane. This conclusion was confirmed by studies in which intestinal brush borders were isolated from hamsters dosed with (3)H-cholesterol in the presence or absence of L-166,143. Uptake of (3)H-cholesterol into the membranes was substantially inhibited by the compound. In contrast, an inhibitor of acyl CoA:cholesterol acyltransferase, did not affect uptake of (3)H-cholesterol into the brush border membranes. These results strongly support the existence of a specific transporter that facilitates the movement of cholesterol from bile acid micelles into the brush border membranes of enterocytes.  相似文献   

16.
Little is known about the effects of repetitive deformation during peristaltic distension and contraction or repetitive villus shortening on the proliferation and differentiation of the intestinal epithelium. We sought to characterize the effects of repetitive deformation of a physiologically relevant magnitude and frequency on the proliferation and differentiation of human intestinal epithelial Caco-2 cells, a common cell culture model for intestinal epithelial biology. Human intestinal epithelial Caco-2 cells were cultured on collagen-coated membranes deformed by −20 kPa vacuum at 10 cycles/minute, producing an average 10% strain on the adherent cells. Proliferation was assessed by cell counting and 3H-thymidine incorporation. Alkaline phosphatase and dipeptidyl dipeptidase specific activity were measured in cell lysates. Since cells at the membrane periphery experience higher strain than cells in the center, the topography of brush border enzyme histochemical and immunohistochemical staining was analyzed for strain-dependence. Cyclic strain stimulated proliferation compared to static cells. Proliferation was highest in the membrane periphery where strain was maximal. Strain also modulated differentiation independently of its mitogenic effects, selectively stimulating dipeptidyl dipeptidase while inhibiting alkaline phosphatase. Strain-associated enzyme changes were also maximal in areas of greatest strain. The PKC inhibitors staurosporine and calphostin C ablated strain mitogenic effects while intracellular PKC activity was increased by strain. The strain-associated brush border enzyme changes were attenuated but not blocked by PKC inhibition. Thus, strain of a physiologically relevant frequency and magnitude promotes proliferation and modulates the differentiation of a well-differentiated human intestinal epithelial cell line in an amplitude-dependent fashion. PKC may be involved in coupling strain to increased proliferation. © 1996 Wiley-Liss, Inc.  相似文献   

17.
Tanii H  Horie T 《Life sciences》1999,64(15):1259-1264
Retinylpalmitate (200 IU/kg body weight) was administered intraperitoneally to rats once daily for 4 days. Brush border membrane vesicles (BBMVs) were prepared from small intestinal epithelium cells from along the crypt-villus axis. D-glucose uptake by BBMVs was examined under the inwardly directed Na+ gradient. The D-glucose uptake by BBMVs from the villus-tip and mid-villus cells of retinylpalmitate treated rats was significantly larger than that of control (corn oil treated) rats, respectively. Thus, retinol treatment of rats promoted the D-glucose transport in small intestinal brush border membrane. Interestingly, the enhancement of D-glucose transport was more prominent in villus-tip and mid-villus than in lower villus.  相似文献   

18.
Abstract. The development of peroxisomes and expression of their enzymes were investigated in differentiating intestinal epithelial cells during their migration along the crypt-villus axis. Sequential cell populations harvested by a low-temperature method were identified by microscopy, determination of alkaline phosphatase and sucrase activities and incorporation of [3H]-thymidine into DNA. Ultrastructural cytochemistry after staining for catalase activity, revealed the presence of peroxisomes in undifferentiated stem cells located in the crypt region. Morphometry indicated that the number of these organelles increased as intestinal epithelial cells differentiate. Catalase activity was higher in the crypt cells than in the mature enterocytes harvested from villus tips. On the other hand, an increasing gradient of activity was observed from crypts to villus tips for peroxisomal oxidases, i.e. fatty acyl coA oxidase, D-amino acid oxidase and polyamine oxidase. These findings indicate that biogenesis of peroxisomes occurs during migration of intestinal epithelial cells along the crypt-villus axis and that peroxisomal oxidases contribute substantially to the biochemical maturation of enterocytes.  相似文献   

19.
Rat small intestinal epithelial cell lines have been established in vitro and subcultured serially for periods up to 6 mo. These cells have an epithelioid morphology, grow as monolayers of closely opposed polygonal cells, and during the logarithmic phase of growth have a population doubling time of 19--22 h. Ultrastructural studies revealed the presence of microvilli, tight junctions, an extensive Golgi complex, and the presence of extracellular amorphous material similar in appearance to isolated basement membrane. These cells exhibit a number of features characteristic of normal cells in culture; namely, a normal rat diploid karyotype, strong density inhibition of growth, lack of growth in soft agar, and a low plating efficiency when seeded at low density. They did not produce tumors when injected in syngeneic animals. Immunochemical studies were performed to determine their origin using antisera prepared against rat small intestinal crypt cell plasma membrane, brush border membrane of villus cells and isolated sucrase-isomaltase complex. Antigenic determinants specific for small intestinal epithelial (crypt and villus) cells were demonstrated on the surface of the epithelioid cells, but they lacked immunological determinants specific for differentiated villus cells. An antiserum specifically staining extracellular material surrounding the cells cultured in vitro demonstrated cross-reactivity to basement membrane in rat intestinal frozen sections. It is concluded that the cultured epithelioid cells have features of undifferentiated small intestinal crypt cells.  相似文献   

20.
To determine the mechanism of the maturation of the brush border membrane in intestinal epithelial cells, purification of the plasma membrane from undifferentiated rat crypt cells and of the basal-lateral membrane from villous cells has been performed. The method is based on density perturbation of the mitochondria to selectively disrupt their association with the membrane. With both cell populations, two membrane subfractions displaying the same respective density on sucrose gradient have been obtained with an overall yield of 15--20% and a 10-fold enrichment of the plasma membrane markers 5'-nucleotidase and (Na+ + K+)-dependent, ouabain-sensitive ATPase chosen to follow their purification. The four fractions were constituted by sheets and apparently closed vesicles of various sizes. Each fraction was characterized by a distinct protein composition and different levels of enzyme activities. The cells, used for the preparation of the membranes, were isolated as a villus to crypt gradient. This separation and that of the membranes, led to the conclusion that the (Na+ + K+)-dependent ATPase is localized principally in the plasma membrane of all cells whatever their state of maturation, while 5'-nucleotidase is predominantly located in the basal-lateral membrane of the villous cells and may serve as a specific marker for the purification of this membrane. Finally it has been shown that aminopeptidase, dissacharidases and alkaline phosphatase do not appear simultaneously in the maturation process of the cells, alkaline phosphatase being absent from the crypt cells and aminopeptidase being the first to be synthesized. This enzyme seems to appear in the crypt cells membrane before being integrated into the mature brush border membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号