首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Comprehensive studies to identify species-specific drivers of survival to environmental stress, reproduction, growth, and recruitment are vital to gaining a better understanding of the main ecological factors shaping species habitat distribution and dispersal routes. The present study performed a field-based assessment of habitat distribution in the invasive carabid beetle Merizodus soledadinus for the Kerguelen archipelago. The results emphasised humid habitats as a key element of the insect’s realised niche. In addition, insects faced food and water stress during dispersal events. We evaluated quantitatively how water availability and trophic resources governed the spatial distribution of this invasive predatory insect at Îles Kerguelen. Food and water stress survival durations [in 100%, 70%, and 30% relative humidity (RH) conditions] and changes in a set of primary metabolic compounds (metabolomics) were determined. Adult M. soledadinus supplied with water ad libitum were highly tolerant to prolonged starvation (LT50 = 51.7 ± 6.2 d). However, food-deprived insect survival decreased rapidly in moderate (70% RH, LT50 = 30.37 ± 1.39 h) and low (30% RH, LT50 = 13.03 ± 0.48 h) RH conditions. Consistently, body water content decreased rapidly in insects exposed to 70% and 30% RH. Metabolic variation evidenced the effects of food deprivation in control insects (exposed to 100% RH), which exhibited a progressive decline of most glycolytic sugars and tricarboxylic acid cycle intermediates. Most metabolite levels were elevated levels during the first few hours of exposure to 30% and 70% RH. Augmented alanine and lactate levels suggested a shift to anaerobic metabolism. Simultaneously, peaks in threonine and glycolytic sugars pointed to metabolic disruption and a progressive physiological breakdown in dehydrating individuals. Overall, the results of our study indicate that the geographic distribution of M. soledadinus populations is highly dependent on habitat RH and water accessibility.  相似文献   

2.
It has been demonstrated that precooling with ice slurry ingestion enhances endurance exercise capacity in the heat. However, no studies have yet evaluated the optimal timing of ice slurry ingestion for precooling. This study aimed to investigate the effects of varying the timing of ice slurry ingestion for precooling on endurance exercise capacity in a warm environment. Ten active male participants completed 3 experimental cycling trials to exhaustion at 55% peak power output (PPO) after 15 min of warm-up at 30% PPO at 30 °C and 80% relative humidity. Three experimental conditions were set: no ice slurry ingestion (CON), pre-warm-up ice slurry ingestion (−1 °C; 7.5 g kg−1) (PRE), and post-warm-up ice slurry ingestion (POST). Rectal and mean skin temperatures at the beginning of exercise in the POST condition (37.1±0.2 °C, 33.8±0.9 °C, respectively) were lower than those in the CON (37.5±0.3 °C; P<0.001, 34.8±0.8 °C; P<0.01, respectively) and PRE (37.4±0.2 °C; P<0.01, 34.6±0.7 °C; P<0.01, respectively) conditions. These reductions increased heat storage capacity and resulted in improved exercise capacity in the POST condition (60.2±8.7 min) compared to that in the CON (52.0±11.9 min; effect size [ES]=0.78) and PRE (56.9±10.4 min; ES=0.34) conditions. Ice slurry ingestion after warm-up effectively reduced both rectal and skin temperatures and increased cycling time to exhaustion in a warm environment. Timing ice slurry ingestion to occur after warm-up may be effective for precooling in a warm environment.  相似文献   

3.
《Journal of thermal biology》2001,26(4-5):365-370
(1) This study describes the performance and the acute physiological responses of heat acclimatised cyclists during three sets of 5×20 s sprints followed by a final sprint to exhaustion in temperate (mean±standard deviation 20.2±0.4°C; 46±2% humidity, 108.5±1.4 kPa water vapour pressure) and in warm conditions (30.5±0.4°C; 47±10% humidity, 206.8±6.4 kPa water vapour pressure). (2) Oxygen consumption was greater in the warm condition and there was no evidence of an increased reliance on anaerobic metabolism as has been reported for submaximal exercise in the heat. (3) Subjects lost 2.1±0.2% of body mass in 53.8±0.2 min during the warm condition. While the duration of the time to exhaustion final sprint was 50±13 s during the warm condition it was 60±7 s for the temperate condition (p=0.020).  相似文献   

4.
In various occupations, workers may be exposed to extreme environmental conditions and physical activities. Under these conditions the ability to follow the workers' body temperature may protect them from overheating that may lead to heat related injuries. The "Dräger" Double Sensor (DS) is a novel device for assessing body-core temperature (Tc). The purpose of this study was to evaluate the accuracy of the DS in measuring Tc under heat stress. Seventeen male participants performed a three stage protocol: 30 min rest in a thermal comfort environment (20–22 °C, 50% relative humidity), followed by an exposure to a hot environment of 40 °C, 40% relative humidity −30 min at rest and 60 min of exercise (walking on a treadmill at 5 km/h and 2% elevation). Simultaneously temperatures measured by the DS (TDS) and by rectal temperature (Tre) (YSI-401 thermistor) were recorded and then compared. During the three stages of the study the average temperature obtained by the DS was within±0.3 °C of rectal measurement. The correlation between TDS and Tre was significantly better during the heat exposures phases than during resting under comfort conditions. These preliminary results are promising for potential use of the DS by workers under field conditions and especially under environmental heat stress or when dressed in protective garments. For this goal, further investigations are required to validate the accuracy of the DS under various levels of heat stress, clothing and working levels.  相似文献   

5.
Heat stress impairs the performance of broilers which increases the economic losses. Effect of duration of heat exposure on performance and acclimatory responses in broiler birds was investigated. At 21 d of age 160 Hubbard birds (80 males+80 females) were equally distributed into 5 treatments (T). The T1, T2, T3 and T4 were acclimated by daily exposure to heat (38±1 °C, 62±2% RH) for 1, 2, 3 and 4 h/d, respectively, for 14 d. T0 was the non-acclimated control (kept at 22±2 °C, 65±2% RH). At 36 d of age the thermotolerance of all birds was evaluated under simulated heat wave conditions by exposing them to an acute heat stress (43±1 °C, 55±3% RH) for 4 h. Body weight (BW), average daily gain (ADG) and average daily feed intake (ADFI) were not affected in T2 and T3, while T3 and T4 showed significant reductions in BW, ADG and ADFI compared to the control. Daily changes in ADFI/kg of metabolic BW (ADFI/BW0.75), rectal temperature (Tr), rate of increase in rectal temperature (RITr) and evaporative water loss (EWL) showed biphasic patterns of acclimatory responses. The 2 phases were distinctly differentiated by plateau days. Phase 1 characterized by a sharp decline in ADFI/BW0.75 followed by a gradual increase until the plateau, while Tr, RITr and EWL increased sharply followed by gradual decreases until the plateau. Beyond the plateau (phase 2), homeostatic responses in ADFI/BW0.75, Tr, RITr and EWL were observed toward the end of the study. Acclimated birds were able to withstand the simulated heat wave with 0% mortality, lower Tr, and longer survival time compared to the control. In conclusion, acclimation could protect birds from acute heat waves and associated heat stress mortality until marketing age. However, applicability of these results towards the industry needs further investigations.  相似文献   

6.
At present there is no standardised heat tolerance test (HTT) procedure adopting a running mode of exercise. Current HTTs may misdiagnose a runner's susceptibility to a hyperthermic state due to differences in exercise intensity. The current study aimed to establish the repeatability of a practical running test to evaluate individual's ability to tolerate exercise heat stress. Sixteen (8M, 8F) participants performed the running HTT (RHTT) (30 min, 9 km h−1, 2% elevation) on two separate occasions in a hot environment (40 °C and 40% relative humidity). There were no differences in peak rectal temperature (RHTT1: 38.82±0.47 °C, RHTT2: 38.86±0.49 °C, Intra-class correlation coefficient (ICC)=0.93, typical error of measure (TEM)=0.13 °C), peak skin temperature (RHTT1: 38.12±0.45, RHTT2: 38.11±0.45 °C, ICC=0.79, TEM=0.30 °C), peak heart rate (RHTT1: 182±15 beats min−1, RHTT2: 183±15 beats min−1, ICC=0.99, TEM=2 beats min−1), nor sweat rate (1721±675 g h−1, 1716±745 g h−1, ICC=0.95, TEM=162 g h−1) between RHTT1 and RHTT2 (p>0.05). Results demonstrate good agreement, strong correlations and small differences between repeated trials, and the TEM values suggest low within-participant variability. The RHTT was effective in differentiating between individuals physiological responses; supporting a heat tolerance continuum. The findings suggest the RHTT is a repeatable measure of physiological strain in the heat and may be used to assess the effectiveness of acute and chronic heat alleviating procedures.  相似文献   

7.
Using intra-abdominal miniature data loggers, we measured core body temperature in female springbok (Antidorcas marsupialis) of three colour morphs (black, normal and white), free-living in the Karoo, South Africa, for one year. During winter, white springbok displayed lower daily minimum body temperatures (37.4 ± 0.5 °C), than both black (38.1 ± 0.3 °C) and normal (38.0 ± 0.6 °C) springbok. During spring, black springbok displayed higher daily maximum body temperatures (40.7 ± 0.1 °C) than both white (40.2 ± 0.2 °C) and normal (40.2 ± 0.2 °C) springbok. These high maximum body temperatures were associated with larger daily amplitudes of nychthemeral rhythm of body temperature (2.0 ± 0.2 °C), than that of white (1.6 ± 0.1 °C) and normal (1.7 ± 0.2 °C) springbok. Biophysical properties of sample springbok pelts were consistent with these patterns, as the black springbok pelt showed lower reflectance in the visible spectral range, and higher heat load from simulated solar radiation, than did the pelts of the other two springbok. Black springbok had lower diurnal activity in winter, consistent with them having to forage less because their metabolic cost of homeothermy was lower, but were disadvantaged in hot periods. White springbok, by contrast, were more protected from solar heat load, but potentially less able to meet the energy cost of homeothermy in winter. Thus energy considerations may underlie the rarity of the springbok colour morphs.  相似文献   

8.
A 30 day feeding trial was conducted using a freshwater fish, Labeo rohita (rohu), to determine their thermal tolerance, oxygen consumption and optimum temperature for growth. Four hundred and sixteen L. rohita fry (10 days old, 0.385±0.003 g) were equally distributed between four treatments (26, 31, 33 and 36 °C) each with four replicates for 30 days. Highest body weight gain and lowest feed conversion ratio (FCR) was recorded between 31 and 33 °C. The highest specific growth rate was recorded at 31 °C followed by 33 and 26 °C and the lowest was at 36 °C. Thermal tolerance and oxygen consumption studies were carried out after completion of growth study to determine tolerance level and metabolic activity at four different acclimation temperatures. Oxygen consumption rate increased significantly with increasing acclimation temperature. Preferred temperature decided from relationship between acclimation temperature and Q10 values were between 33 and 36 °C, which gives a better understanding of optimum temperature for growth of L. rohita. Critical thermal maxima (CTMax) and critical thermal minima (CTMin) were 42.33±0.07, 44.81±0.07, 45.35±0.06, 45.60±0.03 and 12.00±0.08, 12.46±0.04, 13.80±0.10, 14.43±0.06, respectively, and increased significantly with increasing acclimation temperatures (26, 31, 33 and 36 °C). Survival (%) was similar in all groups indicating that temperature range of 26–36 °C is not fatal to L. rohita fry. The optimum temperature range for growth was 31–33 °C and for Q10 values was 33–36 °C.  相似文献   

9.
Dopamine/norepinephrine (DA/NE) reuptake inhibitors have been used to manipulate the central mechanisms affecting arousal and motivation during exercise. Eight healthy, physically active males performed 30 min fixed-intensity cycling at 50% Wmax followed by 30 min of self paced time trial (TT) with each section interspersed with a 30 s maximal sprint at 9, 19 and 29 min. The DA/NE re-uptake inhibitor administered was bupropion (BUP) versus a placebo (PLA) in either warm (32 °C, BUP32 or PLA32) or moderate (20 °C; BUP20, PLA20) ambient conditions. Core and skin temperature, heart rate and perceptual responses, neuromuscular and hormonal measures were assessed at multiple times throughout the trials and post exercise. Time trial performance remained unchanged across conditions (12.7–13.1 km) although core temperature was elevated in the fixed intensity section of the trials for BUP32 and BUP20 but continued to rise only in BUP32 during the time trial reaching 38.6 °C (P<0.05). NE increased in all conditions from pre-exercise with BUP32 values peaking at the end of TT to 1245.3±203.1 pg/mL (P<0.05) compared to the other conditions. Neuromuscular responses were similar among conditions although peak force was significantly reduced from pre (262±31 N) to post (202±31 N, P<0.05) exercise along with contraction duration (22%, P<0.05) in BUP20. We conclude that DA/NE re-uptake inhibitors influenced thermoregulation in the heat but not exercise performance. DA/NE re-uptake inhibitors are likely to act centrally to override the inhibitory signals for the cessation of exercise with these drugs acting peripherally to reduce the twitch characteristics of skeletal muscle in cooler conditions.  相似文献   

10.
An optimization of the refolding of endostatin (ES), by a study of the conditions that can affect (i) dissociation of inclusion bodies (IBs) and (ii) renaturation under high hydrostatic pressure (HHP), is described. IBs produced by bacteria cultivated at 25 °C were shown to be more soluble than those produced at 37 °C and their dissociation by application of 2.4 kbar at 20 °C was shown to be further enhanced at ?9 °C. A red shift in intrinsic fluorescence spectra and an increase in binding of the hydrophobic fluorescent probe bis-ANS show subtle changes in conformation of ES in the presence of 1.5 M GdnHCl at 2.4 kbar, while at 0.4 kbar the native conformational state is favored. The 25% refolding yield obtained via compression of IBs produced at 37 °C by application of 2.4 kbar, was increased to 78% when conditions based on the insights acquired were utilized: dissociation at 2.4 kbar and ?9 °C of the IBs produced at 25 °C, followed by refolding at 0.4 kbar and 20 °C. Besides providing insights into the conformational transitions of ES structure under HHP, this work proposes innovative conditions that are likely to have wide applicability to the HHP-induced refolding of proteins in general.  相似文献   

11.
Fire Service Instructors frequently experience high levels of physiological and perceptual strain during live fire exposures. Instructors are also at risk of cardiovascular illnesses, with cardiac death being the greatest cause of fire fighter death. Current practice for UK instructors is to select undergarment type based on personal preference, between a boiler suit (BOILER) and a wicking base layer (WBL). Research suggests that shorts and t-shirt (SHORTS) may also be a beneficial alternative undergarment choice. The UK South East Fire Service requested an investigation to identify if undergarment selection can lessen the strain experienced by instructors, and reduce the acute inflammatory response to fire exposures. Eight males completed three 45 min sessions in a heat chamber (49.5±1.4 °C and 16.9±4.3% RH) whilst performing intermittent walking. At the end of heat exposure change in heart rate was not effected by garment type (p=0.061, ηp2=0.373). Change in rectal temperature was different between garments (p=0.009, ηp2=0.271), with trends suggesting that BOILER resulted in a greater change (1.03±0.60 °C) than SHORTS (0.76±0.37 °C, p=0.589, d=0.21) and WBL (0.72±0.33 °C, p=0.545, d=0.25). Interleukin-6 post exposure was greater for BOILER (6.96±0.28 pg mL−1) than both SHORTS (6.59±0.30 pg mL−1, p=0.043, d=0.42) and WBL (6.45±0.43 pg mL−1, p=0.031, d=0.51). Overall, undergarment type had little impact on physiological or perceptual strain. However, wearing WBL or SHORTS may reduce the inflammatory response, and consequently decrease the risk of cardiovascular events.  相似文献   

12.
The purpose of this study was to determine the impact of the core to skin temperature gradient during incremental running to volitional fatigue across varying environmental conditions. A secondary aim was to determine if a “critical” core temperature would dictate volitional fatigue during running in the heat. 60 participants (n=49 male, n=11 female; 24±5 yrs, 177±11 cm, 75±13 kg) completed the study. Participants were uniformly stratified into a specific exercise temperature group (18 °C, 26 °C, 34 °C, or 42 °C) based on a 3-mile run performance. Participants were equipped with core and chest skin temperature sensors and a heart rate monitor, entered an environmental chamber (18 °C, 26 °C, 34 °C, or 42 °C), and rested in the seated position for 10 min before performing a walk/run to volitional exhaustion. Initial treadmill speed was 3.2 km h−1 with a 0% grade. Every 3 min, starting with speed, speed and grade increased in an alternating pattern (speed increased by 0.805 km h−1, grade increased by 0.5%). Time to volitional fatigue was longer for the 18 °C and 26 °C group compared to the 42 °C group, (58.1±9.3 and 62.6±6.5 min vs. 51.3±8.3 min, respectively, p<0.05). At the half-way point and finish, the core to skin gradient for the 18 °C and 26 °C groups was larger compared to 42 °C group (halfway: 2.6±0.7 and 2.0±0.6 vs. 1.3±0.5 for the 18 °C, 26 °C and 42 °C groups, respectively; finish: 3.3±0.7 and 3.5±1.1 vs. 2.1±0.9 for the 26 °C, 34 °C, and 42 °C groups, respectively, p<0.05). Sweat rate was lower in the 18 °C group compared to the 26 °C, 34 °C, and 42 °C groups, 3.6±1.3 vs. 7.2±3.0, 7.1±2.0, and 7.6±1.7 g m−2 min−1, respectively, p<0.05. There were no group differences in core temperature and heart rate response during the exercise trials. The current data demonstrate a 13% and 22% longer run time to exhaustion for the 18 °C and 26 °C group, respectively, compared to the 42 °C group despite no differences in beginning and ending core temperatures or baseline 3-mile run time. This capacity difference appears to result from a magnified core to skin gradient via an environmental temperature advantageous to convective heat loss, and in part from an increased sweat rate.  相似文献   

13.
Thermoregulatory behavior in temperate bats is influenced by gender, food availability, ambient temperature and reproduction. Ecologically and morphologically similar bat species (Myotis bechsteinii, M. nattereri, and Plecotus auritus; Vespertilionidae) facing similar diurnal conditions should therefore not differ in their thermoregulatory behavior. Identified day roosts (n = 23) of radio-tagged bats (n = 30) were spread over an area of 33.1 ha, but ambient temperature did not differ between roosting sites. Furthermore, there was no significant difference in cardinal direction, roost height, canopy coverage, and breast height diameter between day roosts used by the three species. Minimum roost temperatures and isolation values, however, differed significantly between our species with lowest values in P. auritus. The range of skin temperatures (min–max) recorded by temperature-sensitive transmitters was not species-specific with the lowest ranges in late pregnancy (mean ± SD: 7.1 ± 1.1 °C) and highest in post-lactation (mean ± SD: 13.1 ± 1.1 °C). The minimum skin temperature, however, was species-specific with the lowest values in P. auritus (mean ± SD: 20.2 ± 1.1 °C), intermediate in M. nattereri (mean ± SD: 23.4 ± 1.0 °C), and the highest in M. bechsteinii (mean ± SD: 26.8 ± 1.0 °C). Species-specific usage of energy-saving mechanisms might represent an important niche differentiation of species. Different mechanisms might allow, e.g. one species to occupy colder roosts with higher temperature variations or to shorten foraging times due to distinct thermoregulatory behavior.  相似文献   

14.
There is relativley little information on the serum biomarkers of heat stress. Therefore, the goal of this study was to verify the effect of passive heat loading (PHL) on the expression of fibroblast growth factor-21 (FGF21) and free fatty acids (FFAs). Four PHL protocols based on intensity (39 °C vs. 43 °C, leg immersion, 30 min) and type (leg vs. half immersion, 42 °C, 30 min) were used. Each protocol was applied on a 2 day cycle to 12 healthy adult males (age, 22.4±2.9 years; height, 174.1±4.6 cm; weight, 71.3±5.6 kg; body mass index, 23.1±3.0). The subjects were categorized into two groups according to the study design (randomized, with a parallel trial). Body temperature, FGF21 and FFAs were determined prior to PHL, immediately and 60 min after PHL. Body temperature was significant higher (43 °C) than the 39 °C measured under identical PHL type (leg immersion). PHL was effective for the expression of FGF21 and for lipolysis. The quantitative levels of FGF21 and FFA increased with increasing temperature (39 °C<42 °C<43 °C). A significant difference in the quantitative levels of FGF21 and FFAs was also evident based on the type of PHL (leg<half immersion) even when PHL was applied at the same temperature (42 °C). In conclusion, PHL was effective for expressing FGF21 and for lipolysis. Therefore, PHL may be expected to help in the reduction of body fat. Additionally, when the identical type (leg immersion) of PHL is applied, a loading temperature of 43 °C is more effective for expressing FGF21 and for lipolysis than temperatures of 39 °C and 42 °C, and half immersion is more effective than leg immersion at 42 °C.  相似文献   

15.
Rapidly cooling pigs after heat stress (HS) results in a pathophysiological condition, and because rapid temperature fluctuations may be associated with reduced reproductive success in sows, it lends itself to the hypothesis that these conditions may be linked. Objectives were to determine the effects of rapid cooling on thermal response and future reproductive success in pigs. Thirty-six replacement gilts (137.8±0.9 kg BW) were estrus synchronized and then 14.1±0.4 d after estrus confirmation, pigs were exposed to thermoneutral conditions (TN; n=12; 19.7±0.9°C) for 6 h, or HS (36.3±0.5°C) for 3 h, followed by 3 h of rapid cooling (HSRC; n=12; immediate TN exposure and water dousing) or gradual cooling (HSGC; n=12; gradual decrease to TN conditions) repeated over 2 d. Vaginal (TV) and gastrointestinal tract temperatures (TGI) were obtained every 15 min, and blood was collected on d 1 and d 2 during the HS and recovery periods at 180 and 60 min, respectively. Pigs were bred 8.3±0.8 d after thermal treatments over 2 d. Reproductive tracts were collected and total fetus number and viability were recorded 28.0±0.8 d after insemination. HS increased TV and TGI (P=0.01; 0.98 °C) in HSRC and HSGC compared to TN pigs. During recovery, TV was reduced from 15 to 105 min (P=0.01; 0.33 °C) in HSRC compared to HSGC pigs, but no overall differences in TGI were detected (P<0.05; 39.67 °C). Rapid cooling increased (P<0.05) TNFα compared to HSGC and TN pigs during recovery-d 1 (55.2%), HS-d 2 (35.1%), and recovery-d 2 (64.9%). Viable fetuses tended to be reduced (P=0.08; 10.5%) and moribund fetuses tended to be increased (P=0.09; 159.3%) in HSRC compared to HSGC and TN pigs. In summary, rapid cooling prior to breeding may contribute to reduced fetal viability and reproductive success in pigs.  相似文献   

16.
A 60 day feeding trial was conducted to study the effect of dietary l-tryptophan on thermal tolerance and oxygen consumption rate of freshwater fish, mrigala, Cirrhinus mrigala reared under ambient temperature at low and high stocking density. Four hundred eighty fingerlings were distributed into eight experimental groups. Four groups each of low density group (10 fishes/75 L water) and higher density group (30 fishes/75 L water) were fed a diet containing 0, 0.68, 1.36 or 2.72% l-tryptophan in the diet, thus forming eight experimental groups namely, Low density control (LC) (basal feed +0% l-tryptophan); LT1 (basal feed+0.68% l-tryptophan); LT2 (basal feed+1.36% l-tryptophan); LT3 (basal feed+2.72% l-tryptophan); high density control (HC) (basal feed+0% l-tryptophan); HT1 (basal feed+0.68% l-tryptophan); HT2 (basal feed+1.36% l-tryptophan); and HT3 (basal feed+2.72% l-tryptophan) were fed at 3% of the body weight. The test diets having crude protein 34.33±0.23 to 35.81±0.18% and lipid 423.49±1.76 to 425.85±0.31 K Cal/100 g were prepared using purified ingredients. The possible role of dietary l-tryptophan on thermal tolerance and oxygen consumption rate was assessed in terms of critical thermal maxima (CTMax), critical thermal minima (CTMin), lethal thermal maxima (LTMax) and lethal thermal minima (LTMin). The CTMax, CTMin, LTMax and LTMin values were found to be significantly higher (p<0.05) in the treatment groups with CTMax 42.94±0.037 (LT2); LT Max 43.18±0.070 (LT2); CTMin 10.47±0.088 (LT2) and LTMin 9.42±0.062 (LT3), whereas the control group showed a lower tolerance level. The same trend was observed in the high density group (CTMax 42.09±0.066 (LT3); LTMax 43 23±0.067 (HT3); CTMin 10.98±0.040 (HT3) and LTMin 9.74±0.037 (HT3). However, gradual supplementation of dietary l-tryptophan in the diet significantly reduced the oxygen consumption rate in both the low density group (Y=−26.74x+222.4, r²=0.915) and the high density group (Y=−32.96x+296.5, r²=0.8923). Dietary supplementation of l-tryptophan at a level of 1.36% improved the thermal tolerance level and reduced the oxygen consumption rate in C. mrigala fingerlings.  相似文献   

17.
The timing in which ice is ingested may be important for optimizing its success. However, the effects of differences in the timing of ice ingestion has not been studied in resting participants. Therefore, the purpose of this study was to investigate the effects of differences in the timing of ice ingestion on rectal temperature (Tre) and rating of perceptual sensation in a hot environment. Seven males ingested 1.25 g kg−1 of crushed ice (ICE1.25: 0.5 °C) or cold water (CON: 4 °C) every 5 min for 30 min, or were given 7.5 g kgBM−1 of crushed ice (ICE7.5) to consume for 30 min in a hot environment (35 °C, 30% relative humidity). The participants then remained at rest for 1 h. As physiological indices, Tre, body mass and urine specific gravity were measured. Rating of thermal sensation was measured at 5-min intervals throughout the experiment. ICE1.25 continued to decrease Tre until approximately 50 min, and resulted in a greater reduction in Tre (−0.56±0.20 °C) than ICE7.5 (−0.41±0.14 °C). Tre was reduced from 40 to 75 min by ICE1.25, which is a significant reduction in comparison to ICE7.5 (p<.05). Mean RTS with ICE1.25 at 50–65 min was significantly lower than that with ICE7.5 (p<.05). These results suggest that pre-cooling with intermittent ice ingestion is a more effective strategy both for lowering the Tre and for the rating of thermal sensation.  相似文献   

18.
The red-tailed phascogale is a small arboreal dasyurid marsupial that inhabits semi-arid to arid regions of Western Australia's wheat belt. Its body mass (34.7 g) is only ~15% of that predicted based on its phylogenetic position among other dasyuromorphs; we interpret this as an adaptation to its scansorial and semi-arid/arid lifestyle. The standard physiology of this species at a thermoneutral ambient temperature of 30 °C conforms to that of other dasyurid marsupials; body temperature (34.7 ± 0.37 °C), basal metabolic rate (0.83 ± 0.076 mL O2 g?1 h?1), evaporative water loss (1.68 ± 0.218 mg H2O g?1 h?1) and wet thermal conductance (3.8 ± 0.26 J g?1 h?1 °C?1) all fall within the 95% predication limits for the respective allometric relationships for other dasyurid species. Thermolability confers an energy savings at low Ta and water savings at high Ta. Torpor, observed at low Ta, was found to be more beneficial for energy savings than for water economy. The red-tailed phascogale therefore has a physiology suitable for the challenges of arid environments without any obvious requirement for adaptations to its scansorial lifestyle, other than its considerably lower-than-expected body mass.  相似文献   

19.
Temperature-dependent development of the sweet potato whitefly, Bemisia tabaci (Gennadius), Q biotype was examined on three host plants (bell pepper, oriental melon, and eggplant) at nine temperatures (15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, and 35 °C). Egg development time (least squares [LS]-mean ± LS-standard error [SE]) varied from 31.78 ± 0.29 days at 15 °C to 4.93 ± 0.25 days at 32.5 °C on bell pepper, from 21.27 ± 0.20 days at 17.5 °C to 4.02 ± 0.23 days at 32.5 °C on oriental melon, and from 26.92 ± 0.19 days at 15 °C to 5.14 ± 0.18 days at 30 °C on eggplant. Nymph development time (LS-mean ± LS-SE) varied from 76.54 ± 0.96 days at 15 °C to 12.96 ± 0.68 days at 27.5 °C on bell pepper, from 48.78 ± 0.38 days at 17.5 °C to 11.32 ± 0.38 days at 32.5 °C on oriental melon, and from 73.08 ± 1.23 days at 15 °C to 11.89 ± 0.70 days at 27.5 °C on eggplant. A non-linear relationship between developmental rate and temperature was described by the Taylor model, and developmental variation was described by the two-parameter Weibull function.  相似文献   

20.
In the Maritime Antarctic and High Arctic, soil microhabitat temperatures throughout the year typically range between ?10 and +5 °C. However, on occasion, they can exceed 20 °C, and these instances are likely to increase and intensify as a result of climate warming. Remaining active under both cool and warm conditions is therefore important for polar terrestrial invertebrates if they are to forage, reproduce and maximise their fitness. In the current study, lower and upper thermal activity thresholds were investigated in the polar Collembola, Megaphorura arctica and Cryptopygus antarcticus, and the mite, Alaskozetes antarcticus. Specifically, the effect of acclimation on these traits was explored. Sub-zero activity was exhibited in all three species, at temperatures as low as ?4.6 °C in A. antarcticus. At high temperatures, all three species had capacity for activity above 30 °C and were most active at 25 °C. This indicates a comparable spread of temperatures across which activity can occur to that seen in temperate and tropical species, but with the activity window shifted towards lower temperatures. In all three species following one month acclimation at ?2 °C, chill coma (=the temperature at which movement and activity cease) and the critical thermal minimum (=low temperature at which coordination is no longer shown) occurred at lower temperatures than for individuals maintained at +4 °C (except for the CTmin of M. arctica). Individuals acclimated at +9 °C conversely showed little change in their chill coma or CTmin. A similar trend was demonstrated for the heat coma and critical thermal maximum (CTmax) of all species. Following one month at ?2 °C, the heat coma and CTmax were reduced as compared with +4 °C reared individuals, whereas the heat coma and CTmax of individuals acclimated at +9 °C showed little adjustment. The data obtained suggest these invertebrates are able to take maximum advantage of the short growing season and have some capacity, in spite of limited plasticity at high temperatures, to cope with climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号