共查询到20条相似文献,搜索用时 0 毫秒
1.
A cost or resistance surface is a representation of a landscape's permeability to animal movement or gene flow and is a tool for measuring functional connectivity in landscape ecology and genetics studies. Parameterizing cost surfaces by assigning weights to different landscape elements has been challenging however, because true costs are rarely known; thus, expert opinion is often used to derive relative weights. Assigning weights would be made easier if the sensitivity of different landscape resistance estimates to relative costs was known. We carried out a sensitivity analysis of three methods to parameterize a cost surface and two models of landscape permeability: least cost path and effective resistance. We found two qualitatively different responses to varying cost weights: linear and asymptotic changes. The most sensitive models (i.e. those leading to linear change) were accumulated least cost and effective resistance estimates on a surface coded as resistance (i.e. where high-quality elements were held constant at a low-value, and low-quality elements were varied at higher values). All other cost surface scenarios led to asymptotic change. Developing a cost surface that produces a linear response of landscape resistance estimates to cost weight variation will improve the accuracy of functional connectivity estimates, especially when cost weights are selected through statistical model fitting procedures. On the other hand, for studies where cost weights are unknown and model selection is not being used, methods where resistance estimates vary asymptotically with cost weights may be more appropriate, because of their relative insensitivity to parameterization. 相似文献
2.
3.
Michelle F. DiLeo Jenna C. Siu Matthew K. Rhodes Adriana López‐Villalobos Angela Redwine Kelly Ksiazek Rodney J. Dyer 《Molecular ecology》2014,23(16):3973-3982
Pollen‐mediated gene flow is a major driver of spatial genetic structure in plant populations. Both individual plant characteristics and site‐specific features of the landscape can modify the perceived attractiveness of plants to their pollinators and thus play an important role in shaping spatial genetic variation. Most studies of landscape‐level genetic connectivity in plants have focused on the effects of interindividual distance using spatial and increasingly ecological separation, yet have not incorporated individual plant characteristics or other at‐site ecological variables. Using spatially explicit simulations, we first tested the extent to which the inclusion of at‐site variables influencing local pollination success improved the statistical characterization of genetic connectivity based upon examination of pollen pool genetic structure. The addition of at‐site characteristics provided better models than those that only considered interindividual spatial distance (e.g. IBD). Models parameterized using conditional genetic covariance (e.g. population graphs) also outperformed those assuming panmixia. In a natural population of Cornus florida L. (Cornaceae), we showed that the addition of at‐site characteristics (clumping of primary canopy opening above each maternal tree and maternal tree floral output) provided significantly better models describing gene flow than models including only between‐site spatial (IBD) and ecological (isolation by resistance) variables. Overall, our results show that including interindividual and local ecological variation greatly aids in characterizing landscape‐level measures of contemporary gene flow. 相似文献
4.
《Evolutionary Applications》2017,10(6):630-639
The explosive growth of empirical population genetics has seen a proliferation of analytical methods leading to a steady increase in our ability to accurately measure key population parameters, including genetic isolation, effective population size, and gene flow, in natural systems. Assuming they yield similar results, population genetic methods offer an attractive complement to, or replacement of, traditional field‐ecological studies. However, empirical assessments of the concordance between direct field‐ecological and indirect population genetic studies of the same populations are uncommon in the literature. In this study, we investigate genetic isolation, rates of dispersal, and population sizes for the endangered California tiger salamander, Ambystoma californiense, across multiple breeding seasons in an intact vernal pool network. We then compare our molecular results to a previously published study based on multiyear, mark–recapture data from the same breeding sites. We found that field and genetic estimates of population size were only weakly correlated, but dispersal rates were remarkably congruent across studies and methods. In fact, dispersal probability functions derived from genetic data and traditional field‐ecological data were a significant match, suggesting that either method can be used effectively to assess population connectivity. These results provide one of the first explicit tests of the correspondence between landscape genetic and field‐ecological approaches to measuring functional population connectivity and suggest that even single‐year genetic samples can return biologically meaningful estimates of natural dispersal and gene flow. 相似文献
5.
We examined the effects of habitat discontinuities on gene flow among puma (Puma concolor) populations across the southwestern USA. Using 16 microsatellite loci, we genotyped 540 pumas sampled throughout the states of Utah, Colorado, Arizona, and New Mexico, where a high degree of habitat heterogeneity provides for a wide range of connective habitat configurations between subpopulations. We investigated genetic structuring using complementary individual- and population-based analyses, the latter employing a novel technique to geographically cluster individuals without introducing investigator bias. The analyses revealed genetic structuring at two distinct scales. First, strikingly strong differentiation between northern and southern regions within the study area suggests little migration between them. Second, within each region, gene flow appears to be strongly limited by distance, particularly in the presence of habitat barriers such as open desert and grasslands. Northern pumas showed both reduced genetic diversity and greater divergence from a hypothetical ancestral population based on Bayesian clustering analyses, possibly reflecting a post-Pleistocene range expansion. Bayesian clustering results were sensitive to sampling density, which may complicate inference of numbers of populations when using this method. The results presented here build on those of previous studies, and begin to complete a picture of how different habitat types facilitate or impede gene flow among puma populations. 相似文献
6.
Vignieri SN 《Molecular ecology》2005,14(7):1925-1937
In species affiliated with heterogeneous habitat, we expect gene flow to be restricted due to constraints placed on individual movement by habitat boundaries. This is likely to impact both individual dispersal and connectivity between populations. In this study, a GIS-based landscape genetics approach was used, in combination with fine-scale spatial autocorrelation analysis and the estimation of recent intersubpopulation migration rates, to infer patterns of dispersal and migration in the riparian-affiliated Pacific jumping mouse (Zapus trinotatus). A total of 228 individuals were sampled from nine subpopulations across a system of three rivers and genotyped at eight microsatellite loci. Significant spatial autocorrelation among individuals revealed a pattern of fine-scale spatial genetic structure indicative of limited dispersal. Geographical distances between pairwise subpopulations were defined following four criteria: (i) Euclidean distance, and three landscape-specific distances, (ii) river distance (distance travelled along the river only), (iii) overland distance (similar to Euclidean, but includes elevation), and (iv) habitat-path distance (a least-cost path distance that models movement along habitat pathways). Pairwise Mantel tests were used to test for a correlation between genetic distance and each of the geographical distances. Significant correlations were found between genetic distance and both the overland and habitat-path distances; however, the correlation with habitat-path distance was stronger. Lastly, estimates of recent migration rates revealed that migration occurs not only within drainages but also across large topographic barriers. These results suggest that patterns of dispersal and migration in Pacific jumping mice are largely determined by habitat connectivity. 相似文献
7.
Bull RA Cushman SA Mace R Chilton T Kendall KC Landguth EL Schwartz MK McKelvey K Allendorf FW Luikart G 《Molecular ecology》2011,20(6):1092-1107
We investigated how landscape features influence gene flow of black bears by testing the relative support for 36 alternative landscape resistance hypotheses, including isolation by distance (IBD) in each of 12 study areas in the north central U.S. Rocky Mountains. The study areas all contained the same basic elements, but differed in extent of forest fragmentation, altitude, variation in elevation and road coverage. In all but one of the study areas, isolation by landscape resistance was more supported than IBD suggesting gene flow is likely influenced by elevation, forest cover, and roads. However, the landscape features influencing gene flow varied among study areas. Using subsets of loci usually gave models with the very similar landscape features influencing gene flow as with all loci, suggesting the landscape features influencing gene flow were correctly identified. To test if the cause of the variability of supported landscape features in study areas resulted from landscape differences among study areas, we conducted a limiting factor analysis. We found that features were supported in landscape models only when the features were highly variable. This is perhaps not surprising but suggests an important cautionary note - that if landscape features are not found to influence gene flow, researchers should not automatically conclude that the features are unimportant to the species' movement and gene flow. Failure to investigate multiple study areas that have a range of variability in landscape features could cause misleading inferences about which landscape features generally limit gene flow. This could lead to potentially erroneous identification of corridors and barriers if models are transferred between areas with different landscape characteristics. 相似文献
8.
Helen M. Bothwell Samuel A. Cushman Scott A. Woolbright Erika I. Hersch‐Green Luke M. Evans Thomas G. Whitham Gerard J. Allan 《Molecular ecology》2017,26(19):5114-5132
Gene flow is an evolutionary process that supports genetic connectivity and contributes to the capacity of species to adapt to environmental change. Yet, for most species, little is known about the specific environmental factors that influence genetic connectivity, or their effects on genetic diversity and differentiation. We used a landscape genetic approach to understand how geography and climate influence genetic connectivity in a foundation riparian tree (Populus angustifolia), and their relationships with specieswide patterns of genetic diversity and differentiation. Using multivariate restricted optimization in a reciprocal causal modelling framework, we quantified the relative contributions of riparian network connectivity, terrestrial upland resistance and climate gradients on genetic connectivity. We found that (i) all riparian corridors, regardless of river order, equally facilitated connectivity, while terrestrial uplands provided 2.5× more resistance to gene flow than riparian corridors. (ii) Cumulative differences in precipitation seasonality and precipitation of the warmest quarter were the primary climatic factors driving genetic differentiation; furthermore, maximum climate resistance was 45× greater than riparian resistance. (iii) Genetic diversity was positively correlated with connectivity (R2 = 0.3744, p = .0019), illustrating the utility of resistance models for identifying landscape conditions that can support a species' ability to adapt to environmental change. From these results, we present a map highlighting key genetic connectivity corridors across P. angustifolia's range that if disrupted could have long‐term ecological and evolutionary consequences. Our findings provide recommendations for conservation and restoration management of threatened riparian ecosystems throughout the western USA and the high biodiversity they support. 相似文献
9.
Sophie Laurence Matthew J. Smith Albrecht I. Schulte‐Hostedde 《Ecology and evolution》2013,3(10):3524-3535
In heterogeneous landscapes, physical barriers and loss of structural connectivity have been shown to reduce gene flow and therefore lead to population structuring. In this study, we assessed the influence of landscape features on population genetic structure and gene flow of a semiaquatic species, the muskrat. A total of 97 muskrats were sampled from three watersheds near Sudbury, Ontario, Canada. We estimated population genetic structure using 11 microsatellite loci and identified a single genetic cluster and no genetic differences were found among the watersheds as a result of high levels of gene flow. At finer scales, we assessed the correlation between individual pairwise genetic distances and Euclidean distance as well as different models of least cost path (LCP). We used a range of cost values for the landscape types in order to build our LCP models. We found a positive relationship between genetic distance and least cost distance when we considered roads as corridors for movements. Open landscapes and urban areas seemed to restrict but not prevent gene flow within the study area. Our study underlines the high‐dispersal ability of generalist species in their use of landscape and highlights how landscape features often considered barriers to animal movements are corridors for other species. 相似文献
10.
Francisco EncinasViso Christiana McDonaldSpicer Nunzio Knerr Peter H. Thrall Linda Broadhurst 《Ecology and evolution》2020,10(23):13476
Restoring degraded landscapes has primarily focused on re‐establishing native plant communities. However, little is known with respect to the diversity and distribution of most key revegetation species or the environmental and anthropogenic factors that may affect their demography and genetic structure. In this study, we investigated the genetic structure of two widespread Australian legume species (Acacia salicina and Acacia stenophylla) in the Murray–Darling Basin (MDB), a large agriculturally utilized region in Australia, and assessed the impact of landscape structure on genetic differentiation. We used AFLP genetic data and sampled a total of 28 A. salicina and 30 A. stenophylla sampling locations across southeastern Australia. We specifically evaluated the importance of four landscape features: forest cover, land cover, water stream cover, and elevation. We found that both species had high genetic diversity (mean percentage of polymorphic loci, 55.1% for A. salicina versus. 64.3% for A. stenophylla) and differentiation among local sampling locations (A. salicina: ΦPT = 0.301, 30%; A. stenophylla: ΦPT = 0.235, 23%). Population structure analysis showed that both species had high levels of structure (6 clusters each) and admixture in some sampling locations, particularly A. stenophylla. Although both species have a similar geographic range, the drivers of genetic connectivity for each species were very different. Genetic variation in A. salicina seems to be mainly driven by geographic distance, while for A. stenophylla, land cover appears to be the most important factor. This suggests that for the latter species, gene flow among populations is affected by habitat fragmentation. We conclude that these largely co‐occurring species require different management actions to maintain population connectivity. We recommend active management of A. stenophylla in the MDB to improve gene flow in the adversity of increasing disturbances (e.g., droughts) driven by climate change and anthropogenic factors. 相似文献
11.
Aurélie Khimoun William Peterman Cyril Eraud Bruno Faivre Nicolas Navarro Stéphane Garnier 《Molecular ecology》2017,26(19):4906-4919
Within the framework of landscape genetics, resistance surface modelling is particularly relevant to explicitly test competing hypotheses about landscape effects on gene flow. To investigate how fragmentation of tropical forest affects population connectivity in a forest specialist bird species, we optimized resistance surfaces without a priori specification, using least‐cost (LCP) or resistance (IBR) distances. We implemented a two‐step procedure in order (i) to objectively define the landscape thematic resolution (level of detail in classification scheme to describe landscape variables) and spatial extent (area within the landscape boundaries) and then (ii) to test the relative role of several landscape features (elevation, roads, land cover) in genetic differentiation in the Plumbeous Warbler (Setophaga plumbea). We detected a small‐scale reduction of gene flow mainly driven by land cover, with a negative impact of the nonforest matrix on landscape functional connectivity. However, matrix components did not equally constrain gene flow, as their conductivity increased with increasing structural similarity with forest habitat: urban areas and meadows had the highest resistance values whereas agricultural areas had intermediate resistance values. Our results revealed a higher performance of IBR compared to LCP in explaining gene flow, reflecting suboptimal movements across this human‐modified landscape, challenging the common use of LCP to design habitat corridors and advocating for a broader use of circuit theory modelling. Finally, our results emphasize the need for an objective definition of landscape scales (landscape extent and thematic resolution) and highlight potential pitfalls associated with parameterization of resistance surfaces. 相似文献
12.
Maiju Qiao Thomas Connor Xiaogang Shi Jie Huang Yan Huang Hemin Zhang Jianghong Ran 《Ecology and evolution》2019,9(4):1809-1819
The giant panda is an example of a species that has faced extensive historical habitat fragmentation, and anthropogenic disturbance and is assumed to be isolated in numerous subpopulations with limited gene flow between them. To investigate the population size, health, and connectivity of pandas in a key habitat area, we noninvasively collected a total of 539 fresh wild giant panda fecal samples for DNA extraction within Wolong Nature Reserve, Sichuan, China. Seven validated tetra‐microsatellite markers were used to analyze each sample, and a total of 142 unique genotypes were identified. Nonspatial and spatial capture–recapture models estimated the population size of the reserve at 164 and 137 individuals (95% confidence intervals 153–175 and 115–163), respectively. Relatively high levels of genetic variation and low levels of inbreeding were estimated, indicating adequate genetic diversity. Surprisingly, no significant genetic boundaries were found within the population despite the national road G350 that bisects the reserve, which is also bordered with patches of development and agricultural land. We attribute this to high rates of migration, with four giant panda road‐crossing events confirmed within a year based on repeated captures of individuals. This likely means that giant panda populations within mountain ranges are better connected than previously thought. Increased development and tourism traffic in the area and throughout the current panda distribution pose a threat of increasing population isolation, however. Maintaining and restoring adequate habitat corridors for dispersal is thus a vital step for preserving the levels of gene flow seen in our analysis and the continued conservation of the giant panda meta‐population in both Wolong and throughout their current range. 相似文献
13.
1) Wind connectivity has been identified as a key factor driving many biological processes. 2) Existing software available for managing wind data are often overly complex for studying many ecological processes and cannot be incorporated into a broad framework. 3) Here we present rWind, an R language package to download and manage surface wind data from the Global Forecasting System and to compute wind connectivity between locations. 4) Data obtained with rWind can be used in a general framework for analysis of biological processes to develop hypotheses about the role of wind in driving ecological and evolutionary patterns. 相似文献
14.
E. L. LANDGUTH S. A. CUSHMAN M. K. SCHWARTZ K. S. McKELVEY M. MURPHY G. LUIKART 《Molecular ecology》2010,19(19):4179-4191
Understanding how spatial genetic patterns respond to landscape change is crucial for advancing the emerging field of landscape genetics. We quantified the number of generations for new landscape barrier signatures to become detectable and for old signatures to disappear after barrier removal. We used spatially explicit, individual‐based simulations to examine the ability of an individual‐based statistic [Mantel’s r using the proportion of shared alleles’ statistic (Dps)] and population‐based statistic (FST) to detect barriers. We simulated a range of movement strategies including nearest neighbour dispersal, long‐distance dispersal and panmixia. The lag time for the signal of a new barrier to become established is short using Mantel’s r (1–15 generations). FST required approximately 200 generations to reach 50% of its equilibrium maximum, although G’ST performed much like Mantel’s r. In strong contrast, FST and Mantel’s r perform similarly following the removal of a barrier formerly dividing a population. Also, given neighbour mating and very short‐distance dispersal strategies, historical discontinuities from more than 100 generations ago might still be detectable with either method. This suggests that historical events and landscapes could have long‐term effects that confound inferences about the impacts of current landscape features on gene flow for species with very little long‐distance dispersal. Nonetheless, populations of organisms with relatively large dispersal distances will lose the signal of a former barrier within less than 15 generations, suggesting that individual‐based landscape genetic approaches can improve our ability to measure effects of existing landscape features on genetic structure and connectivity. 相似文献
15.
John P. Rippe Mikhail V. Matz Elizabeth A. Green Mónica Medina Nida Z. Khawaja Thanapat Pongwarin Jorge H. Pinzón C. Karl D. Castillo Sarah W. Davies 《Ecology and evolution》2017,7(22):9234-9246
As coral reefs continue to decline worldwide, it becomes ever more necessary to understand the connectivity between coral populations to develop efficient management strategies facilitating survival and adaptation of coral reefs in the future. Orbicella faveolata is one of the most important reef‐building corals in the Caribbean and has recently experienced severe population reductions. Here, we utilize a panel of nine microsatellite loci to evaluate the genetic structure of O. faveolata and to infer connectivity across ten sites spanning the wider Caribbean region. Populations are generally well‐mixed throughout the basin (FST = 0.038), although notable patterns of substructure arise at local and regional scales. Eastern and western populations appear segregated with a genetic break around the Mona Passage in the north, as has been shown previously in other species; however, we find evidence for significant connectivity between Curaçao and Mexico, suggesting that the southern margin of this barrier is permeable to dispersal. Our results also identify a strong genetic break within the Mesoamerican Barrier Reef System associated with complex oceanographic patterns that promote larval retention in southern Belize. Additionally, the diverse genetic signature at Flower Garden Banks suggests its possible function as a downstream genetic sink. The findings reported here are relevant to the ongoing conservation efforts for this important and threatened species, and contribute to the growing understanding of large‐scale coral reef connectivity throughout the wider Caribbean. 相似文献
16.
Linking landscape effects on gene flow to processes such as dispersal and mating is essential to provide a conceptual foundation for landscape genetics. It is particularly important to determine how classical population genetic models relate to recent individual-based landscape genetic models when assessing individual movement and its influence on population genetic structure. We used classical Wright-Fisher models and spatially explicit, individual-based, landscape genetic models to simulate gene flow via dispersal and mating in a series of landscapes representing two patches of habitat separated by a barrier. We developed a mathematical formula that predicts the relationship between barrier strength (i.e., permeability) and the migration rate (m) across the barrier, thereby linking spatially explicit landscape genetics to classical population genetics theory. We then assessed the reliability of the function by obtaining population genetics parameters (m, F(ST) ) using simulations for both spatially explicit and Wright-Fisher simulation models for a range of gene flow rates. Next, we show that relaxing some of the assumptions of the Wright-Fisher model can substantially change population substructure (i.e., F(ST) ). For example, isolation by distance among individuals on each side of a barrier maintains an F(ST) of ~0.20 regardless of migration rate across the barrier, whereas panmixia on each side of the barrier results in an F(ST) that changes with m as predicted by classical population genetics theory. We suggest that individual-based, spatially explicit modelling provides a general framework to investigate how interactions between movement and landscape resistance drive population genetic patterns and connectivity across complex landscapes. 相似文献
17.
Manon Balbi Aude Ernoult Pedro Poli Luc Madec Annie Guiller Marie‐Claire Martin Jean Nabucet Véronique Beaujouan Eric J. Petit 《Molecular ecology》2018,27(6):1357-1370
Urban areas are highly fragmented and thereby exert strong constraints on individual dispersal. Despite this, some species manage to persist in urban areas, such as the garden snail, Cornu aspersum, which is common in cityscapes despite its low mobility. Using landscape genetic approaches, we combined study area replication and multiscale analysis to determine how landscape composition, configuration and connectivity influence snail dispersal across urban areas. At the overall landscape scale, areas with a high percentage of roads decreased genetic differentiation between populations. At the population scale, genetic differentiation was positively linked with building surface, the proportion of borders where wooded patches and roads appeared side by side and the proportion of borders combining wooded patches and other impervious areas. Analyses based on pairwise genetic distances validated the isolation‐by‐distance and isolation‐by‐resistance models for this land snail, with an equal fit to least‐cost paths and circuit‐theory‐based models. Each of the 12 landscapes analysed separately yielded specific relations to environmental features, whereas analyses integrating all replicates highlighted general common effects. Our results suggest that urban transport infrastructures facilitate passive snail dispersal. At a local scale, corresponding to active dispersal, unfavourable habitats (wooded and impervious areas) isolate populations. This work upholds the use of replicated landscapes to increase the generalizability of landscape genetics results and shows how multiscale analyses provide insight into scale‐dependent processes. 相似文献
18.
19.
A new analytical approach to landscape genetic modelling: least-cost transect analysis and linear mixed models 总被引:1,自引:0,他引:1
Landscape genetics aims to assess the effect of the landscape on intraspecific genetic structure. To quantify interdeme landscape structure, landscape genetics primarily uses landscape resistance surfaces (RSs) and least-cost paths or straight-line transects. However, both approaches have drawbacks. Parameterization of RSs is a subjective process, and least-cost paths represent a single migration route. A transect-based approach might oversimplify migration patterns by assuming rectilinear migration. To overcome these limitations, we combined these two methods in a new landscape genetic approach: least-cost transect analysis (LCTA). Habitat-matrix RSs were used to create least-cost paths, which were subsequently buffered to form transects in which the abundance of several landscape elements was quantified. To maintain objectivity, this analysis was repeated so that each landscape element was in turn regarded as migration habitat. The relationship between explanatory variables and genetic distances was then assessed following a mixed modelling approach to account for the nonindependence of values in distance matrices. Subsequently, the best fitting model was selected using the statistic. We applied LCTA and the mixed modelling approach to an empirical genetic dataset on the endangered damselfly, Coenagrion mercuriale. We compared the results to those obtained from traditional least-cost, effective and resistance distance analysis. We showed that LCTA is an objective approach that identifies both the most probable migration habitat and landscape elements that either inhibit or facilitate gene flow. Although we believe the statistical approach to be an improvement for the analysis of distance matrices in landscape genetics, more stringent testing is needed. 相似文献
20.
A recent workshop held at the University of Grenoble gathered the leading experts in the field of landscape genetics and spatial statistics. Landscape genetics was only recently defined as an independent research field. It aims to understand the processes of gene flow and local adaptation by studying the interactions between genetic and spatial or environmental variation. This workshop discussed the perspectives and challenges of combining emerging molecular, spatial and statistical tools to unravel how landscape and environmental variables affect genetic variation. 相似文献