首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The resistance time of Etroplus suratensis (Bloch) and Therapon jarbua (Forsskal) were determined for fish acclimated to a series of temperatures 20°C, 25°C, 28°C, 30°C, and 35°C. The results indicated that these two species of fishes showed increased thermal resistance when acclimation temperatures were increased or decreased, respectively. The biokinetic range of temperature for E. suratensis is from 12°C to 46°C and that for T. jarbua is from 8°C to 44°C.  相似文献   

2.
Temperature is one of the most important environmental factors, and is responsible for a variety of physiological stress responses in organisms. Induced thermal stress is associated with elevated reactive oxygen species (ROS) generation leading to oxidative damage. The ladybeetle, Propylaea japonica (Thunberg) (Coleoptera: Coccinellidae), is considered a successful natural enemy because of its tolerance to high temperatures in arid and semi-arid areas in China. In this study, we investigated the effect of high temperatures (35, 37, 39, 41 and 43 °C) on the survival and activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidases (POD), glutathione-S-transferases (GST), and total antioxidant capacity (TAC) as well as malondialdehyde (MDA) concentrations in P. japonica adults. The results indicated that P. japonica adults could not survive at 43 °C. CAT, GST and TAC were significantly increased when compared to the control (25 °C), and this played an important role in the process of antioxidant response to thermal stress. SOD and POD activity, as well as MDA, did not differ significantly at 35 and 37 °C compared to the control; however, there were increased levels of SOD, POD and MDA when the temperature was above 37 °C. These results suggest that thermal stress leads to oxidative stress and antioxidant enzymes play important roles in reducing oxidative damage in P. japonica adults. This study represents the first comprehensive report on the antioxidant defense system in predaceous coccinellids (the third trophic level). The findings provide useful information for predicting population dynamics and understanding the potential for P. japonica as a natural enemy to control pest insects under varied environmental conditions.  相似文献   

3.
The effect of temperature on Cyprinus carpio spermatozoa in vitro was investigated with spermatozoa activated at 4, 14, and 24 °C. At 30 s post-activation, motility rate was significantly higher at 4 °C compared to 14 and 24 °C, whereas highest swimming velocity was observed at 14 °C. The thiobarbituric acid-reactive substance (TBARS) content was significantly higher at 14 °C and 24 °C than at 4 °C in motile spermatozoa. No significant differences in catalase and superoxide dismutase activity relative to temperature were observed. This study provides new information regarding effect of temperature on lipid peroxidation intensity and spermatozoon motility parameters in carp. The elevation of TBARS seen at higher temperatures could be due to inadequate capacity of antioxidant enzymes to protect the cell against the detrimental effects of oxidative stress induced by higher temperatures.  相似文献   

4.
The present study aimed to investigate in Hoplosternum littorale (Hancock, 1828) the effects of different water temperatures (10 °C, 25 °C-control group- and 33 °C) on physiologic and metabolic traits following acute (1 day) and chronic (21 days) exposures. We analyzed several biomarker responses in order to achieve a comprehensive survey of fish physiology and metabolism under the effect of this natural stressor. We measured morphological indices, biochemical and hematological parameters as well as oxidative stress markers. To evaluate energy consumption, muscle and hepatic total lipid, protein and glycogen concentrations were also quantified. Extreme temperatures exposures clearly resulted in metabolic adjustments, being liver energy reserves and plasma metabolites the most sensitive parameters detecting those changes. We observed reduced hepatosomatic index after acute and chronic exposure to 33 °C while glycogen levels decreased at both temperatures and time of exposure tested. Additionally, acute and chronic exposures to 10 °C increased liver lipid content and plasma triglycerides. Total protein concentration was higher in liver and lower in plasma after chronic exposures to 10 °C and 33 °C. Acute exposition at both temperatures caused significant changes in antioxidant enzymes tested in the different tissues without oxidative damage to lipids. Antioxidant defenses in fish failed to protect them when they were exposed for 21 days to 10 °C, promoting higher lipid peroxidation in liver, kidney and gills. According to multivariate analysis, oxidative stress and metabolic biomarkers clearly differentiated fish exposed chronically to 10 °C. Taken together, these results demonstrated that cold exposure was more stressful for H. littorale than heat stress. However, this species could cope with variations in temperature, allowing physiological processes and biochemical reactions to proceed efficiently at different temperatures and times of exposure. Our study showed the ability of H. littorale to resist a wide range of environmental temperatures and contributes for the understanding of how this species is adapted to environments with highly variable physicochemical conditions.  相似文献   

5.
The mechanism of the rate of living-free radical theory suggests that higher rate of oxidative metabolism results from greater rate of mitochondria oxidative phosphorylation, leading to a consequent increase in production of free radicals. However, the relation between metabolic rate and oxidative stress is tissue dependent in animals acclimated to cold temperatures. Here we examined oxidative stress, reflected by changes of antioxidant activity and other related markers, in striped hamsters acclimated to moderate cold (15 °C), room (23 °C) or warm temperature (30 °C) for 6 weeks, by which either higher or lower metabolic rate was induced experimentally. Energy intake and the rate of metabolism and nonshivering thermogenesis were increased at 15 °C, but decreased at 30 °C compared with that at 23 °C. Effects of temperatures on the markers of both oxidative stress and antioxidant activities were rarely significant. The percentages of positive correlation between the 11 tissues (brain, BAT, liver, heart, lung, kidneys, stomach, small and large intestine, caecum and skeletal muscle) were 14.5% (8/55) for catalase (CAT), 7.3% (4/55) for the capacity of inhibition of hydroxyl free radical (CIH), 5.5% (3/55) for activities of superoxide dismutase (SOD), 1.8% (1/55) for total antioxidant capacity (T-AOC), 4.3% (2/46) for H2O2 and 11.1% (4/36) for the capacity of inhibition of hydroxyl free radical (CIH). This indicated that the tissue-dependent changes of both oxidative stress and antioxidant activity were less consistent among the different tissues. Finally the data from this study were less consistent with the prediction of the mechanism of the rate of living-free radical theory.  相似文献   

6.
The purpose of this study was to determine the impact of the core to skin temperature gradient during incremental running to volitional fatigue across varying environmental conditions. A secondary aim was to determine if a “critical” core temperature would dictate volitional fatigue during running in the heat. 60 participants (n=49 male, n=11 female; 24±5 yrs, 177±11 cm, 75±13 kg) completed the study. Participants were uniformly stratified into a specific exercise temperature group (18 °C, 26 °C, 34 °C, or 42 °C) based on a 3-mile run performance. Participants were equipped with core and chest skin temperature sensors and a heart rate monitor, entered an environmental chamber (18 °C, 26 °C, 34 °C, or 42 °C), and rested in the seated position for 10 min before performing a walk/run to volitional exhaustion. Initial treadmill speed was 3.2 km h−1 with a 0% grade. Every 3 min, starting with speed, speed and grade increased in an alternating pattern (speed increased by 0.805 km h−1, grade increased by 0.5%). Time to volitional fatigue was longer for the 18 °C and 26 °C group compared to the 42 °C group, (58.1±9.3 and 62.6±6.5 min vs. 51.3±8.3 min, respectively, p<0.05). At the half-way point and finish, the core to skin gradient for the 18 °C and 26 °C groups was larger compared to 42 °C group (halfway: 2.6±0.7 and 2.0±0.6 vs. 1.3±0.5 for the 18 °C, 26 °C and 42 °C groups, respectively; finish: 3.3±0.7 and 3.5±1.1 vs. 2.1±0.9 for the 26 °C, 34 °C, and 42 °C groups, respectively, p<0.05). Sweat rate was lower in the 18 °C group compared to the 26 °C, 34 °C, and 42 °C groups, 3.6±1.3 vs. 7.2±3.0, 7.1±2.0, and 7.6±1.7 g m−2 min−1, respectively, p<0.05. There were no group differences in core temperature and heart rate response during the exercise trials. The current data demonstrate a 13% and 22% longer run time to exhaustion for the 18 °C and 26 °C group, respectively, compared to the 42 °C group despite no differences in beginning and ending core temperatures or baseline 3-mile run time. This capacity difference appears to result from a magnified core to skin gradient via an environmental temperature advantageous to convective heat loss, and in part from an increased sweat rate.  相似文献   

7.
Marine bivalves such as the hard shell clams Mercenaria mercenaria and eastern oysters Crassostrea virginica are affected by multiple stressors, including fluctuations in temperature and CO2 levels in estuaries, and these stresses are expected to be exacerbated by ongoing global climate change. Hypercapnia (elevated CO2 levels) and temperature stress can affect survival, growth and development of marine bivalves, but the cellular mechanisms of these effects are not yet fully understood. In this study, we investigated whether oxidative stress is implicated in cellular responses to elevated temperature and CO2 levels in marine bivalves. We measured the whole-organism standard metabolic rate (SMR), total antioxidant capacity (TAOC), and levels of oxidative stress biomarkers in the muscle tissues of clams and oysters exposed to different temperatures (22 and 27 °C) and CO2 levels (the present day conditions of ~ 400 ppm CO2 and 800 ppm CO2 predicted by a consensus business-as-usual IPCC emission scenario for the year 2100). SMR was significantly higher and the antioxidant capacity was lower in oysters than in clams. Aerobic metabolism was largely temperature-independent in these two species in the studied temperature range (22–27 °C). However, the combined exposure to elevated temperature and hypercapnia led to elevated SMR in clams indicating elevated costs of basal maintenance. No persistent oxidative stress signal (measured by the levels of protein carbonyls, and protein conjugates with malondialdehyde and 4-hydroxynonenal) was observed during the long-term exposure to moderate warming (+ 5 °C) and hypercapnia (~ 800 ppm CO2). This indicates that long-term exposure to moderately elevated CO2 and temperature minimally affects the cellular redox status in these bivalve species and that the earlier observed negative physiological effects of elevated CO2 and temperature must be explained by other cellular mechanisms.  相似文献   

8.
Many mammals have specialized nose-tips with glabrous and often wet skin, called rhinaria. The function of the rhinarium is unknown in most species. Rhinaria differ not only in shape and skin structure, but also in skin temperature. They are considerably colder in carnivorans than in herbivorous artio- and perissodactyls. Domestic dogs are carnivorans and their noses often feel cold, such that they can be used as an abundant and easily accessible model species. We performed a study on rhinarium temperature in dogs under various ambient temperatures as well as in different behavioral and physiological contexts, breeds, and age groups. The rhinaria of adult, alert, and comfortable dogs are colder than ambient temperature from 30 °C (approximately 5 °C colder) down to a break point at about 15 °C. At an ambient temperature of 0 °C, rhinarium temperature is approximately 8 °C and the decrease in skin surface temperature with decreasing ambient temperature has not yet leveled off. The dog rhinarium warms up under a number of circumstances. In contrast to the continuously warm rhinaria of herbivores, our results suggest strongly that the cold state is the operating state of the dog rhinarium.  相似文献   

9.
Maintaining a constant body temperature is critical to the proper functioning of metabolic reactions. Behavioural thermoregulation strategies may minimize the cost of energetic balance when an animal is outside its thermoneutral zone. We investigated whether ambient temperature and relative air humidity influence the use of behavioural strategies by a group of Prince Bernhard's titi monkeys (Callicebus bernhardi) living in a forest fragment. We monitored a social group composed of four individuals (an adult couple and two juveniles) for 1010 h from March to September 2015. We used the instantaneous scan sampling method to record the body posture, the microhabitat, and the occurrence of huddling with group mate(s) when animals were resting. We recorded ambient temperature and relative humidity in the shade every 10 min with a data logger hanging at a height of approximately 5 m. Daytime temperature ranged from 18.5 °C to 38.5 °C and relative humidity ranged from 21% to 97%. Titi monkeys avoided sunny places at higher temperatures, especially above 31 °C. Minimum night temperature did not influence the choice of resting microhabitats during the first hour after sunrise. Sitting was the major resting posture during the day (62%). Titi monkeys increased the use of heat-dissipating postures at ambient temperatures >27 °C. In addition, an increase in relative humidity increased the use of these postures at 26 °C, 27 °C, 29 °C and 33 °C, but caused a decrease at 24 °C. On the other hand, the ambient temperature did not influence the occurrence of huddling. We conclude that microhabitat choice and postural behaviour are important for titi monkeys to prevent overheating and suggest that these behavioural adjustments might also be critical for other tropical arboreal mammals.  相似文献   

10.
Effects of fluctuations in habitat temperature (18–30°) on mitochondrial respiratory behavior and oxidative metabolic responses in the euryhaline ectotherm Scylla serrata are not fully understood. In the present study, effects of different temperatures ranging from 12 to 40 °C on glutamate and succinate mediated mitochondrial respiration, respiratory control ratio (RCR), ATP generation rate, ratio for the utilization of phosphate molecules per atomic oxygen consumption (P/O), levels of lipid peroxidation and H2O2 in isolated gill mitochondria of S. serrata are reported. The pattern of variation in the studied parameters was similar for the two substrates at different temperatures. The values recorded for RCR (≥3) and P/O ratio (1.4–2.7) at the temperature range of 15–25 °C were within the normal range reported for other animals (3–10 for RCR and 1.5–3 for P/O). Values for P/O ratio, ATP generation rate and RCR were highest at 18 °C when compared to the other assay temperatures. However, at low and high extreme temperatures, i.e. at 12 and 40 °C, states III and IV respiration rates were not clearly distinguishable from each other indicating that mitochondria were completely uncoupled. Positive correlations were noticed between temperature and the levels of both lipid peroxidation and H2O2. It is inferred that fluctuations on either side of ambient habitat temperature may adversely influence mitochondrial respiration and oxidative metabolism in S. serrata. The results provide baseline data to understand the impacts of acute changes in temperature on ectotherms inhabiting estuarine or marine environments.  相似文献   

11.
To test the hypothesis that impaired mitochondrial respiration limits cardiac performance at warm temperatures, and examine if any effect(s) are sex-related, the consequences of high temperature on cardiac mitochondrial oxidative function were examined in 10 °C acclimated, sexually immature, male and female Atlantic cod. Active (State 3) and uncoupled (States 2 and 4) respiration were measured in isolated ventricular mitochondria at 10, 16, 20, and 24 °C using saturating concentrations of malate and pyruvate, but at a submaximal (physiological) level of ADP (200 µM). In addition, citrate synthase (CS) activity was measured at these temperatures, and mitochondrial respiration and the efficiency of oxidative phosphorylation (P:O ratio) were determined at [ADP] ranging from 25–200 µM at 10 and 20 °C. Cardiac morphometrics and mitochondrial respiration at 10 °C, and the thermal sensitivity of CS activity (Q10=1.51), were all similar between the sexes. State 3 respiration at 200 µM ADP increased gradually in mitochondria from females between 10 and 24 °C (Q10=1.48), but plateaued in males above 16 °C, and this resulted in lower values in males vs. females at 20 and 24 °C. At 10 °C, State 4 was ~10% of State 3 values in both sexes [i.e. a respiratory control ratio (RCR) of ~10] and P:O ratios were approximately 1.5. Between 20 and 24 °C, State 4 increased more than State 3 (by ~70 vs. 14%, respectively), and this decreased RCR to ~7.5. The P:O ratio was not affected by temperature at 200 μM ADP. However, (1) the sensitivity of State 3 respiration to increasing [ADP] (from 25 to 200 μM) was reduced at 20 vs. 10 °C in both sexes (Km values 105±7 vs. 68±10 μM, respectively); and (2) mitochondria from females had lower P:O values at 25 vs. 100 μM ADP at 20 °C, whereas males showed a similar effect at 10 °C but a much more pronounced effect at 20 °C (P:O 1.05 at 25 μM ADP vs. 1.78 at 100 μM ADP). In summary, our results demonstrate several sex-related differences in ventricular mitochondrial function in Atlantic cod, and suggest that myocardial oxidative function and possibly phosphorylation efficiency may be limited at temperatures of 20 °C or above, particularly in males. These observations could partially explain why cardiac function in Atlantic cod plateaus just below this species׳ critical thermal maximum (~22 °C) and may contribute to yet unidentified sex differences in thermal tolerance and swimming performance.  相似文献   

12.
Oxidative stress is commonly induced when plants are grown under high temperature (HT) stress conditions. Selenium often acts as an antioxidant in plants; however, its role under HT-induced oxidative stress is not definite. We hypothesize that selenium application can partly alleviate HT-induced oxidative stress and negative impacts of HT on physiology, growth and yield of grain sorghum [Sorghum bicolor (L.) Moench]. Objectives of this study were to investigate the effects of selenium on (a) leaf photosynthesis, membrane stability and antioxidant enzymes activity and (b) grain yield and yield components of grain sorghum plants grown under HT stress in controlled environments. Plants were grown under optimal temperature (OT; 32/22 °C daytime maximum/nighttime minimum) from sowing to 63 days after sowing (DAS). All plants were foliar sprayed with sodium selenate (75 mg L?1) at 63 DAS, and HT stress (40/30 °C) was imposed from 65 DAS through maturity. Data on physiological, biochemical and yield traits were measured. High temperature stress decreased chlorophyll content, chlorophyll a fluorescence, photosynthetic rate and antioxidant enzyme activities and increased oxidant production and membrane damage. Decreased antioxidant defense under HT stress resulted in lower grain yield compared with OT. Application of selenium decreased membrane damage by enhancing antioxidant defense resulting in higher grain yield. The increase in antioxidant enzyme activities and decrease in reactive oxygen species (ROS) content by selenium was greater in HT than in OT. The present study suggests that selenium can play a protective role during HT stress by enhancing the antioxidant defense system.  相似文献   

13.
Temperature is one of the most important abiotic factors affected by climate change. It determines physiological processes, ecological patterns and establishes the limits of geographic distribution of species. The induced thermal stress frequently results in physiological and behavioral responses and, in extreme cases, may lead to mortality episodes. Scrobicularia plana and Cerastoderma edule behavioral and mortality responses to temperature were evaluated. Specimens were sampled in the Mondego estuary (Portugal), acclimated and exposed to different temperature treatments (5–35 °C). Individual activity and mortality were registered during 120 h laboratory assays. Both species showed a thermal optimum for their activity (S. plana: 15–23 °C; C. edule: 20–23 °C), and survival was mainly affected by high temperature (S. plana: LC50120 h = 28.86 °C; C. edule: LC50120 h = 28.01 °C), with 100% mortality above critical values (≥32 °C). Results further indicated that both species are more affected the higher the temperature and the longer the exposure time. This study indicates that the occurrence of extreme climatic events, especially heat waves, may be particularly impairing for these species.  相似文献   

14.
A 30 day feeding trial was conducted using a freshwater fish, Labeo rohita (rohu), to determine their thermal tolerance, oxygen consumption and optimum temperature for growth. Four hundred and sixteen L. rohita fry (10 days old, 0.385±0.003 g) were equally distributed between four treatments (26, 31, 33 and 36 °C) each with four replicates for 30 days. Highest body weight gain and lowest feed conversion ratio (FCR) was recorded between 31 and 33 °C. The highest specific growth rate was recorded at 31 °C followed by 33 and 26 °C and the lowest was at 36 °C. Thermal tolerance and oxygen consumption studies were carried out after completion of growth study to determine tolerance level and metabolic activity at four different acclimation temperatures. Oxygen consumption rate increased significantly with increasing acclimation temperature. Preferred temperature decided from relationship between acclimation temperature and Q10 values were between 33 and 36 °C, which gives a better understanding of optimum temperature for growth of L. rohita. Critical thermal maxima (CTMax) and critical thermal minima (CTMin) were 42.33±0.07, 44.81±0.07, 45.35±0.06, 45.60±0.03 and 12.00±0.08, 12.46±0.04, 13.80±0.10, 14.43±0.06, respectively, and increased significantly with increasing acclimation temperatures (26, 31, 33 and 36 °C). Survival (%) was similar in all groups indicating that temperature range of 26–36 °C is not fatal to L. rohita fry. The optimum temperature range for growth was 31–33 °C and for Q10 values was 33–36 °C.  相似文献   

15.
Arteriovenous anastomoses (AVA) in acral skin (palms and soles) have a huge capacity to shunt blood directly from the arteries to the superficial venous plexus of the extremities. We hypothesized that acral skin, which supplies blood to the superficial venous plexus, has a stronger influence on blood flow adjustments during cooling in thermoneutral subjects than does non-acral skin. Thirteen healthy subjects were exposed to stepwise cooling from 32 °C to 25 °C and 17 °C in a climate chamber. Laser Doppler flux and skin temperature were measured simultaneously from the left and right third finger pulp and bilateral upper arm skin. Coherence and correlation analyses were performed of short-term fluctuations at each temperature interval. The flux from finger pulps showed the synchronous spontaneous fluctuations characteristic of skin areas containing AVAs. Fluctuation frequency, amplitude and synchronicity were all higher at 25 °C than at 32 °C and 17 °C (p<0.02). Bilateral flux from the upper arm skin showed an irregular, asynchronous vasomotor pattern with small amplitudes which were independent of ambient temperature. At 32 °C, ipsilateral median flux values from the right arm (95% confidence intervals) were 492 arbitrary units (au) (417, 537) in finger pulp and 43 au (35, 60) in upper arm skin. Flux values gradually decreased in finger pulp to 246 au (109, 363) at 25 °C, before an abrupt fall occurred at a median room temperature of 24 °C, resulting in a flux value of 79 au (31, 116) at 17 °C. In the upper arm skin a gradual fall throughout the cooling period to 21 au (13, 27) at 17 °C was observed. The fact that the response of blood flow to ambient cooling is stronger in acral skin than in non-acral skin suggests that AVAs have a greater capacity to adjust blood flow in thermoneutral zone than arterioles in non-acral skin.  相似文献   

16.
The aim of this study was to compare two Portuguese (Alentejana and Mertolenga) and two exotic (Frisian and Limousine) cattle breeds in terms of the relationship between the increase in ambient temperature and the responses of the evaporative heat loss pathways and the effects on homeothermy. In the experiment, six heifers of the Alentejana, Frisian, and Mertolenga breeds and four heifers of the Limousine breed were used. The animals were placed in four temperature levels, the first one under thermoneutral conditions and the other ones with increase levels of thermal stress. When submitted to severe heat stress, the Frisian developed high thermal tachypnea (125 mov/min) and moderate sweating rates (117 g m−2 h−1), which did not prevent an increase in the rectal temperature (from 38.4 °C to 40.0 °C). Moderate increases in rectal temperature were observed in the Alentejana (from 38.8 °C to 39.4 °C) and Limousine (from 38.6 °C to 39.4 °C), especially in the period of highest heat stress. The Limousine showed moderate levels of tachypnea (101 mov/min) while showing the lowest sweating rates. The Alentejana showed significant increases in sweating rate (156 g m−2 h−1) that played a major role in homeothermy. The Mertolenga showed a superior stability of body temperature, even in the period of highest heat stress (from 38.5 °C to 39.1 °C). Uncommonly, the maintenance of homeothermy during moderate heat stress was achieved primarily by intense tachypnea (122 mov/min). The sweating rate remained abnormally low under conditions of moderate heat stress, rising significantly (110 g m−2 h−1) without evidence of stabilization, only when tendency for heat storage occurred. This unusual response of the evaporative heat loss pathways infers a different thermoregulatory strategy, suggesting a different adaptation to semi-arid environment and strong association with water metabolism.  相似文献   

17.
Thermoregulatory behavior in temperate bats is influenced by gender, food availability, ambient temperature and reproduction. Ecologically and morphologically similar bat species (Myotis bechsteinii, M. nattereri, and Plecotus auritus; Vespertilionidae) facing similar diurnal conditions should therefore not differ in their thermoregulatory behavior. Identified day roosts (n = 23) of radio-tagged bats (n = 30) were spread over an area of 33.1 ha, but ambient temperature did not differ between roosting sites. Furthermore, there was no significant difference in cardinal direction, roost height, canopy coverage, and breast height diameter between day roosts used by the three species. Minimum roost temperatures and isolation values, however, differed significantly between our species with lowest values in P. auritus. The range of skin temperatures (min–max) recorded by temperature-sensitive transmitters was not species-specific with the lowest ranges in late pregnancy (mean ± SD: 7.1 ± 1.1 °C) and highest in post-lactation (mean ± SD: 13.1 ± 1.1 °C). The minimum skin temperature, however, was species-specific with the lowest values in P. auritus (mean ± SD: 20.2 ± 1.1 °C), intermediate in M. nattereri (mean ± SD: 23.4 ± 1.0 °C), and the highest in M. bechsteinii (mean ± SD: 26.8 ± 1.0 °C). Species-specific usage of energy-saving mechanisms might represent an important niche differentiation of species. Different mechanisms might allow, e.g. one species to occupy colder roosts with higher temperature variations or to shorten foraging times due to distinct thermoregulatory behavior.  相似文献   

18.
In standard laboratory environments mice are housed at 20–24 °C. However, their thermoneutral zone ranges between 26 °C and 34 °C. This challenge to homeostasis is by definition stressful, and could therefore affect many aspects of physiology and behavior. We tested the hypothesis that mice under standard laboratory conditions are not housed at a preferred temperature, and predicted that this would be evident in thermotaxis and other behavioral responses to ambient cage temperature. We assessed the temperature preferences of C57BL/6J mice in standard laboratory housing from 4 to 11 weeks of age. Forty-eight mice (24 male and 24 female in groups of three) all born on the same day were randomly assigned to one of eight age treatments. One cage of males and one cage of females were tested each consecutive week. Mice were tested in a set of three connected cages with each cage's temperature set using a water bath. On days 1–3 each group of mice was acclimated to each of the three temperatures (20 °C, 25 °C, or 30 °C) in a random order. Then each group was given free access to all temperatures on days 4–6, and video taped continuously. The location of each mouse and the occurrence of three behavioral categories (Active, Inactive, and Maintenance) were recorded by instantaneous scan samples every 10 min over the 3 days, and time budgets calculated. While both sexes chose warmer temperatures overall (P < 0.001), they preferred warmer temperatures only for maintenance and inactive behavior (P < 0.001). This effect was most pronounced in females (P = 0.017). As temperature selection varied with time of day (P < 0.001), these behavioral differences cannot be due to ambient temperature dictating behavior. We conclude that C57BL/6J mice at 20–24 °C are not housed at their preferred temperature for all behaviors or genders, and that it may not be possible to select a single preferred temperature for all mice.  相似文献   

19.
Freeze tolerant insects must not only survive extracellular ice formation but also the generation of reactive oxygen species (ROS) during oxygen reperfusion upon thawing. Furthermore, diurnal fluctuations in temperature place temperate insects at risk of being exposed to multiple freeze–thaw cycles, yet few studies have examined metrics of survival and oxidative stress in freeze-tolerant insects subjected to successive freezing events. To address this, we assessed survival in larvae of the goldenrod gall fly Eurosta solidaginis, after being subjected to 0, 5, 10, 20, or 30 diurnally repeated cold exposures (RCE) to −18 °C or a single freeze to −18 °C for 20 days. In addition, we measured indicators of oxidative stress, levels of cryoprotectants, and total aqueous antioxidant capacity in animals exposed to the above treatments at 8, 32, or 80 h after their final thaw. Repeated freezing and thawing, rather than time spent frozen, reduced survival as only 30% of larvae subjected to 20 or 30 RCE successfully pupated, compared to those subjected to fewer RCE or a single 20 d freeze, of which 82% pupated. RCE had little effect on the concentration of the cryoprotectant glycerol (4.26 ± 0.66 μg glycerol·ng protein−1 for all treatments and time points) or sorbitol (18.8 ± 2.9 μg sorbitol·mg protein−1 for all treatments and time points); however, sorbitol concentrations were more than twofold higher than controls (16.3 ± 2.2 μg sorbitol·mg protein−1) initially after a thaw in larvae subjected to a single extended freeze, but levels returned to values similar to controls at 80 h after thaw. Thawing likely produced ROS as total aqueous antioxidant capacities peaked at 1.8-fold higher than controls (14.7 ± 1.6 mmol trolox·ng protein−1) in animals exposed to 5, 10, or 20 RCE. By contrast, aqueous antioxidant capacities were similar to controls in larvae subjected to 30 RCE or the single 20 d freeze regardless of time post final thaw, indicating these animals may have had an impaired ability to produce primary antioxidants. Larvae lacking an antioxidant response also had elevated levels of oxidized proteins, nearly twice that of controls (21.8 ± 3.2 mmol chloramine-T·mg protein−1). Repeated freezing also lead to substantial oxidative damage to lipids that was independent of aqueous antioxidant capacity; peroxides were, on average, 5.6-fold higher in larvae subjected to 10, 20 or 30 RCE compared to controls (29.1 ± 7.3 mmol TMOP·μg protein−1). These data suggest that oxidative stress due to repeated freeze–thaw cycles reduces the capacity of E. solidaginis larvae to survive freezing.  相似文献   

20.
The multicolored Asian lady beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is a well-known biological control agent for aphids and soft-bodied insects. We investigated the developmental, survival and reproductive traits of H. axyridis when its eggs were exposed to 25 (control), 37, 39 and 41 °C for 1 h, and then transferred to ambient condition (25 °C). The effects of heat stress on the hatching success greatly differed among temperature treatments. No H. axyridis larvae hatched out at 41 °C. The development, survival, weight, reproduction and longevity of H. axyridis exhibited significant differences with temperature treatment and gender. The survival rate of immatures declined, while the adult fresh weight of both sexes markedly increased with the increase of temperature. Heat exposure of the eggs caused a subsequent reduction in longevity, oviposition period and reproduction, while the pre-oviposition period became longer as the temperature increased. These may imply that the reproductive investment increased in higher level stressful environments, and the response of adult individuals could be linked to the experiences from early stages of the life history. Our findings provide useful information for predicting population dynamics and understanding the potential for H. axyridis as a biological control agent under variable environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号