首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The inheritance of resistance to sunflower downy mildew (SDM) derived from HA-R5 conferring resistance to nine races of the pathogen has been determined and the new source has been designated as Pl 13 . The F2 individuals and F3 families of the cross HA-R5 (resistant) × HA 821 (susceptible) were screened against the four predominant SDM races 300, 700, 730, and 770 in separate tests which indicated dominant control by a single locus or a cluster of tightly linked genes. Bulked segregant analysis (BSA) was carried out on 116 F2 individuals with 500 SSR primer pairs that resulted in the identification of 10 SSR markers of linkage groups 1 (9 markers) and 10 (1 marker) of the genetic map (Tang et al. in Theor Appl Genet 105:1124–1136, 2002) that distinguished the bulks. Of these, the SSR marker ORS 1008 of linkage group 10 was tightly linked (0.9 cM) to the Pl 13 gene. Genotyping the F2 population and linkage analysis with 20 polymorphic primer pairs located on linkage group 10 failed to show linkage of the markers with downy mildew resistance and the ORS 1008 marker. Nevertheless, validation of polymorphic SSR markers of linkage group 1 along with six RFLP-based STS markers of linkage group 12 of the RFLP map of Jan et al. (Theor Appl Genet 96:15–22, 1998) corresponding to linkage group 1 of the SSR map, mapped seven SSR markers (ORS 965-1, ORS 965-2, ORS 959, ORS 371, ORS 716, and ORS 605) including ORS 1008 and one STS marker (STS10D6) to linkage group 1 covering a genetic distance of 65.0 cM. The Pl 13 gene, as a different source with its location on linkage group 1, was flanked by ORS 1008 on one side at a distance of 0.9 cM and ORS 965-1 on another side at a distance of 5.8 cM. These closely linked markers to the Pl 13 gene provide a valuable basis for marker-assisted selection in sunflower breeding programs.  相似文献   

2.
Few widely effective resistance sources to sunflower rust, incited by Puccinia helianthi Schwein., have been identified in confection sunflower (Helianthus annuus L.). The USDA inbred line HA-R6 is one of the few confection sunflower lines resistant to rust. A previous allelism test indicated that rust resistance genes in HA-R6 and RHA 397, an oilseed-type restorer line, are either allelic or closely linked; however, neither have been characterized nor molecularly mapped. The objectives of this study are (1) to locate the rust resistance genes in HA-R6 and RHA 397 on a molecular map, (2) to develop closely linked molecular markers for rust resistance diagnostics, and (3) to determine the resistance spectrum of two lines when compared with other rust-resistant lines. Two populations of 140 F2:3 families each from the crosses of HA 89, as susceptible parent, with HA-R6 and RHA 397 were inoculated with race 336 of P. helianthi in the greenhouse. The resistance genes (R-genes) in HA-R6 and RHA 397 were molecularly mapped to the lower end of linkage group 13, which encompasses a large R-gene cluster, and were designated as R 13a and R 13b, respectively. In the initial maps, SSR (simple sequence repeat) and InDel (insertion and deletion) markers revealed 2.8 and 8.2 cM flanking regions for R 13a and R 13b, respectively, linked with a common marker set of four co-segregating markers, ORS191, ORS316, ORS581, and ZVG61, in the distal side and one marker ORS464 in the proximal side. To identify new markers closer to the genes, sunflower RGC (resistance gene candidate) markers linked to the downy mildew R-gene Pl 8 and located at the same region as R 13a and R 13b were selected to screen the two F2 populations. The RGC markers RGC15/16 and a newly developed marker SUN14 designed from a BAC contig anchored by RGC251 further narrowed down the region flanking R 13a and R 13b to 1.1 and 0.1 cM, respectively. Both R 13a and R 13b are highly effective against all rust races tested so far. Our newly developed molecular markers will facilitate breeding efforts to pyramid the R 13 genes with other rust R-genes and accelerate the development of rust-resistant sunflower hybrids in both confection and oilseed sunflowers.  相似文献   

3.
A nuclear male-sterile mutant, NMS 360, induced by streptomycin from an inbred maintainer line HA 89, possesses a single recessive gene, ms9, controlling male sterility. The present study identified DNA markers linked to the ms9 gene in an F2 population derived from the cross of NMS 360 × RHA 271 and maps the ms9 gene to an existing sunflower SSR linkage map. Bulked segregant analysis was performed using the target region amplification polymorphism (TRAP) marker technique and the simple sequence repeats (SSR) technique. From 444 primer combinations, six TRAP markers linked with the ms9 gene were amplified. Two markers, Ts4p03-202 and Tt3p09-529, cosegregated with the ms9 gene. The other four markers, To3d14-310, Tt3p17-390, Ts4p23-300, and Tt3p09-531, linked with ms9 at a distance of 1.2, 3.7, 10.3, and 22.3 cM, respectively. Thirty SSR primers from 17 linkage groups of a PHA × PHB cultivated sunflower linkage map were screened among the two parents and the F2 population. SSR primer ORS 705 of linkage group 10 was tightly linked to ms9 at a distance of 1.2 cM. The ms9 gene was subsequently mapped to linkage group 10 of the public sunflower SSR linkage map. The markers that were tightly linked with the ms9 gene will be useful in marker-assisted selection of male-sterile plants among segregating populations, and will facilitate the isolation of the ms9 gene by map-based cloning.  相似文献   

4.
The combination of a single cytoplasmic male-sterile (CMS) PET-1 and the corresponding fertility restoration (Rf) gene Rf1 is used for commercial hybrid sunflower (Helianthus annuus L., 2n = 34) seed production worldwide. A new CMS line 514A was recently developed with H. tuberosus cytoplasm. However, 33 maintainers and restorers for CMS PET-1 and 20 additional tester lines failed to restore the fertility of CMS 514A. Here, we report the discovery, characterization, and molecular mapping of a novel Rf gene for CMS 514A derived from an amphiploid (Amp H. angustifolius/P 21, 2n = 68). Progeny analysis of the male-fertile (MF) plants (2n = 35) suggested that this gene, designated Rf6, was located on a single alien chromosome. Genomic in situ hybridization (GISH) indicated that Rf6 was on a chromosome with a small segment translocation on the long arm in the MF progenies (2n = 34). Rf6 was mapped to linkage group (LG) 3 of the sunflower SSR map. Eight markers were identified to be linked to this gene, covering a distance of 10.8 cM. Two markers, ORS13 and ORS1114, were only 1.6 cM away from the gene. Severe segregation distortions were observed for both the fertility trait and the linked marker loci, suggesting the possibility of a low frequency of recombination or gamete selection in this region. This study discovered a new CMS/Rf gene system derived from wild species and provided significant insight into the genetic basis of this system. This will diversify the germplasm for sunflower breeding and facilitate understanding of the interaction between the cytoplasm and nuclear genes.  相似文献   

5.
Rust is a serious fungal disease in the sunflower growing areas worldwide with increasing importance in North America in recent years. Several genes conferring resistance to rust have been identified in sunflower, but few of them have been genetically mapped and linked to molecular markers. The rust resistance gene R 4 in the germplasm line HA-R3 was derived from an Argentinean open-pollinated variety and is still one of most effective genes. The objectives of this study were to determine the chromosome location of the R 4 gene and the allelic relationship of R 4 with the R adv rust resistance gene. A total of 63 DNA markers previously mapped to linkage group (LG) 13 were used to screen for polymorphisms between two parental lines HA 89 and HA-R3. A genetic map of LG 13 was constructed with 21 markers, resulting in a total map length of 93.8 cM and an average distance of 4.5 cM between markers. Two markers, ZVG61 and ORS581, flanked the R 4 gene at 2.1 and 0.8 cM, respectively, and were located on the lower end of LG 13 within a large NBS-LRR cluster identified previously. The PCR pattern generated by primer pair ZVG61 was unique in the HA-R3 line, compared to lines HA-R1, HA-R4, and HA-R5, which carry other R 4 alleles. A SCAR marker linked to the rust resistance gene R adv mapped to LG 13 at 13.9 cM from the R 4 locus, indicating that R adv is not an allele of the R 4 locus. The markers tightly linked to the R 4 gene will facilitate gene pyramiding for rust resistance breeding of sunflower.  相似文献   

6.
The Restorer-of-fertility (Rf) gene is used for efficient hybrid seed production in chili pepper. Although molecular markers linked to Rf in pepper are available, their applications have been limited by lack of agreement between marker genotype and phenotype. To overcome this limitation, we developed new molecular markers using an Rf-segregating population for which most of previously developed markers are not suitable, because of lack of polymorphism. The petunia Rf gene was used as a candidate for marker development. First of all, a pepper bacterial artificial chromosome (BAC) library was screened using a pepper homolog of the petunia Rf gene. The 52 selected BAC clones were classified into three contig groups and each contig group was mapped to chromosome 6. Three markers were developed using the three groups; their genetic distances from the Rf locus were 1.4, 3.2 and 14 cM, respectively. In the second place, an Rf-linked marker was developed from the sequence of a tomoto BAC clone containing three genes which are homologous to petunia Rf gene. Genetic distance between this marker and Rf gene was 1.4 cM. When newly-, and previously-developed molecular markers linked to Rf were applied to 55 pepper breeding lines, one marker named CRF-SCAR was found to be the most broadly applicable, based on correct determination of phenotypes. In the present study, we demonstrate that previously cloned Rf genes can be used as candidate genes for development of new markers for the reliable detection of restorer lines. We expect that the newly-developed markers and information obtained from application of markers will be useful for reliable detection of restorer lines.  相似文献   

7.
Sunflower rust, caused by the fungus Puccinia helianthi Schwein., was not a serious problem for many decades because of successful deployment of effective resistance genes in commercial sunflower (Helianthus annuus L.) hybrids in North America. In the 1980s and early 1990s, however, a shift in virulence of the rust race population in North America rendered most of the commercial hybrids susceptible to new virulent races. A germplasm line, HA-R2, carrying the rust resistance gene R 5 was released as a multi-race rust-resistant line in 1985 but has not been widely used in commercial hybrid production. R 5 remains effective against the prevalent rust races of sunflower in North America. This gene was previously reported to be associated with two simple sequence repeat (SSR) markers, ORS316 and ORS630, which were mapped to linkage group (LG) 13 of sunflower. However, out of the 63 markers of LG13 screened in the present study, only 18, including ORS316 and ORS630, were polymorphic. These markers, which covered all of LG 13, were assayed in 94 individual F2 progenies derived from the cross of HA 89 with HA-R2. All failed to detect any locus in LG13 associated with the gene R 5 . Subsequently, a bulked segregant analysis was employed with an additional 510 SSR markers selected from the remaining 16 LGs of the sunflower genome. This analysis demonstrated that the LG2 markers showed association with rust resistance. Genotyping of the 94 F2 individuals with 23 polymorphic SSR markers from LG2 confirmed the R 5 location on LG2, flanked by two SSR markers, ORS1197-2 and ORS653a, at 3.3 and 1.8?cM of genetic distance, respectively. The markers for R 5 developed in this study will provide a useful tool for speeding up deployment of the R 5 gene in commercial sunflower hybrid production.  相似文献   

8.
Increasing the stearic acid content to improve sunflower (Helianthus annuus L.) oil quality is a desirable breeding objective for food-processing applications. CAS-14 is a sunflower mutant line with a high stearic acid content in its seed oil (>35% vs. <6% in currently grown sunflower hybrids), which is controlled by the Es3 gene. However, the expression of the high stearic acid character in CAS-14 is strongly influenced by temperature during seed maturation and it is not uniform along the seed. The objectives of this study were (1) to identify PCR-based molecular markers linked to the Es3 gene from CAS-14, (2) to map this gene on the sunflower genetic map, and (3) to characterize the interaction between CAS-14 and CAS-3, a sunflower high stearic acid (about 26%) mutant line with the Es1 and Es2 genes determining this trait. Two F2 mapping populations were developed from crosses between CAS-14 and P21, a nuclear male sterile line with the Ms11 gene controlling this character, and between CAS-14 and CAS-3. One hundred and thirty-three individuals from P21×CAS-14, and 164 individuals from CAS-3×CAS-14 were phenotyped in F2 and F3 seed generations for fatty acid composition using gas–liquid chromatography, and they were then genotyped with microsatellite [simple sequence repeat (SSR)] and insertion–deletion (INDEL) markers. Bulk segregant analysis in the P21×CAS-14 population identified two markers on LG 8 putatively linked to Es3. A large linkage group was identified using additional markers mapping to LG 8. Es3 mapped to the distal half of LG 8 and was flanked by the SSR markers ORS243 and ORS1161 at genetic distances of 0.5, and 3.9 cM, respectively. The Ms11 gene was also mapped to LG 8 and genetic distance between this gene and Es3 was found to be 7.4 cM. In the CAS-3×CAS-14 population, two QTLs were identified on LG 1 and LG 8, which underlie the Es1 gene from CAS-3 and the Es3 gene from CAS-14, respectively. A significant epistatic interaction between these two QTLs was found. Results from this study provided a basis for determining CAS-14 efficient breeding strategies.  相似文献   

9.
The major genes controlling sunflower downy mildew resistance have been designated as Pl genes. Ten of the more than 20 Pl genes reported have been mapped. In this study, we report the molecular mapping of gene Pl(16) in a sunflower downy mildew differential line, HA-R4. It was mapped on the lower end of linkage group (LG) 1 of the sunflower reference map, with 12 markers covering a distance of 78.9 cM. One dominant simple sequence repeat (SSR) marker, ORS1008, co-segregated with Pl(16), and another co-dominant expressed sequence tag (EST)-SSR marker, HT636, was located 0.3 cM proximal to the Pl(16) gene. The HT636 marker was also closely linked to the Pl(13) gene in another sunflower differential line, HA-R5. Thus the Pl(16) and Pl(13) genes were mapped to a similar position on LG 1 that is different from the previously reported Pl(14) gene. When the co-segregating and tightly linked markers for the Pl(16) gene were applied to other germplasms or hybrids, a unique band pattern for the ORS1008 marker was detected in HA-R4 and HA-R5 and their F(1) hybrids. This is the first report to provide two tightly linked markers for both the Pl(16) and Pl(13) genes, which will facilitate marker-assisted selection in sunflower resistance breeding, and provide a basis for the cloning of these genes.  相似文献   

10.
Rice stripe virus (RSV) is one of the most damaging diseases affecting rice in East Asia. Rice variety 502 is highly resistant to RSV, while variety 5112 is extremely susceptible. Field statistical data revealed that all “502 × 5112” F1 individuals were resistant to RSV and the ratio of resistant to susceptible plants was 3:1 in the F2 population and 1:1 in the BC1F1 population. These results indicated that a dominant gene, designated RSV1, controlled the resistance. Simple sequence repeat (SSR) analysis was subsequently carried out in an F2 population. Sixty SSR markers evenly distributed on the 12 rice chromosomes were screened and tested. Two markers, RM229 and RM206, showed linkage with RSV1. Based on this result, six SSR markers flanking RM229 and RM206 were further selected and tested. Results indicated that SSR markers RM457 and RM473E were linked to RSV1 with a genetic distance of 4.5 and 5.0 cM, respectively. All of the four SSR markers (RM229, RM473E, RM457 and RM206) linked to RSV1 were all located on chromosome 11, therefore RSV1 should be located on chromosome 11 also. In order to find some new markers more closely linked to the RSV1 gene, sequence-related amplified polymorphism (SRAP) analysis was performed. A total of 30 SRAP primer-pairs were analyzed, and one marker SR1 showed linkage with RSV1 at a genetic distance of 2.9 cM. Finally, RSV1 gene was mapped on chromosome 11 between SSR markers RM457 and SRAP marker SR1 with a genetic distance of 4.5 cM and 2.9 cM, respectively.  相似文献   

11.
Sunflower oil is one of the major sources of edible oil. As the second largest hybrid crop in the world, hybrid sunflowers are developed by using the PET1 cytoplasmic male sterility system that contributes to a 20?% yield advantage over the open-pollinated varieties. However, sunflower production in North America has recently been threatened by the evolution of new virulent pathotypes of sunflower rust caused by the fungus Puccinia helianthi Schwein. Rf ANN-1742, an 'HA 89' backcross restorer line derived from wild annual sunflower (Helianthus annuus L.), was identified as resistant to the newly emerged rust races. The aim of this study was to elucidate the inheritance of rust resistance and male fertility restoration and identify the chromosome location of the underlying genes in Rf ANN-1742. Chi-squared analysis of the segregation of rust response and male fertility in F(2) and F(3) populations revealed that both traits are controlled by single dominant genes, and that the rust resistance gene is closely linked to the restorer gene in the coupling phase. The two genes were designated as R ( 11 ) and Rf5, respectively. A set of 723 mapped SSR markers of sunflower was used to screen the polymorphism between HA 89 and the resistant plant. Bulked segregant analysis subsequently located R ( 11 ) on linkage group (LG) 13 of sunflower. Based on the SSR analyses of 192 F(2) individuals, R ( 11 ) and Rf5 both mapped to the lower end of LG13 at a genetic distance of 1.6?cM, and shared a common marker, ORS728, which was mapped 1.3?cM proximal to Rf5 and 0.3?cM distal to R ( 11 ) (Rf5/ORS728/R ( 11 )). Two additional SSRs were linked to Rf5 and R ( 11 ): ORS995 was 4.5?cM distal to Rf5 and ORS45 was 1.0?cM proximal to R ( 11 ). The advantage of such an introduced alien segment harboring two genes is its large phenotypic effect and simple inheritance, thereby facilitating their rapid deployment in sunflower breeding programs. Suppressed recombination was observed in LGs 2, 9, and 11 as it was evident that no recombination occurred in the introgressed regions of LGs 2, 9, and 11 detected by 5, 9, and 22 SSR markers, respectively. R ( 11 ) is genetically independent from the rust R-genes R ( 1 ), R ( 2 ), and R ( 5 ), but may be closely linked to the rust R-gene R ( adv ) derived from wild Helianthus argophyllus, forming a large rust R-gene cluster of R ( adv )/R ( 11 )/R ( 4 ) in the lower end of LG13. The relationship of Rf5 with Rf1 is discussed based on the marker association analysis.  相似文献   

12.
Construction of an RFLP linkage map for cultivated sunflower   总被引:5,自引:0,他引:5  
 An RFLP linkage map was constructed for cultivated sunflower Helianthus annuus L., based on 271 loci detected by 232 cDNA probes. Ninety-three F2 plants of a cross between inbred lines RHA 271 and HA 234 were used as the mapping population. These genetic markers plus a fertility restoration gene, Rf 1, defined 20 linkage groups, covering 1164 cM of the sunflower genome. Of the 71 loci 202 had codominant genotypic segregation, with the rest showing dominant segregation. Thirty-two of the 232 probes gave multiple locus segregation. There were 39 clusters of tightly linked markers with 0 cM distance among loci. This map has an average marker-to-marker distance of 4.6 cM, with 11 markerless regions exceeding 20 cM. Received: 17 June 1997 / Accepted: 19 June 1997  相似文献   

13.
A high-resolution genetic map of sunflower was constructed by integrating SNP data from three F2 mapping populations (HA 89/RHA 464, B-line/RHA 464, and CR 29/RHA 468). The consensus map spanned a total length of 1443.84 cM, and consisted of 5,019 SNP markers derived from RAD tag sequencing and 118 publicly available SSR markers distributed in 17 linkage groups, corresponding to the haploid chromosome number of sunflower. The maximum interval between markers in the consensus map is 12.37 cM and the average distance is 0.28 cM between adjacent markers. Despite a few short-distance inversions in marker order, the consensus map showed high levels of collinearity among individual maps with an average Spearman''s rank correlation coefficient of 0.972 across the genome. The order of the SSR markers on the consensus map was also in agreement with the order of the individual map and with previously published sunflower maps. Three individual and one consensus maps revealed the uneven distribution of markers across the genome. Additionally, we performed fine mapping and marker validation of the rust resistance gene R12, providing closely linked SNP markers for marker-assisted selection of this gene in sunflower breeding programs. This high resolution consensus map will serve as a valuable tool to the sunflower community for studying marker-trait association of important agronomic traits, marker assisted breeding, map-based gene cloning, and comparative mapping.  相似文献   

14.
Cytoplasmic male sterility (CMS) plays an important role in crop heterosis exploitation. Determining one or more nuclear genes that can restore male fertility to CMS is essential for developing hybrid cultivars. Genetic and physical mapping is the standard technique required for isolating these restoration genes. By screening 2,250 simple sequence repeat (SSR) primer pairs in cotton (Gossypium hirsutum L.), we identified five new SSR markers that are closely linked to the Rf 1 gene, a fertility restorer gene of cotton for CMS-D2. Based on our previous fine mapping of the Rf 1 gene and assemblage of three published STS markers, we constructed a high-resolution genetic map of Rf 1 containing 13 markers in a genetic distance of 0.9 cM. The 13 molecular markers were used to screen a bacterial artificial chromosome (BAC) library from a restorer line 0-613-2R containing Rf 1 gene, which yielded 50 single positive clones. There was an average of 3.8 clones ranging from 1 to 12 BAC clones per PCR marker. These 50 clones produced an average insert size of 120 kb (ranging between 80 and 225 kb). Thirty-five primer pairs were designed based on 38 sequences of BAC ends, and two new STS markers tightly linked to Rf 1 gene have been tagged and integrated into this map. The physical map for the Rf 1 gene was constructed by fingerprinting the positive clones digested with the HindIII enzyme. We were able to delimit the possible location of the Rf 1 gene to a minimum of two BAC clones spanning an interval of approximately 100 kb between two clones designated 081-05K and 052-01N. Further work using these two BAC clones will lead to isolation of the Rf 1 gene in cotton.  相似文献   

15.
Locating the petunia Rf gene on a 650-kb DNA fragment   总被引:1,自引:0,他引:1  
 A bulked segregant analysis was conducted in order to find RAPD and AFLP markers linked to the restorer of fertility (Rf ) gene in petunia. One RAPD marker, OP704, and one AFLP marker, ECCA/ MACT, were found to be closely linked to Rf (<1 cM) in our mapping population produced from an intraspecific Petunia hybrida cross. These two single-copy markers bracketing Rf were then mapped as RFLPs on the tomato map. Despite some rearrangement between the petunia and the tomato genomes, this synteny survey revealed two tomato markers, TG250 and CT24, closely linked to Rf. Physical mapping indicates that CT24, OP704 and ECCA/MACT lie on the same 650-kb MluI fragment. A physical to genetic distance ratio of 400 kb/cM around the Rf gene should make it feasible to identify markers physically very close to Rf. Received: 20 August 1997 / Accepted: 21 October 1997  相似文献   

16.
Pre-emptive breeding for host disease resistance is an effective strategy for combating and managing devastating incursions of plant pathogens. Comprehensive, long-term studies have revealed that virulence to the R 2 sunflower (Helianthus annuus L.) rust resistance gene in the line MC29 does not exist in the Australian rust (Puccinia helianthi) population. We report in this study the identification of molecular markers linked to this gene. The three simple sequence repeat (SSR) markers ORS795, ORS882, and ORS938 were linked in coupling to the gene, while the SSR marker ORS333 was linked in repulsion. Reliable selection for homozygous-resistant individuals was efficient when the three markers, ORS795, ORS882, and ORS333, were used in combination. Phenotyping for this resistance gene is not possible in Australia without introducing a quarantinable race of the pathogen. Therefore, the availability of reliable and heritable DNA-based markers will enable the efficient deployment of this gene, permitting a more effective strategy for generating sustainable commercial cultivars containing this rust resistance gene.  相似文献   

17.
Two recombinant inbred line (RIL) populations derived from intraspecific crosses with a common parental line (JG62) were employed to develop a chickpea genetic map. Molecular markers, flower colour, double podding, seed coat thickness and resistance to fusarium wilt race 0 (FOC-0) were included in the study. Joint segregation analysis involved a total of 160 markers and 159 RILs. Ten linkage groups (LGs) were obtained that included morphological markers and 134 molecular markers (3 ISSRs, 13 STMSs and 118 RAPDs). Flower colour (B/b) and seed coat thickness (Tt/tt) appeared to be linked to STMS (GAA47). The single-/double-podding locus was located on LG9 jointly with two RAPD markers and STMS TA80. LG3 included a gene for resistance to FOC-0 (Foc01/foc01) flanked by RAPD marker OPJ20600 and STMS marker TR59. The association of this LG with FOC-0 resistance was confirmed by QTL analysis in the CA2139 × JG62 RIL population where two genes were involved in the resistance reaction. The STMS markers enabled comparison of LGs with preceding maps.  相似文献   

18.
Crown gall, caused by Agrobacterium tumefaciens, causes severe damage to apple saplings resulting in weak growth and loss of commercial value. Developing molecular markers linked to crown gall resistance genes, and establishing a marker-assisted selection (MAS) for such a trait would be an effective way to improve rootstock breeding for crown gall resistance. The wild apple Malus sieboldii Sanashi 63 carries the crown gall resistance gene Cg effective against the A. tumefaciens strain Peach CG8331 (biovar 2). Applying the genome scanning approach on the mapping population JM7 (cgcg) × Malus sieboldii Sanashi 63 (Cgcg), Cg was mapped on the linkage group (LG) 2. The constructed linkage map of LG 2 of Sanashi 63 spans 59.8 cM and has an average marker density of 3.5 cM per marker. The 191 bp allele of the simple sequence repeat (SSR) NZmsEB119405 co-segregated perfectly with Cg in a segregating population of 119 individuals. Quantitative trait loci, accounting for 75.3% to 84.3% of phenotypic variation were detected in the same position. Testing eight additional rootstocks with the NZmsEB119405 SSR marker revealed that the 191 bp allele is also present in crown gall-susceptible rootstock accessions. Only the markers CH03b01 and NZmsPal92 mapping at 0.9 and 4.3 cM from Cg, respectively, showed “private” alleles associated to Cg.  相似文献   

19.
In Laminaria japonica Aresch breeding practice, two quantitative traits, frond length (FL) and frond width (FW), are the most important phenotypic selection index. In order to increase the breeding efficiency by integrating phenotypic selection and marker-assisted selection, the first set of QTL controlling the two traits were determined in F2 family using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. Two prominent L. japonicas inbred lines, one with “broad and thin blade” characteristics and another with “long and narrow blade” characteristics, were applied in the hybridization to yield the F2 mapping population with 92 individuals. A total of 287 AFLP markers and 11 SSR markers were used to construct a L. japonica genetic map. The yielded map was consisted of 28 linkage groups (LG) named LG1 to LG28, spanning 1,811.1 cM with an average interval of 6.7 cM and covering the 82.8% of the estimated genome 2,186.7 cM. While three genome-wide significant QTL were detected on LG1 (two QTL) and LG4 for “FL,” explaining in total 42.36% of the phenotypic variance, two QTL were identified on LG3 and LG5 for the trait “FW,” accounting for the total of 36.39% of the phenotypic variance. The gene action of these QTL was additive and partially dominant. The yielded linkage map and the detected QTL can provide a tool for further genetic analysis of two traits and be potential for maker-assisted selection in L. japonica breeding.  相似文献   

20.
An integrated genetic linkage map of the medicinal and ornamental plant Catharanthus roseus, based on different types of molecular and morphological markers was constructed, using a F2 population of 144 plants. The map defines 14 linkage groups (LGs) and consists of 131 marker loci, including 125 molecular DNA markers (76 RAPD, 3 RAPD combinations; 7 ISSR; 2 EST-SSR from Medicago truncatula and 37 other PCR based DNA markers), selected from a total of 472 primers or primer pairs, and six morphological markers (stem pigmentation, leaf lamina pigmentation and shape, leaf petiole and pod size, and petal colour). The total map length is 1131.9 cM (centiMorgans), giving an average map length and distance between two markers equal to 80.9 cM and 8.6 cM, respectively. The morphological markers/genes were found linked with nearest molecular or morphological markers at distances varying from 0.7 to 11.4 cM. Linkage was observed between the morphological markers concerned with lamina shape and petiole size of leaf on LG1 and leaf, stem and petiole pigmentation and pod size on LG8. This is the first genetic linkage map of C. roseus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号