首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Critical transitions between alternative stable states have been shown to occur across an array of complex systems. While our ability to identify abrupt regime shifts in natural ecosystems has improved, detection of potential early-warning signals previous to such shifts is still very limited. Using real monitoring data of a key ecosystem component, we here apply multiple early-warning indicators in order to assess their ability to forewarn a major ecosystem regime shift in the Central Baltic Sea. We show that some indicators and methods can result in clear early-warning signals, while other methods may have limited utility in ecosystem-based management as they show no or weak potential for early-warning. We therefore propose a multiple method approach for early detection of ecosystem regime shifts in monitoring data that may be useful in informing timely management actions in the face of ecosystem change.  相似文献   

2.
Generic early-warning signals such as increased autocorrelation and variance have been demonstrated in time-series of systems with alternative stable states approaching a critical transition. However, lag times for the detection of such leading indicators are typically long. Here, we show that increased spatial correlation may serve as a more powerful early-warning signal in systems consisting of many coupled units. We first show why from the universal phenomenon of critical slowing down, spatial correlation should be expected to increase in the vicinity of bifurcations. Subsequently, we explore the applicability of this idea in spatially explicit ecosystem models that can have alternative attractors. The analysis reveals that as a control parameter slowly pushes the system towards the threshold, spatial correlation between neighboring cells tends to increase well before the transition. We show that such increase in spatial correlation represents a better early-warning signal than indicators derived from time-series provided that there is sufficient spatial heterogeneity and connectivity in the system.  相似文献   

3.
宋明华  朱珏妃  牛书丽 《生态学报》2020,40(18):6282-6292
生态系统在气候变化和土地利用及人类活动等的影响下其状态会由某一稳态转变到另一稳态。由于环境压力的复杂性、非线性、随机性等特征,往往导致状态转变表现为非线性、突变、跃变等特点。准确界定系统状态跃变的拐点或阈值点存在很大的挑战,而捕捉接近临界拐点前的生态系统结构和属性上的变化特征作为早期预警信号是切实可行的。早期预警信号理论经历理论框架构建、方法确立、机理认知等近半个多世纪的探索,已经由最初的通过仅依赖检测临界点恢复力的速率减慢、方差增加、系统自相关增强等统计学信号过度到更加多样化的检测方法,如检测系统组分属性的变化特征,诊断系统组分各属性之间的关系变化,系统组分的性状变化、系统组分网络结构变化等等,并且试图整合多信号提高预警的精确性。利用来自自然生态系统的长时间高密度数据集和空间代替时间的数据集,基于多度及性状信号的早期预警,结合稳定性、临界恢复力的减速、以及统计参数的指示作用对系统跃变进行早期诊断和预警是预测生态学的主旨。早期预警信号的深入研究不仅能够完善已有理论的不足,同时还能够为生态系统的保护和管理提供切实有效的理论指导。  相似文献   

4.
随着气候变化和人类活动对陆地生态系统双重扰动的不断加剧,越来越多的研究已经意识到生态系统结构和功能会发生难以预知的突变,并且恢复起来需要很长时间.开发判别典型生态系统临界转换的早期预警模型及理解其生态学机制成为生态学研究的热点.目前,基于跨越多个时空尺度的理论和实验研究,提出了多种预警陆地生态系统临界转换的理论框架和指...  相似文献   

5.
《植物生态学报》2015,39(9):932
The concept of ecological thresholds was raised in the 1970s. However, it was subsequently given different definitions and interpretations depending on research fields or disciplines. For most scientists, ecological thresholds refer to the points or zones that link abrupt changes between alternative stable states of an ecosystem. The measurement and quantification of ecological thresholds have great theoretical and practical significance in ecological research for clarifying the structure and function of ecosystems, for planning sustainable development modes, and for delimiting ecological red lines in managing the ecosystems of a region. By reviewing the existing concepts and classifications of ecological thresholds, we propose a new concept and definition at two different levels: the ecological threshold points, i.e. the turning points of quantitative changes to qualitative changes, which can be considered as ecological red lines; the ecological threshold zones, i.e. the regime shifts of the quantitative changes among different stable states, which can be considered as the yellow and/or orange warning boundaries of the gradual ecological changes. The yellow thresholds mean that an ecosystem can return to a stable state by its self-adjustment, the orange thresholds indicate that the ecosystem will stay in the equilibrium state after interference factors being removed, whereas the red thresholds, as the critical threshold points, indicate that the ecosystem will undergo irreversible degradation or even collapse beyond those points. We also summarizes two types of popular Methods in determining ecological thresholds: statistical analysis and modeling based on data of field observations. The applications of ecological thresholds in ecosystem service, biodiversity conservation and ecosystem management research are also reviewed. Future research on ecological thresholds should focus on the following aspects: (1) methodological development for measurement and quantification of ecological thresholds; (2) emphasizing the scaling effect of ecological thresholds and establishment of national-scale observation system and network; and (3) implementation of ecological thresholds as early warning tools in ecosystem management and delimiting ecological red lines.  相似文献   

6.
In the vicinity of tipping points—or more precisely bifurcation points—ecosystems recover slowly from small perturbations. Such slowness may be interpreted as a sign of low resilience in the sense that the ecosystem could easily be tipped through a critical transition into a contrasting state. Indicators of this phenomenon of ‘critical slowing down (CSD)’ include a rise in temporal correlation and variance. Such indicators of CSD can provide an early warning signal of a nearby tipping point. Or, they may offer a possibility to rank reefs, lakes or other ecosystems according to their resilience. The fact that CSD may happen across a wide range of complex ecosystems close to tipping points implies a powerful generality. However, indicators of CSD are not manifested in all cases where regime shifts occur. This is because not all regime shifts are associated with tipping points. Here, we review the exploding literature about this issue to provide guidance on what to expect and what not to expect when it comes to the CSD-based early warning signals for critical transitions.  相似文献   

7.
徐驰  王海军  刘权兴  王博 《生物多样性》2020,28(11):1417-627
许多生态系统可能在短时间内发生难以预料的状态突变, 其中一些生态系统突变的机理可以用多稳态理论进行解释。近年来生态系统的多稳态和突变现象及其机理吸引了研究者和管理者的广泛关注。本文重点对生态系统多稳态的理论基础、识别方法及稳态转换发生的早期预警信号进行综述, 并基于典型生态系统过程对现实世界中可能观测到的稳态转换进行实例分析, 最后对多稳态概念框架和理论应用中的潜在争议进行讨论, 以期为非线性生态系统动态的理论研究、管理实践和生物多样性保护等提供参考。  相似文献   

8.
赵东升  张雪梅 《生态学报》2021,41(16):6314-6328
在多稳态的生态系统中,外力可能导致生态系统状态突然之间发生不可逆转的转变,从而达到一个新的平衡状态。但目前对多稳态理论的系统研究很少,如何使用预警信号来预测生态系统的状态转变依旧是个难题。通过多稳态理论的梳理提出了一个更加综合的多稳态定义,并以放牧模型为例,系统总结了多稳态理论的相关概念,将多稳态理论应用在生态系统演替和扰沌理论的解释中;通过对生态系统稳态转换预警信号的原理、优缺点和应用条件的分析,对不同尺度下多稳态的研究方法进行了归纳;最后提出了目前多稳态领域的研究问题和未来的研究重点。结果表明:(1)将时间和空间预警信号结合在一起,并量化正确预警信号的概率,对错误预警信号的比例进行加权,可能会提供更准确的稳态转换的预报。(2)定量观测试验适用于小尺度的研究,而较大尺度的研究则采用简化的模型来模拟研究,选择正确的尺度极有可能改变预警信号的可靠性。(3)结合多稳态理论研究生态系统临界转换和反馈控制机制,并将基于性状的特征指标和进化动力学纳入其中,是生态系统修复实践的重要研究方向。(4)将多稳态相关理论和生态保护管理政策的实践相结合,是多稳态理论未来应用的前景。本研究为多稳态理论和实践的深入研究提供科学支撑。  相似文献   

9.
A range of indicators have been proposed for identifying the elevated risk of critical transitions in ecosystems. Most indicators are based on the idea that critical slowing down can be inferred from changes in statistical properties of natural fluctuations and spatial patterns. However, identifying these signals in nature has remained challenging. An alternative approach is to infer changes in resilience from differences in standardized experimental perturbations. However, system-wide experimental perturbations are rarely feasible. Here we evaluate the potential to infer the risk of large-scale systemic transitions from local experimental or natural perturbations. We use models of spatially explicit landscapes to illustrate how recovery rates upon small-scale perturbations decrease as an ecosystem approaches a tipping point for a large-scale collapse. We show that the recovery trajectory depends on: (1) the resilience of the ecosystem at large scale, (2) the dispersal rate of organisms, and (3) the scale of the perturbation. In addition, we show that recovery of natural disturbances in a heterogeneous environment can potentially function as an indicator of resilience of a large-scale ecosystem. Our analyses reveal fundamental differences between large-scale weak and local-scale strong perturbations, leading to an overview of opportunities and limitations of the use of local disturbance-recovery experiments.  相似文献   

10.
Climate change and intensified land‐use impose severe stress on arid ecosystems, resulting in relatively rapid degradation which is difficult to reverse. To prevent such critical transitions it is crucial to detect early warning signals. Increased ‘patchiness’– smaller and fewer vegetated patches – is thought to be such a signal, but the underlying mechanisms are still poorly understood. Facilitation between plants is known to be an important mechanism driving the patchiness of the vegetation, but we lack understanding of how interactions between plants change in response to combined effects of drought and consumer pressure – the main stressors in many arid ecosystems. Over the last decade numerous experimental studies have tested how intensity of facilitation between plants changes with increasing stress. The most recent synthesis predicts a decline in facilitation intensity at the severe end of a drought stress gradient. Adding consumer pressure may result in even earlier and faster declines in facilitation intensity. So far, studies on critical transitions and plant–plant interactions have developed separately. The relationship between stress and facilitation intensity has been overlooked in critical transition theory, while facilitation intensity may determine the position of a critical transition threshold. In this study, we incorporate experimental studies on the relation between stress and facilitation intensity into the critical transition framework, to improve our ability to predict critical transitions. Moreover, we propose that a decline in facilitation intensity at the severe end of a stress gradient may occur prior to a critical transition. Inclusion of consumer pressure will speed up this process, leading to earlier and faster degradation. In‐field monitoring of seedling–facilitator associations and declines in facilitator recruitment can indicate declines in facilitation intensity and may thus provide additional early warning signals for imminent critical transitions, besides increased patchiness.  相似文献   

11.
随着气候变化和人类活动的加剧, 生态系统正处于剧烈变化中, 生态学家需要从更大的时空尺度去理解生态系统过程和变化规律, 应对全球变化带来的威胁和挑战。传统地面调查方法主要获取的是样方尺度、离散的数据, 难以满足大尺度生态系统研究对数据时空连续性的要求。相比于传统地面调查方法, 遥感技术具有实时获取、重复监测以及多时空尺度的特点, 弥补了传统地面调查方法空间观测尺度有限的缺点。遥感通过分析电磁波信息从而识别地物属性和特征, 反演生态系统组成、能量流动和物质循环过程中的关键要素, 已逐渐成为生态学研究中必不可少的数据来源。近年来, 随着激光雷达、日光诱导叶绿素荧光等新型遥感技术以及无人机、背包等近地面遥感平台的发展, 个人化、定制化的近地面遥感观测逐渐成熟, 新一代遥感技术正在推动遥感信息“二维向三维”的转变, 为传统样地观测与卫星遥感之间搭建了尺度推绎桥梁, 这也给生态系统生态学带来了新的机遇, 推动生态系统生态学向多尺度、多过程、多学科、多途径发展。因此, 该文从生态系统生态学角度出发, 重点关注陆地生态系统中生物组分, 并分别从生态系统类型、结构、功能和生物多样性等方面, 结合作者在实际研究工作中的主要成果和该领域国际前沿动态, 阐述遥感技术在生态系统生态学中的研究现状并指出我国生态系统遥感监测领域发展方向及亟待解决的问题。  相似文献   

12.
《植物生态学报》2018,42(4):453
水分利用效率(WUE)既是衡量植被生长适应性的重要指标, 也是连接生态系统水碳循环的纽带。认识不同类型植被WUE的时间变化特征及驱动机制有助于增进对生态系统水碳循环过程的理解。已有研究表明, 在不同时间尺度下, WUE呈现不同的时间变化特征, 但现有研究多是集中在单一的时间尺度下开展的, 对不同植被类型在不同时间尺度下的动态变化及影响因子分析开展得较少。该研究选用中国北方地区9个定位观测台站的通量与气象数据, 分析了WUE的日内变化和季节变化特征, 并在0.5 h、1 d、8 d以及月尺度下, 分别分析了气温(Ta)、相对湿度(RH)、饱和水汽压差(VPD)以及光合有效辐射(PAR)等非生物因子对WUE的影响。同时, 该研究也分析了植被叶面积指数(LAI)和降水(P)对WUE的影响。研究发现: (1) WUE的日变化呈现不对称的“U”型特征, 日出时的WUE普遍高于日落时。荒漠地区WUE的季节变化呈“U”型, 而其他站点呈现单峰型。不同站点WUE的季节变化可以分为总初级生产力(GPP)主导型和蒸发散(ET)主导型, 并随着时间尺度的扩大, GPPET的主导作用逐渐增强。(2)在较短的时间尺度(0.5 h、1 d)上, Ta、RH、VPDPAR是影响WUE变化的主要因子, 但随着时间尺度的扩大, TaRH成为影响WUE变化的主要因子, 并且与WUE的相关关系受GPPETWUE主导作用的影响, 随着时间尺度增大, TaRHWUE的线性关系更加显著。(3) WUE大体上随LAI的增加而增加, 但当LAI超过一定值时, 在长白山、海北和张掖站, WUELAI的敏感性降低。降水与WUE的关系在研究区域内并不显著。(4)不同植被类型的WUE由大到小依次为森林、农田、草地、湿地和荒漠。  相似文献   

13.
Among the properties that are common to complex systems, the presence of critical thresholds in the dynamics of the system is one of the most important. Recently, there has been interest in the universalities that occur in the behavior of systems near critical points. These universal properties make it possible to estimate how far a system is from a critical threshold. Several early-warning signals have been reported in time series representing systems near catastrophic shifts. The proper understanding of these early-warnings may allow the prediction and perhaps control of these dramatic shifts in a wide variety of systems. In this paper we analyze this universal behavior for a system that is a paradigm of phase transitions, the Ising model. We study the behavior of the early-warning signals and the way the temporal correlations of the system increase when the system is near the critical point.  相似文献   

14.
Theory suggests that gradual environmental change may erode the resilience of ecosystems and increase their susceptibility to critical transitions. This notion has received a lot of attention in ecology in recent decades. An important question receiving far less attention is whether ecosystems can cope with the rapid environmental changes currently imposed. The importance of this question was recently highlighted by model studies showing that elevated rates of change may trigger critical transitions, whereas slow environmental change would not. This paper aims to provide a mechanistic understanding of these rate‐induced critical transitions to facilitate identification of rate sensitive ecosystems. Analysis of rate sensitive ecological models is challenging, but we demonstrate how rate‐induced transitions in an elementary model can still be understood. Our analyses reveal that rate‐induced transitions 1) occur if the rate of environmental change is high compared to the response rate of ecosystems, 2) are driven by rates, rather than magnitudes, of change and 3) occur once a critical rate of change is exceeded. Disentangling rate‐induced transitions from classical transitions in observations would be challenging. However, common features of rate‐sensitive models suggest that ecosystems with coupled fast–slow dynamics, exhibiting repetitive catastrophic shifts or displaying periodic spatial patterns are more likely to be rate sensitive. Our findings are supported by experimental studies showing rate‐dependent outcomes. Rate sensitivity of models suggests that the common definition of ecological resilience is not suitable for a subset of real ecosystems and that formulating limits to magnitudes of change may not always safeguard against ecosystem degradation. Synthesis Understanding and predicting ecosystem response to environmental change is one of the key challenges in ecology. Model studies have suggested that slow, gradual environmental change beyond some critical threshold can trigger so‐called critical transitions and abrupt ecosystem degradation. An important question remains however whether ecosystems can cope with the ongoing rapid anthropogenic environmental changes to which they are currently imposed. In this study we demonstrate that in some ecological models elevated rates of change can trigger critical transitions even if slow environmental change of the same magnitude would not. Such rateinduced critical transitions in models suggest that concepts like resilience and planetary boundaries may not always be sufficient to explain and prevent ecosystem degradation.  相似文献   

15.
Phytoplankton populations often exhibit cycles associated with nuisance blooms of cyanobacteria and other algae that cause toxicity, odor problems, oxygen depletion, and fish kills. Models of phytoplankton blooms used for management and basic research often contain critical transitions from stable points to cycles, or vice-versa. It would be useful to know whether aquatic systems, especially water supplies, are close to a critical threshold for cycling blooms. Recent studies of resilience indicators have focused on alternate stable points, although theory suggests that indicators such as variance and autocorrelation should also rise prior to a transition from stable point to stable cycle. We investigated changes in variance and autocorrelation associated with transitions involving cycles using two models. Variance rose prior to the transition from a small-radius cycle (or point) to a larger radius cycle in all cases. In many but not all cases, autocorrelation increased prior to the transition. However, the transition from large-radius to small-radius cycles was not associated with discernible increases in variance or autocorrelation. Thus, indicators of changing resilience can be measured prior to the transition from stable to cyclic plankton dynamics. Such indicators are potentially useful in management. However, these same indicators do not provide useful signals of the reverse transition, which is often a goal of aquatic ecosystem restoration. Thus, the availability of resilience indicators for phytoplankton cycles is asymmetric: the indicators are seen for the transition to bloom–bust cycles but not for the reverse transition to a phytoplankton stable point.  相似文献   

16.
An ecological threshold is the point at which there is an abrupt change in an ecosystem quality, property or phenomenon, or where small changes in an environmental driver produce large responses in the ecosystem. Analysis of thresholds is complicated by nonlinear dynamics and by multiple factor controls that operate at diverse spatial and temporal scales. These complexities have challenged the use and utility of threshold concepts in environmental management despite great concern about preventing dramatic state changes in valued ecosystems, the need for determining critical pollutant loads and the ubiquity of other threshold-based environmental problems. In this paper we define the scope of the thresholds concept in ecological science and discuss methods for identifying and investigating thresholds using a variety of examples from terrestrial and aquatic environments, at ecosystem, landscape and regional scales. We end with a discussion of key research needs in this area.  相似文献   

17.
张璐  吕楠  程临海 《生态学报》2023,43(15):6486-6498
在日益加剧的气候变化和土地开垦、放牧等人类活动干扰下,具有多稳态特征的干旱区生态系统可能会经历从相对健康状态到退化状态的稳态转换,导致生态系统的功能下降。早期预警信号的识别是生态系统稳态转换研究的热点,也是管理实践中防止生态系统退化的关键环节。以往预警信号研究聚焦于通用信号如自相关性、方差等统计学指标,然而这些指标对于具有特定机制的干旱区生态系统可能并不适用。基于干旱区景观格局特征所发展起来的空间指标为生态系统稳态转换提供了独特的空间视角,对于理解干旱区生态系统退化过程和机理具有科学意义和实践价值。介绍了干旱区生态系统稳态转换现象及其转换机制;聚焦景观生态学的指标和方法,从空间视角总结基于干旱区景观格局特征的关键预警指标(植被覆盖度、植被斑块形态、植被斑块大小频率分布和水文连通性等),重点剖析这些关键指标的概念、量化方法、识别特征及其实践应用;最后针对指标的优势和局限性对未来的研究方向进行展望,包括发掘潜在景观指标,加强干旱区生态系统变化的多种驱动要素的相互作用机制研究,开展多时空尺度的实证研究,构建生态系统稳态转换预警信号的整体分析框架,以及加强指标阈值的量化研究等方面。  相似文献   

18.
Critical transitions are qualitative changes of state that occur when a stochastic dynamical system is forced through a critical point. Many critical transitions are preceded by characteristic fluctuations that may serve as model‐independent early warning signals, implying that these events may be predictable in applications ranging from physics to biology. In nonbiological systems, the strength of such early warning signals has been shown partly to be determined by the speed at which the transition occurs. It is currently unknown whether biological systems, which are inherently high dimensional and typically display low signal‐to‐noise ratios, also exhibit this property, which would have important implications for how ecosystems are managed, particularly where the forces exerted on a system are anthropogenic. We examine whether the rate of forcing can alter the strength of early warning signals in (1) a model exhibiting a fold bifurcation where a state shift is driven by the harvesting of individuals, and (2) a model exhibiting a transcritical bifurcation where a state shift is driven by increased grazing pressure. These models predict that the rate of forcing can alter the detectability of early warning signals regardless of the underlying bifurcation the system exhibits, but that this result may be more pronounced in fold bifurcations. These findings have important implications for the management of biological populations, particularly harvested systems such as fisheries, and suggest that knowing the class of bifurcations a system will manifest may help discriminate between true‐positive and false‐positive signals.  相似文献   

19.
《植物生态学报》1958,44(5):461
理解生态系统对过去、现在和未来CO2浓度变化的响应,对于在生态进化的时间尺度上认识和预测全球变化的后果至关重要。过去三十多年来CO2浓度升高相关的科学问题主要集中在对植物生长和生产力的影响, 碳氮周转, 生态系统渐进式氮限制(PNL)形成, 与其他胁迫因子(O3污染、氮沉降、升温、干旱)之间的交互作用等方面。尽管生态学家在数据累积、基础理论上取得了一定进展, 但是仍然存在较大不确定性和大量未知有待解决。该文探究了近30年来CO2浓度升高对陆地生态系统影响研究的国际研究进展、重点领域及热点, 回顾了CO2浓度升高对植物影响的模拟实验研究发展, 重点论述了CO2浓度升高对粮食产量及品质、碳固定、水分利用效率、生态系统氮利用和土壤微生物响应等国际前沿动态研究中存在的主要问题与不足, 在此基础上展望了未来研究中值得关注的前沿研究方向。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号