首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipopolysaccharide (LPS) expressed by isolates of Pseudomonas aeruginosa from cystic fibrosis patients lacks the O-polysaccharide chain but the degree to which the rest of the molecule changes has not been determined. We analyzed, for the first time, the core structure of an LPS from a rough, cystic fibrosis isolate of P. aeruginosa. The products of mild acid hydrolysis and strong alkaline degradation of the LPS were studied by ESI MS, MALDI MS, and NMR spectroscopy. The following structure was determined for the highest-phosphorylated core-lipid A backbone oligosaccharide isolated after alkaline deacylation of the LPS: [structure: see text] where Kdo and Hep are 3-deoxy-D-manno-octulosonic acid and L-glycero-D-manno-heptose, respectively; all sugars are in the pyranose form and have the D configuration unless stated otherwise. The outer core region occurs as two isomeric glycoforms differing in the position of rhamnose (Rha). The inner core region carries four phosphorylation sites at two Hep residues, HepI being predominantly bisphosphorylated and HepII monophosphorylated. In the intact LPS, both Hep residues carry monophosphate and diphosphate groups in nonstoichiometric quantities, GalN is N-acylated by an L-alanyl group, HepII is 7-O-carbamoylated, and the outer core region is nonstoichiometrically O-acetylated at four sites. Therefore, the switch to the LPS-rough phenotype in cystic fibrosis isolates of P. aeruginosa is not accompanied by losses of core monosaccharide, phosphate or acyl components. The exact positions of the O-acetyl groups and the role of the previously undescribed O-acetylation in the LPS core of P. aeruginosa remain to be determined.  相似文献   

2.
The structure of the lipopolysaccharide (LPS) of Pseudomonas aeruginosa immunotype 1 was studied after mild acid and strong alkaline degradations by MS and NMR spectroscopy. Three types of LPS molecules were found, including those with an unsubstituted glycoform 1 core (A) or an isomeric glycoform 2 core substituted with one O-polysaccharide repeating unit (B) or with a long-chain O-polysaccharide. Therefore, of two core glycoforms, only glycoform 2 accepts the O-polysaccharide. In the structures A and B, Kdo, Hep, Hep7Cm, GalNAcAN3Ac, GalNFoAN, QuiNAc, GalNAla represent 3-deoxy-d-manno-octulosonic acid, l-glycero-d-manno-heptose, 7-O-carbamoyl-l-glycero-d-manno-heptose, 2-acetamido-3-O-acetyl-2-deoxygalacturonamide, 2-formamido-2-deoxygalacturonamide, 2-acetamido-2,6-dideoxyglucose and 2-(l-alanylamino)-2-deoxygalactose, respectively; all sugars are in the pyranose form and have the d configuration unless otherwise stated. One or more phosphorylation sites may be occupied by diphosphate groups. In a minority of the LPS molecules, an O-acetyl group is present in the outer core region at unknown position. The site and the configuration of the linkage between the O-polysaccharide and the core and the structure of the O-polysaccharide repeating unit were defined in P. aeruginosa immunotype 1. The QuiNAc residue linked to the Rha residue of the core was found to have the beta configuration, whereas in the interior repeating units of the O-polysaccharide this residue is in the alpha-configuration. The data obtained are in accordance with the initiation of biosynthesis of the O-polysaccharide of P. aeruginosa O6, which is closely related to immunotype 1, by transfer of d-QuiNAc-1-P to undecaprenyl phosphate followed by synthesis of the repeating O-antigen tetrasaccharide.  相似文献   

3.
The lipopolysaccharide (LPS) core domain of Gram-negative bacteria plays an important role in outer membrane stability and host interactions. Little is known about the biochemical properties of the glycosyltransferases that assemble the LPS core. We now report the purification and characterization of the Rhizobium leguminosarum mannosyl transferase LpcC, which adds a mannose unit to the inner 3-deoxy-d-manno-octulosonic acid (Kdo) moiety of the LPS precursor, Kdo(2)-lipid IV(A). LpcC containing an N-terminal His(6) tag was assayed using GDP-mannose as the donor and Kdo(2)-[4'-(32)P]lipid IV(A) as the acceptor and was purified to near homogeneity. Sequencing of the N terminus confirmed that the purified enzyme is the lpcC gene product. Mild acid hydrolysis of the glycolipid generated in vitro by pure LpcC showed that the mannosylation occurs on the inner Kdo residue of Kdo(2)-[4'-(32)P]lipid IV(A). A lipid acceptor substrate containing two Kdo moieties is required by LpcC, since no activity is seen with lipid IV(A) or Kdo-lipid IV(A). The purified enzyme can use GDP-mannose or, to a lesser extent, ADP-mannose (both of which have the alpha-anomeric configuration) for the glycosylation of Kdo(2)-[4'-(32)P]lipid IV(A). Little or no activity is seen with ADP-glucose, UDP-glucose, UDP-GlcNAc, or UDP-galactose. A Salmonella typhimurium waaC mutant, which lacks the enzyme for incorporating the inner l-glycero-d-manno-heptose moiety of LPS, regains LPS with O-antigen when complemented with lpcC. An Escherichia coli heptose-less waaC-waaF deletion mutant expressing the R. leguminosarum lpcC gene likewise generates a hybrid LPS species consisting of Kdo(2)-lipid A plus a single mannose residue. Our results demonstrate that heterologous lpcC expression can be used to modify the structure of the Salmonella and E. coli LPS cores in living cells.  相似文献   

4.
Lipopolysaccharides (LPS) were isolated from rough-type mutant strains of Pseudomonas aeruginosa (Delta algC) derived from wild-type strains PAO1 (serogroup O5) and PAC1R (serogroup O3). Structural studies of the LPS core region with a special focus on the phosphorylation pattern were performed by 2D NMR spectroscopy, including a 1H,(31)P HMQC-TOCSY experiment, MALDI-TOF MS, and Fourier-transform ion cyclotron resonance ESIMS using the capillary skimmer dissociation technique. Both LPS were found to contain two residues each of 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) and L-glycero-D-manno-heptose (Hep), one residue of N-(L-alanyl)-D-galactosamine and one O-carbamoyl group (Cm) on the distal Hep residue. The following structures of a tetrasaccharide trisphosphate from strain PAC1R Delta algC and that carrying an additional ethanolamine phosphate group (PEtN) from strain PAO1 Delta algC were elucidated: [carbohydrate structre: see text] where R=P in PAC1R Delta algC and PPEtN in PAO1 Delta algC. To our knowledge, in this work the presence of ethanolamine diphosphate is unambiguously confirmed and its position established for the first time in the LPS core of a rough-type strain of P. aeruginosa. In addition, the structure of the complete LPS core of wild-type strain P. aeruginosa PAO1 was reinvestigated and the position of the phosphorylation sites was revised.  相似文献   

5.
Lipopolysaccharide (LPS) was isolated from the phytopathogenic bacterium Pseudomonas syringae pv. atrofaciens IMV 948 by mild extraction of the microbial cells with saline, and the properties, composition, and structure of the LPS were studied. The LPS showed low toxicity in D- galactosamine-sensitized mice and low biological activity in plants. Structural components of LPS--lipid A, core oligosaccharide, and O-specific polysaccharide (OPS)--were obtained by mild acid degradation and characterized. The lipid A contained fatty acids 3-HO-C10:0, C12:0, 2-HO-C12:0, 3-HO-C12:0, C16:0, C16:1, C18:0, and C18:1, as well as components of the hydrophilic moiety: GlcN, ethanolamine, phosphate, and phosphoethanolamine. The LPS core contained components typical of pseudomonads: glucose, rhamnose (Rha), L-glycero-D-manno-heptose, GlcN, GalN, 2-keto-3-deoxy-D-manno-octonic acid, alanine, and phosphate. The OPS consisted of L-Rha and D-GlcNAc in the ratio 4 : 1 and was structurally heterogeneous. The main pentasaccharide repeating unit of the OPS has the following structure: [structure see text]. Immunochemical studies showed that P. syringae pv. atrofaciens IMV 948 is serologically separate from other P. syringae strains, including those that have structurally similar OPS.  相似文献   

6.
Mass spectrometric analyses of lipopolysaccharide (LPS) from isogenic Escherichia coli strains with nonpolar mutations in the waa locus or overexpression of their cognate genes revealed that waaZ and waaS are the structural genes required for the incorporation of the third 3-deoxy-α-D-manno-oct-2-ulosonic acid (Kdo) linked to Kdo disaccharide and rhamnose, respectively. The incorporation of rhamnose requires prior sequential incorporation of the Kdo trisaccharide. The minimal in vivo lipid A-anchored core structure Kdo(2)Hep(2)Hex(2)P(1) in the LPS from ΔwaaO (lacking α-1,3-glucosyltransferase) could incorporate Kdo(3)Rha, without the overexpression of the waaZ and waaS genes. Examination of LPS heterogeneity revealed overlapping control by RpoE σ factor, two-component systems (BasS/R and PhoB/R), and ppGpp. Deletion of RpoE-specific anti-σ factor rseA led to near-exclusive incorporation of glycoforms with the third Kdo linked to Kdo disaccharide. This was accompanied by concomitant incorporation of rhamnose, linked to either the terminal third Kdo or to the second Kdo, depending upon the presence or absence of phosphoethanolamine on the second Kdo with truncation of the outer core. This truncation in ΔrseA was ascribed to decreased levels of WaaR glycosyltransferase, which was restored to wild-type levels, including overall LPS composition, upon the introduction of rybB sRNA deletion. Thus, ΔwaaR contained LPS primarily with Kdo(3) without any requirement for lipid A modifications. Accumulation of a glycoform with Kdo(3) and 4-amino-4-deoxy-l-arabinose in lipid A in ΔrseA required ppGpp, being abolished in a Δ(ppGpp(0) rseA). Furthermore, Δ(waaZ lpxLMP) synthesizing tetraacylated lipid A exhibited synthetic lethality at 21-23°C pointing to the significance of the incorporation of the third Kdo.  相似文献   

7.
The O polysaccharide (OPS) moiety of the lipopolysaccharide (LPS) of a phytopathogenic bacterium Pseudomonas syringae pv. ribicola NCPPB 1010 was studied by sugar and methylation analyses, Smith degradation, and 1H- and 13C-NMR spectroscopy, including 2D COSY, TOCSY, NOESY and H-detected 1H,13C HMQC experiments. The OPS structure was elucidated, and shown to be composed of branched pentasaccharide repeating units (O repeats) of two types, major (1) and minor (2), differing in the position of substitution of one of the rhamnose residues. Both O repeats form structurally homogeneous blocks within the same polysaccharide molecule. Although P. syringae pv. ribicola NCPPB 1010 demonstrates genetic relatedness and similarity in the OPS chemical structure to some other P. syringae pathovars, it did not cross-react with any OPS-specific mAbs produced against heterologous P. syringae strains. Therefore, we propose to classify P. syringae pv. ribicola NCPPB 1010 in a new serogroup, O8.  相似文献   

8.
A novel core-lipid A backbone oligosaccharide was isolated and identified from the lipopolysaccharide fraction of the mushrooms pathogen bacterium Pseudomonas tolaasii. The oligosaccharide was obtained by alkaline treatment of the lipopolysaccharide fraction. Since the repeating unit of the O-antigen contained one residue of -->4)-alpha-l-GulpNAcAN, the hydrolysis was accompanied by beta-elimination on this residue and following depolymerization, producing a mixture of oligosaccharides. The complete structural elucidation showed the presence of a single core glycoform and was achieved by chemical analysis and by (1)H, (31)P, and (13)C NMR spectroscopy applying various 1D and 2D experiments. [structure: see text]. All sugars are alpha-d-pyranoses, if not stated otherwise. Hep is l-glycero-d-manno-heptose, Kdo is 3-deoxy-d-manno-oct-2-ulosonic acid, P is phosphate. QuiN and DeltaGulNA are present in nonstoichiometric amount.  相似文献   

9.
The core oligosaccharide region of Klebsiella pneumoniae lipopolysaccharide contains some novel features that distinguish it from the corresponding lipopolysaccharide region in other members of the Enterobacteriaceae family, such as Escherichia coli and Salmonella. The conserved Klebsiella outer core contains the unusual trisaccharide 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo)-(2,6)-GlcN-(1,4)-GalUA. In general, Kdo residues are normally found in the inner core, but in K. pneumoniae, this Kdo residue provides the ligation site for O polysaccharide. The outer core Kdo residue can also be non-stoichiometrically substituted with an l-glycero-d-manno-heptopyranose (Hep) residue, another component more frequently found in the inner core. To understand the genetics and biosynthesis of core oligosaccharide synthesis in Klebsiella, the gene products involved in the addition of the outer core GlcN (WabH), Kdo (WabI), and Hep (WabJ) residues as well as the inner core HepIII residue (WaaQ) were identified. Non-polar mutations were created in each of the genes, and the resulting mutant lipopolysaccharide was analyzed by mass spectrometry. The in vitro glycosyltransferase activity of WabI and WabH was verified. WabI transferred a Kdo residue from CMP-Kdo onto the acceptor lipopolysaccharide. The activated precursor required for GlcN addition has not been identified. However, lysates overexpressing WabH were able to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the outer core.  相似文献   

10.
The structures for the core regions of the lipopolysaccharides (LPSs) from R. leguminosarum bv. phaseoli CE3 and two symbiotic mutants were determined by g.l.c.-m.s., proton nuclear magnetic resonance spectroscopy (n.m.r.), fast-atom-bombardment mass spectrometry (f.a.b.-m.s.), and by comparison with known structures from the LPS of R. leguminosarum bv. trifolii ANU843. The core oligosaccharides were separated into two components, P2-2 and P2-3, by gel-filtration chromatography using Bio-Gel P2. The P2-2 oligosaccharide from CE3 is a tetrasaccharide consisting of 3-deoxy-D-manno-2-octulosonic acid (Kdo), mannose, galactose and galacturonic acid. The mannosyl residue is alpha-linked to O-4 of Kdo, and the galactosyl and galactosyluronic residues are alpha-linked to O-4 and O-6, respectively, of the mannosyl residue. The P2-2 oligosaccharide from mutant CE109 is missing the galactosyluronic residue, while that from mutant CE309 is missing both the galactosyl and galactosyluronic residues. The P2-3 oligosaccharide from CE3 LPS is a trisaccharide consisting of two galactosyluronic residues alpha-linked to the O-4 and O-7 of Kdo. Fraction P2-3 from mutant CE309 has the same structure as CE3 P2-3. Fraction P2-3 from mutant CE109 contains galacturonic acid and Kdo, but its structure differs from that of CE3 P2-3.  相似文献   

11.
Lipopolysaccharide (LPS) from Escherichia coli K12 W3100 is known to contain several glycoforms, and the basic structure has been investigated previously by methylation analyses (Holst, O. (1999) in Endotoxin in Health and Disease (Brade, H., Opal, S. M., Vogel, S. N., and Morrison, D., eds) pp. 115-154; Marcel Dekker, Inc., New York). In order to reveal dependences of gene activity and LPS structure, we have now determined the composition of de-O-acylated LPS by electrospray ionization-Fourier transform ion cyclotron-mass spectrometry (ESI-FT-MS) and identified 11 different LPS molecules. We have isolated the major glycoforms after de-O- and de-N-acylation and obtained four oligosaccharides that differed in their carbohydrate structure and phosphate substitution. The main oligosaccharide accounted for approximately 70% of the total and had a molecular mass of 2516 Da according to ESI-FT-MS. The dodecasaccharide structure (glycoform I) as determined by NMR was consistent with MS and compositional analysis. One minor oligosaccharide (5%) of the same carbohydrate structure did not contain the 4'-phosphate of the lipid A. Two oligosaccharides contained the same phosphate substitution but differed in their carbohydrate structure, one (5%) which contained an additional beta-D-GlcN in 1-->7 linkage on a terminal heptose residue (glycoform II) which was N-acetylated in LPS. A minor amount of a molecule lacking the terminal L-alpha-D-Hep in the outer core but otherwise identical to the major oligosaccharide (glycoform III) could only be identified by ESI-FT-MS of the de-O-acylated LPS. The other oligosaccharide (20%) contained an alpha-Kdo-(2-->4)-[alpha-l-Rha-(1-->5)]-alpha-Kdo-(2-->4)-alpha-Kdo branched tetrasaccharide connected to the lipid A (glycoform IV). This novel inner core structure was accompanied by a truncation of the outer core in which the terminal disaccharide L-alpha-D-Hep-(1-->6)-alpha-D-Glc was missing. The latter structure was identified for the first time in LPS and revealed that changes in the inner core structure may be accompanied by structural changes in the outer core.  相似文献   

12.
Addition of a phosphoethanolamine (pEtN) moiety to the outer 3-deoxy-D-manno-octulosonic acid (Kdo) residue of lipopolysaccharide (LPS) in WBB06, a heptose-deficient Escherichia coli mutant, occurs when cells are grown in 5-50 mM CaCl2 (Kanipes, M. I., Lin, S., Cotter, R. J., and Raetz, C. R. H. (2001) J. Biol. Chem. 276, 1156-1163). A Ca2+-induced, membrane-bound enzyme was responsible for the transfer of the pEtN unit to the Kdo domain. We now report the identification of the gene encoding the pEtN transferase. E. coli yhjW was cloned and overexpressed, because it is homologous to a putative pEtN transferase implicated in the modification of the beta-chain heptose residue of Neisseria meningitidis lipo-oligosaccharide (Mackinnon, F. G., Cox, A. D., Plested, J. S., Tang, C. M., Makepeace, K., Coull, P. A., Wright, J. C., Chalmers, R., Hood, D. W., Richards, J. C., and Moxon, E. R. (2002) Mol. Microbiol. 43, 931-943). In vitro assays with Kdo2-4'-[32P]lipid A as the acceptor showed that YhjW (renamed EptB) utilizes phosphatidylethanolamine in the presence of Ca2+ to transfer the pEtN group. Stoichiometric amounts of diacylglycerol were generated during the EptB-catalyzed transfer of pEtN to Kdo2-lipid A. EptB is an inner membrane protein of 574 amino acid residues with five predicted trans-membrane segments within its N-terminal region. An in-frame replacement of eptB with a kanamycin resistance cassette rendered E. coli WBB06 (but not wild-type W3110) hypersensitive to CaCl2 at 5 mM or higher. Ca2+ hypersensitivity was suppressed by excess Mg2+ in the medium or by restoring the LPS core of WBB06. The latter was achieved by reintroducing the waaC and waaF genes, which encode LPS heptosyl transferases I and II, respectively. Our data demonstrate that pEtN modification of the outer Kdo protected cells containing heptose-deficient LPS from damage by high concentrations of Ca2+. Based on its sequence similarity to EptA(PmrC), we propose that the active site of EptB faces the periplasmic surface of the inner membrane.  相似文献   

13.
From the lipopolysaccharide (LPS) fraction of the plant-pathogenic bacterium Burkholderia caryophylli, the linkage between O-specific caryan and core region was characterised. The LPS fraction was first treated with 48% aqueous HF at 4 degrees C and successively with 1% acetic acid at 100 degrees C. A main oligosaccharide representing the carbohydrate backbone of the core region and a portion of the caryan (three unit of caryose) was isolated by high-performance anion-exchange chromatography. Compositional and methylation analyses, matrix-assisted laser desorption/ionisation mass spectrometry and 2D NMR spectroscopy identified the structure: [carbohydrate structure: see text]. The above residues are alpha-linked pyranose rings, if not stated otherwise. Hep is L-glycero-D-manno-heptose, Car is 4,8-cyclo-3,9-dideoxy-L-erythro-D-ido-nonose and Kdo is 3-deoxy-D-manno-oct-2-ulosonic acid. This finding indicates that QuiNAc residue is the primer monosaccharide, which connects the core oligosaccharide to caryan O-chain.  相似文献   

14.
Tan L  Darby C 《Journal of bacteriology》2005,187(18):6599-6600
Lipopolysaccharide (LPS) is the major outer membrane component of gram-negative bacteria. The minimal LPS structure for viability of Escherichia coli and Salmonella enterica serovar Typhimurium is lipid A glycosylated with 3-deoxy-D-manno-octulosonic acid (Kdo) residues. Here we show that another member of the Enterobacteriaceae, Yersinia pestis, can survive without Kdo in its LPS.  相似文献   

15.
Mouse mAb were produced against the deep rough strains Salmonella minnesota R 595, Salmonella typhimurium SL 1102, and Escherichia coli D21f2 and screened by enzyme immunoassay against LPS of several chemotypes. Five antibodies were selected for their ability to bind to chemotype deep rough (Re) LPS which has two 3-deoxy-D-manno-octulosonic acid (Kdo) residues in its nonreducing end. Structurally verified oligosaccharides isolated from rough LPS and synthetic analogues of Kdo were used in an enzyme immunoassay inhibition test to determine the binding epitopes for the antibodies. According to their specificities, the antibodies could be divided into three groups. For two of the groups, the recognized structure was the alpha-Kdo (2----4) Kdo disaccharide and for one group the alpha-Kdo (2----4) alpha-Kdo beta-D-GlcN (1----6) alpha-D-GlcN tetrasaccharide, representing a partial structure of the Re LPS. Inhibition studies with synthetic analogues of Kdo showed that the anomeric configuration and the free carboxyl group of the Kdo residue are important features for antibody binding. Changes in the C-1 to C-6 region of the Kdo molecule do influence the antibody recognition considerably whereas changes in the exocyclic C-7 to C-8 region are of secondary importance. Calculation of the conformation of the inner core region showed that the alpha-Kdo (2----4) alpha-Kdo (2---- disaccharide was free and accessible in chemotype Re LPS, but that linkage of a L-glycero-D-manno-heptose to O-5 of the subterminal Kdo both changes the conformation of the Kdo-disaccharide and covers it thereby making it less accessible.  相似文献   

16.
Gram-negative rod shaped bacterium Myxococcus xanthus DK1622 produces a smooth-type LPS. The structure of the polysaccharide O-chain and the core-lipid A region of the LPS has been determined by chemical and spectroscopic methods. The O-chain was built up of disaccharide repeating units having the following structure: -->6)-alpha-D-Glcp-(1-->4)-alpha-D-GalpNAc6oMe*-(1--> with partially methylated GalNAc residue. The core region consisted of a phosphorylated hexasaccharide, containing one Kdo residue, unsubstituted at O-4, and no heptose residues. The lipid A component consisted of beta-GlcN-(1-->6)-alpha-GlcN1P disaccharide, N-acylated with 13-methyl-C14-3OH (iso-C15-3OH), C16-3OH, and 15-methyl-C16-3OH (iso-C17-3OH) acids. The lipid portion contained O-linked iso-C16 acid.  相似文献   

17.
Plesiomonas shigelloides is a Gram-negative rod associated with episodes of intestinal infections and outbreaks of diarrhea in humans. The extraintestinal infections caused by this bacterium, for example, endopthalmitis, meningitidis, bacteremia, and septicemia, usually have gastrointestinal origin and serious course. The lipopolysaccharide (LPS, endotoxin) as virulence factor is important in enteropathogenicity of this bacterium. LPSs of P. shigelloides and especially their lipid A part, that is, the immunomodulatory center of LPS, have not been extensively investigated. The structure of P. shigelloides O54 lipid A was determined by chemical analysis combined with MALDI-TOF mass spectrometry, and the intact Kdo-containing core region was investigated by NMR spectroscopy on deacylated LPS. Products from alkaline deacylation of LPS, containing 4-substituted uronic acids, are usually very complex and difficult to separate. Since Kdo residues, like sialic acids, form complexes with serotonin, we used immobilized serotonin for one-step isolation of oligosaccharide containing the intact Kdo region from the reaction mixture by affinity chromatography. The major form of lipid A was built of beta-d-GlcpN4PPEtn-(1-->6)-alpha-d-GlcpN1P disaccharide substituted with 14:0(3-OH), 12:0(3-OH), 14:0(3-O-14:0), and 12:0(3-O-12:0) acyl groups at N-2, O-3, N-2', and O-3', respectively. This is a novel structure among known lipid A molecules. Analysis of intact Kdo-lipid A region, lipid A and its linkage with the core oligosaccharide completes the structural investigation of P. shigelloides O54 LPS, resolving the entire molecule. Biological activities and observed discrepancy between in vitro and in vivo activity of P. shigelloides and Escherichia coli LPS are discussed.  相似文献   

18.
Secretins are oligomeric proteins that mediate the export of macromolecules across the bacterial outer membrane. The members of the secretin superfamily possess a C-terminal homology domain that is important for oligomerization and channel formation, while their N-terminal halves are thought to be involved in system-specific interactions. The XcpQ secretin of Pseudomonas spp. is a component of the type II secretion pathway. XcpQ from Pseudomonas alcaligenes is not able to functionally replace the secretin of the closely related species Pseudomonas aeruginosa. By analysis of chimeric XcpQ proteins, a region important for species-specific functioning was mapped between amino acid residues 344 and 478 in the C-terminal homology domain. Two chromosomal suppressor mutations were obtained that resulted in the proper functioning in P. aeruginosa of P. alcaligenes XcpQ and inactive hybrids. These mutations caused a defect in the synthesis of the lipopolysaccharide (LPS) outer core region. Subsequent analysis of different LPS mutants showed that changes in the outer core and not the loss of O antigen caused the suppressor phenotype. High concentrations of divalent cations in the growth medium also allowed P. alcaligenes XcpQ and inactive hybrids to function properly in P. aeruginosa. Since divalent cations are known to affect the structure of LPS, this observation supports the hypothesis that LPS has a role in the functioning of secretins.  相似文献   

19.
S Das  M Ramm  H Kochanowski    S Basu 《Journal of bacteriology》1994,176(21):6550-6557
The lipopolysaccharide (LPS) was isolated from Pseudomonas syringae pv. coriandricola W-43 by hot phenol-water extraction. Rhamnose and 3-N-acetyl-3-deoxyfucose were found to be the major sugar constituents of the LPS together with N-acetylglucosamine, N-acetylgalactosamine, heptose, and 3-deoxy-D-manno-octulosonic acid (Kdo). The main fatty acids of lipid A of the LPS were 3-OH-C:10, C12:0, 2-OH-C12:0, and 3-OH-C12:0. The O-specific polysaccharide liberated from the LPS by mild-acid hydrolysis was purified by gel permeation chromatography. The compositional analysis of the O-specific polysaccharide revealed the presence of L-rhamnose and 3-N-acetyl-3-deoxy-D-fucose in a molar ratio of 4:1. The primary structure of the O-specific polysaccharide was established by methylation analysis together with 1H and 13C nuclear magnetic resonance spectroscopy, including two-dimensional shift-correlated and one-dimensional nuclear Overhauser effect spectroscopy. The polysaccharide moiety was found to consist of a tetrasaccharide rhamnan backbone, and 3-N-acetyl-3-deoxy-D-fucose constitutes the side chain of the branched pentasaccharide repeating unit of the polysaccharide.  相似文献   

20.
3-Deoxy-D-manno-oct-2-ulosonic acid (Kdo) is a constituent of the inner core part of bacterial lipopolysaccharides (LPS). This sugar may contribute to biological activities of the LPS, the type of substitution of Kdo is thus of importance and this work is aimed at the evaluation of a method for monitoring the substitution of Kdo in LPS. The procedure consists of three steps, namely permethylation of the lipopolysaccharide, with iodomethane and sodium methylsulfinylmethanide or NaOH in Me(2)SO, or with methyl triflate, then the product is methanolysed with HCl in MeOH and acetylated with acetic anhydride in pyridine. The resulting partially methylated acetates of Kdo methyl glycosides were analyzed by gas-liquid chromatography-electron impact ionization mass spectrometry (GLC-MS). For several derivatives of Kdo, specific GLC retention times and MS fragmentation patterns were determined. Lipopolysaccharides from several bacterial strains were isolated and analyzed with three different methods of methylation. The complete solubilization of the LPS in the acid form allows diminishing possible undermethylation. Sodium methylsulfinylmethanide is the most efficient agent in the permethylation of the whole LPS, of all the tested procedures. Methylation with methyl triflate allows the detection of base labile substituents on Kdo residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号