首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pal  J. K.  Anand  S.  Joseph  J. 《Journal of biosciences》1996,21(2):191-205
Among the various heat shock proteins (HSPs), members of the HSP70 and HSP90 families have drawn particular attention due to their heat shock-unrelated functions. HSP90, an ubiquitous and abundant member of the HSP90 family has been shown to be associated with a large array of protein factors. These proteins reside in the nucleus as well as in the cytoplasm and are involved in various physiological processes, such as, regulation of chromatin structure, cell cycle, cytoskelelal architecture, protein trafficking and protein synthesis. In this article, we focus our interest on the role of HSP90 in protein synthesis. Recent data obtained from a few laboratories strongly suggest that HSP90 interacts with the heme-regulated eukaryotic initiation factor 2α (elF-2α) kinase, also called the heme-regulated inhibitor, and causes its activation which leads to inhibition of protein synthesis. On the basis of data reported from various laboratories, including our own, we propose a possible model on the mechanism of HSP90-mediated activation of heme-regulated inhibitor and regulation of protein synthesis.  相似文献   

2.
The 90 kDa heat shock protein (HSP90) is an ATP-binding molecular chaperone with an associated ATPase activity having nucleoplasmin and HSP70-binding homology domains and containing Ca-binding EF-hands and a nuclear localization signal. Here we characterize the HSP90-associated ATPase and show that it is (i) a P-type ATPase inhibited by molybdate and vanadate, (ii) able to hydrolyze methylfluorescein phosphate with a 5–6-fold higher affinity, (iii) a 3-times better GTPase than ATPase in the presence of calcium and (iv) HSP27 and F-actin, but not HSP10 can “convert” the HSP90-associated ATPase activity to HSP90 autokinase activity. The HSP90-associated ATP/GTPase may participate in the regulation of complex formation of HSP90 with other proteins, such as F-actin, tubulin and heat shock proteins.  相似文献   

3.
Neurons maintain an intricate organization of cytoplasmic and membrane proteins for their integrity, quick communication across synapses and for other complex activities. Molecular chaperones such as members of the 70 kDa heat shock protein (HSP70) family may play very important roles in these functions. However, in spite of a recent report suggesting the presence of HSP70 related proteins in the synaptic vesicle docking complex at presynaptic sites and the known significant roles for HSP70 in excitotoxicity, there are remarkably few studies that have explored the potential role of HSP70 family proteins in physiological functions of neurons. Here we bring together direct and indirect evidences which suggest that several different pathways involved in long-term potentiation can influence the HSP70 levels at the synapse and hypothesize on possible physiological significance of this family of proteins in neuronal functions.  相似文献   

4.
We studied the characteristics of cytoplasmic microtubule reassembly from endogenous tubulin pools in situ using a Brij 58-lysed 3T3 cell system. Cells that were pretreated in vivo with colcemid retain endogenous tubulin in the depolymerized state after lysis. When lysed cells were removed from colcemid block and incubated in GTP-PIPES reassembly buffer at pH 6.9, microtubules repolymerized randomly throughout the cytoplasm, appeared to be free-ended and were generally not associated with the centrosomes. However, tubulin could be induced to polymerize in an organized manner from the centrosomes by increasing the pH to 7.6 in the presence of ATP and cAMP. Microtubules polymerized in ATP had significantly longer lengths than those assembled in GTP or UTP. When cells not treated with colcemid were lysed, the integrity of the cytoplasmic microtubule complex (CMTC) was maintained during subsequent incubation in reassembly buffer. However, in contrast to unlysed, living cells, microtubules of lysed cells were stable to colchicine. A significant fraction of the CMTC was stable to cold- induced disassembly whereas microtubules reassembled after lysis were extremely cold-sensitive. When cells not treated with colcemid were lysed and incubated in millimolar Ca++, microtubules depolymerized from their distal ends and a much reduced CMTC was observed. Ca++ reversal with EGTA rapidly resulted in a reformation of the CMTC apparently by elongation of Ca++ resistant microtubules.  相似文献   

5.
Nuclear localization and the heat shock proteins   总被引:1,自引:0,他引:1  
The highly conserved heat shock proteins (HSP) belong to a subset of cellular proteins that localize to the nucleus. HSPs are atypical nuclear proteins in that they localize to the nucleus selectively, rather than invariably. Nuclear localization of HSPs is associated with cell stress and cell growth. This aspect of HSPs is highly conserved with nuclear localization occurring in response to a wide variety of cell stresses. Nuclear localization is likely important for at least some of the heat shock proteins’ protective functions; little is known about the function of the heat shock proteins in the nucleus. Nuclear localization is signalled by the presence of a basic nuclear localization sequence (NLS) within a protein. Though most is known about HSP 72’s nuclear localization, the NLS(s) has not been definitively identified for any of the heat shock proteins. Likely more is involved than presence of a NLS; since the heat shock proteins only localize to the nucleus under selective conditions, nuclear localization must be regulated. HSPs also function as chaperons of nuclear transport, facilitating the movement of other macromolecules across the nuclear membrane. The mechanisms involved in chaperoning of proteins by HSPs into the nucleus are still being identified.  相似文献   

6.
Most stress-inducible polypeptides are members of broader protein families that function either as molecular chaperones or constituents of proteolytic pathways. These systems control many aspects of protein structure and function throughout the cell under all types of growth regimes. The Clp/HSP1 00 protein family is a recently characterized representative, with constitutive and stress-inducible members found in many different organisms and various intracellular locations. Besides being regulators of energy-dependent proteolysis, Clp proteins may also function as molecular chaperones. Constitutive Clp proteins are involved foremost in cellular protein maintenance and repair, in cooperation with other chaperone and proteolytic systems. At high temperatures, additional Clp proteins are induced in response to rising levels of inactive polypeptides, resulting from either biosynthetic errors, thermal denaturation and aggregation. Clp proteins presumably help to stabilize selected polypeptides during severe thermal stress and enable resolubilization of non-functional protein aggregates, as well as promoting the degradation of irreversibly damaged polypeptides. The union of chaperone and proteolytic regulatory functions in one molecule suggests that certain Clp proteins play a decisive role in determining the destiny of proteins, not only during normal growth but also under conditions of extreme stress. This review briefly covers recent findings on the diversity of Clp proteins and their potential importance within the cell.  相似文献   

7.
The microtubule-targeted drug, taxol, enhances assembly of alphabeta tubulin dimers into microtubules. Recent work has established that taxol also elicits diverse effects on intracellular signaling. In-gel kinase assays with myelin basic protein as substrate revealed that taxol treatment significantly (P 相似文献   

8.
One of the monoclonal antibodies raised against mitotic HeLa cells (termed as mH3) recognized a 27-kDa protein and stained microtubules in the mitotic spindles of HeLa cells. Immunoscreening of a HeLa cDNA library revealed that mH3 antigen is a small heat shock protein, HSP27. Immunoprecipitation analysis using mH3 suggested that both alpha- and beta-tubulin are associated with HSP27. Further, sucrose-cushioned ultra centrifugation revealed that HSP27 is co-sedimented with taxol-stabilized microtubules. These results indicate that HSP27 associates with tubulin/microtubules in HeLa cells.  相似文献   

9.
Bancroftian filariasis is a major public health problem affecting about 120 million people all over the world. Immunoprophylaxis may serve as an additional adjunct along with chemotherapy and anti larval measures for successful filaria control. Circulating filarial antigen fraction (CFA2-6) containing 43 kDa antigen and adultBrugia malayi sodium dodecyl sulphate (S DS) soluble antigen fraction BmA-2 with a 120 kDa molecule were earlier shown to be reactive with endemic normal sera by immunoblotting and indirect ELISA techniques. BmA-2 was found to be highly cross reactive with CFA2-6. Sera raised against both the antigen fractions showed about 90 % cytotoxicity to the parasites in the presence of jird peritoneal cells inin vitro as well as byin situ micropore chamber implantation technique. Further inin vivo studies using animal model, jirds CFA2-6 and BmA-2 could induce about 90% protection to infection in immunized animals. In passive transfer studies of immunity it has been observed that BmA-2 induced protection is mainly antibody mediated.  相似文献   

10.
The mitotic spindle is a self-organizing structure that is constructed primarily from microtubules. Among the most important spindle microtubules are those that bind to kinetochores and form the fibers along which chromosomes move. Chemotherapeutics such as taxol and the vinca alkaloids perturb kinetochore—microtubule attachment and disrupt chromosome segregation. This activates a checkpoint pathway that delays cell cycle progression and induces programmed cell death. Recent work has identified at least four mammalian spindle assembly checkpoint proteins.  相似文献   

11.
Heat shock proteins (HSPs) play an important role in folding, intracellular localization and degradation of cellular proteins. However, the cellular role of HSP27 is not completely understood. The conflicting results have been reported regarding stress-induced nuclear translocation of HSP27. In this study, human breast cancer cells transiently and stably expressing HSP27–EGFP chimera were utilized to observe the intracellular localization of HSP27. The data show that the transient and stable expression of HSP27–EGFP displayed distinguishingly cellular localization. The nuclear translocalization of HSP27–EGFP was correlated with the presence of G418. Experiments carried out with different human breast cancer cell lines revealed clearly different distribution patterns of endogenous HSP27. The subcellular distribution of endogenous HSP27 appeared diffuse throughout the cytoplasm in MDA435 cells. In MCF-7 and SKBR3 cells, the accumulation of the protein was distinctly seen along the cell membrane and around nucleus. Moreover, the nuclear translocation of endogenous HSP27 was stimulated by G418 only in MDA435 cells, but not in MCF-7 and SKBR3 cells. Overexpression of HSP27 has been associated with resistance to cisplatin and doxorubicin. The correlation of the expression pattern of HSP27 with the drug resistance may need to be investigated. Further studies on the intracellular function of HSP27 may take into account its interaction proteins in the cells. It may provide useful information for the identification of sensitivity of carcinoma cells to the chemotherapeutic drugs and development of more specific agents to circumvent HSP27.  相似文献   

12.
Rat H9c2 myoblasts were preconditioned by heat or metabolic stress followed by recovery under normal conditions. Cells were then subjected to severe ATP depletion, and stress-associated proteotoxicity was assessed on 1) the increase in a Triton X-100-insoluble component of total cellular protein and 2) the rate of inactivation and insolubilization of transfected luciferase with cytoplasmic or nuclear localization. Both heat and metabolic preconditioning elevated the intracellular heat shock protein 70 (HSP70) level and reduced cell death after sustained ATP depletion without affecting the rate and extent of ATP decrease. Each preconditioning attenuated the stress-induced insolubility among total cellular protein as well as the inactivation and insolubilization of cytoplasmic and nuclear luciferase. Transient overexpression of human HSP70 in cells also attenuated both the cytotoxic and proteotoxic effects of ATP depletion. Quercetin, a blocker of stress-responsive HSP expression, abolished the effects of stressful preconditioning but did not influence the effects of overexpressed HSP70. Analyses of the cellular fractions revealed that both the stress-preconditioned and HSP70-overexpressing cells retain the soluble pool of HSP70 longer during ATP depletion. Larger amounts of other proteins coimmunoprecipitated with excess HSP70 compared with control cells deprived of ATP. This is the first demonstration of positive correlation between chaperone activity within cells and their viability in the context of ischemia-like stress.  相似文献   

13.
The effects of colcemid (0.16-1.0 microM) and taxol (10 microM) on the primary cilia cycle in PtK1 cells were studied by antitubulin immunofluorescence microscopy and by high-voltage electron microscopy of serial 0.25-micron sections. Although these drugs induce a fully characteristic rearrangement (taxol) or disassembly (colcemid) of cytoplasmic microtubules, neither affects the structure of primary cilia formed prior to the treatment or the resorption of primary cilia during the initial stages of mitosis. Cells arrested in mitosis by taxol or colcemid remain in mitosis for 5-7 h at 37 degrees C and then form 4N "micronucleated" restitution nuclei. Formation of primary cilia in these micronucleated cells is blocked by colcemid in a concentration-dependent fashion: normal cilia with expanded (ie, bulbed) distal ends form at the lower (0.16-0.25 microM) concentrations, while both cilia formation and centriole replication are inhibited at the higher (greater than or equal to 1.0 microM) concentrations. However, even in the presence of 1.0 microM colcemid, existing centrioles acquire the appendages characteristically associated with ciliating centrioles and attach to the dorsal cell surface. Continuous treatment with colcemid thus produces a population of cells enriched for the early stages of primary cilia formation. Micronucleated cells formed from a continuous taxol treatment contain two normal centriole pairs, and one or both parenting centrioles possess a primary cilium. Taxol, which has been reported to stabilize microtubules in vitro, does not inhibit the cell-cycle-dependent assembly and disassembly of axonemal microtubules in vivo.  相似文献   

14.
Summary The localization of HSP90 (heat-shock protein 90) was analyzed with respect to the microtubular cytoskeleton by double immunofluorescence and confocal laser microscopy in tobacco VBI-O cells during axial cell division and elongation. HSP90 was observed to be colocalized with cortical and radial microtubules and the nuclear envelope in premitotic cells, with the preprophase band, and with the phragmoplast. The HSP90 epitope could not be detected in mature division spindles. The association of the HSP90 epitope with radial and cortical microtubules was not continuous in space. HSP90 was organized in discrete foci that were found to be aligned with microtubules, and the distance between these foci increased, when the cells entered the elongation phase. Elimination of microtubules by drugs resulted in a loss of cell axiality and alignment of the HSP90 epitope. Together with biochemical data demonstrating binding of tobacco HSP90 to tubulin dimers these data indicate a possible role of HSP90 in the organization of microtubules.Abbreviations EPC ethyl-N-phenylcarbamate - FITC fluorescein isothiocyanate - HSP90 heat-shock protein 90 - MAP microtubuleassociated protein - TRITC tetramethylrhodamine B isothiocyanate  相似文献   

15.
Summary Using a heterologous myosin antibody raised against the whole molecule of bovine muscle myosin, we have identified a myosin-like protein in maize. Immunoblots of subcellular fractions isolated from roots identified one distinct band at about 210 kDa in the microsomal protein fraction and one band at about 180 kDa in the soluble protein fraction. Indirect immunofluorescence was performed using maize root apex sections to reveal endocellular distributions of the myosin-like protein. Both diffuse and particulate labelling patterns were observed throughout the cytoplasm of all root cells. In mitotic cells, myosin-like protein was excluded from spindle regions. Amyloplast surfaces were labelled prominently in cells of the root cap statenchyma and in all root cortex cells. On the other hand, myosin-like protein was prominently enriched at cellular peripheries in cells of the pericycle and outer stele in the form of continuous peripheral labelling. From all root apex tissues, phloem elements showed the most abundant presence of myosinlike protein.Abbreviations AFs actin filaments - MTs microtubules Dedicated to Professor Walter Gustav Url on the occasion of his 70th birthday  相似文献   

16.
Gastrimargus africanus orientalis,an acridid grasshopper has revealed the existence of karyotypic mosaicism in the male germ line cells of a few individuals with 2 n = 23, 19, 21, 25 and 27 chromosomes. Details of this chromosomal instability are presented in this paper. We dedicate this paper to our teacher Prof. L Siddaveere Gowda on the eve of his 60th birthday.  相似文献   

17.
《The Journal of cell biology》1986,103(6):2229-2239
A monoclonal antibody (M3A5), raised against microtubule-associated protein 2 (MAP-2), recognized an antigen associated with the Golgi complex in a variety of non-neuronal tissue culture cells. In double immunofluorescence studies M3A5 staining was very similar to that of specific Golgi markers, even after disruption of the Golgi apparatus organization with monensin or nocodazole. M3A5 recognized one band of Mr approximately 110,000 in immunoblots of culture cell extracts; this protein, designated 110K, was enriched in Golgi stack fractions prepared from rat liver. The 110K protein has been shown to partition into the aqueous phase by Triton X-114 extraction of a Golgi-enriched fraction and was eluted after pH 11.0 carbonate washing. It is therefore likely to be a peripheral membrane protein. Proteinase K treatment of an isolated Golgi stack fraction resulted in complete digestion of the 110K protein, both in the presence and absence of Triton X-100. A the 110K protein is accessible to protease in intact vesicles in vitro, it is presumably located on the cytoplasmic face of the Golgi membrane in vivo. The 110K protein was able to interact specifically with taxol-polymerized microtubules in vitro. These results suggest that the 110K protein may serve to link the Golgi apparatus to the microtubule network and so may belong to a novel class of proteins: the microtubule-binding proteins.  相似文献   

18.
19.
The effects of chloroquine, verapamil and monensin on secretion of very-low-density lipoproteins (VLDLs) were studied in cultured rat hepatocytes. Maximum inhibition of VLDL-triacylglycerol secretion by 50–90% of control was reached at 200 μM chloroquine, 200 μM verapamil and 5 μM monensin, whereas no effect on cellular triacylglycerol synthesis was observed. The inhibition could be seen within 15 min and was reversible after washout of the drugs. Chloroquine and verapamil inhibited both cellular protein synthesis and protein secretion, whereas monesin reduced protein secretion without any effect on protein synthesis. Control experiments with cycloheximide revealed that intact protein synthesis was not necessary for secretion of VLDL-triacylglycerol during 2 h. Electron micrographs of cells treated with chloroquine, verapamil or monensin showed swollen Golgi cisternae containing VLDL-like particles. By morphometry, a more than 2-fold increase in volume fractions and size indices of Golgi complexes and secondary lysosomes was observed, except that monensin had no significant effect on these parameters of secondary lysosomes. These results suggest that the inhibition of VLDL secretion by chloroquine, verapamil and monensin which takes place in the Golgi complex might be due to disruption of trans-membrane proton gradients. An increase in pH of acidic Golgi vesicles may cause swelling and disturb sorting and membrane flow through this organelle.  相似文献   

20.
The distribution between nuclei and cytoplasm of DNA-binding proteins from growing NIL cells was studied. To obtain the subcellular fractions, cell monolayers or cells previously detached from the culture dish were treated with the non-ionic detergent Nonidet P-40. Proteins with affinity for DNA were isolated from nuclear or cytoplasmic fractions by chromatography on DNA-cellulose columns and were further analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The results show that P8, one of the major components in the 0.15 M NaCl-eluted proteins, is found predominantly in the cytoplasmic fractions, whereas P6, the other main protein peak in this eluate, is more prominent in the nuclear fraction. Among the other proteins eluted at 0.15 M NaCl from the DNA-cellulose column, P5 and P5′ are detected in both nuclear and cytoplasmic fractions. All the other proteins in the 0.15 M NaCl eluate are present almost exclusively in the cytoplasmic fraction. On the other hand, most of the proteins with higher affinity for DNA, eluted from the column at 2 M NaCl, are present in the nuclear fraction, although they are also detected in the cytoplasm in amounts similar to those observed in the nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号