首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 685 毫秒
1.
Lucero  D. W.  Grieu  P.  Guckert  A. 《Plant and Soil》2000,227(1-2):1-15
The combined effects of soil water deficit and above and below ground interspecific plant competition on the growth, water-use efficiency (WUE), and measured carbon isotopic composition (δ13C) values of white clover and ryegrass were studied. White clover and ryegrass were grown in specially designed crates 1) individually; 2) in shoot competition; or 3) in shoot + root competition and either well-watered or at a moderate or severe soil water deficit. The effects of shoot + root competition on shoot dry matter growth were substantial and benefited both white clover and ryegrass when well-watered or at a moderate soil water deficit, while severely reducing white clover shoot dry matter growth at severe soil water deficit. Plant competition did not affect the WUE of white clover or ryegrass. As soil water deficit increased, the WUE of white clover did not change whereas the WUE of ryegrass increased and was greater than that of white clover. This was attributed to the lower leaf water conductance of ryegrass which conserved water and maintained growth longer compared to white clover. A stronger correlation existed between soil water deficit and measured δ13C values for ryegrass at each plant competition level (P<0.001) than existed for white clover (individual: P<0.01; shoot + root: P<0.001; shoot: P<0.10). Unlike white clover, the relationship between measured δ13C values and shoot dry matter growth indicated that C assimilation for ryegrass was dependent on type of plant competition. That WUE remained constant for white clover while measured δ13C values increased as soil water deficit increased, suggests that the role below ground respiration rate played in determining δ13C values increased. The WUE of white clover appears to be independent of the nature of the competition between plants and the soil water deficit level at which it is grown, whereas for ryegrass, the addition of root competition to shoot competition should lead to increases in its WUE. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Three experiments are reported which examine the relative roles of host and Rhizobium genotypes as factors limiting clover (Trifolium repens L.) growth at low soil temperatures.In the first experiment un-nodulated clover and perennial ryegrass (Lolium perenne L.) were grown with non-limiting nitrate at root temperatures of 8, 10 and 12°C. The ryegrass had substantially better relative growth rates (RGR) than the clover with the biggest difference occurring at 8°C. Alterations in growth rate with temperature were more marked in clover than in ryegrass but the latter still produced several times more dry matter than clover at each temperature.In the subsequent experiments clover nodulated with different strains of rhizobia was grown with and without non-limiting additions of nitrate at root temperatures of 9, 12 and 15°C. Plants receiving nitrate generally produced more dry matter than those dependent upon Rhizobium for nitrogen but differences in yield between these treatments did not alter with temperature. This suggests that limitations imposed by nitrogen fixation are similar at both high and low temperatures. Indeed, there was some evidence that nitrogen limitations were rather more pronounced at the highest temperature. The first experiment clearly demonstrated that the clover genotype makes particularly poor use of nitrate at low root temperatures when compared to its common companion perennial ryegrass.It can be concluded that improvements in spring growth of clover will rest largely with alterations to the plant genotype and its ability to use combined nitrogen for growth at lower temperatures rather than with changes in rhizobia or any symbiotic characters.  相似文献   

3.
Root exudates: a pathway for short-term N transfer from clover and ryegrass   总被引:16,自引:1,他引:15  
The short-term transfer of nitrogen (N) from legumes to grasses was investigated in two laboratory studies. One study was done in pots where the roots of white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.) were allowed to co-exist, and a second study was performed using a micro-lysimeter system designed to maintain nutrient flow from the clover to the grass, whilst removing direct contact between the root systems. The 15N-dilution technique was used to quantify the transfer of N between species. Levels of ammonia and amino acids were measured in root exudates. The amounts of N transferred were in the same order of magnitude in both the pot and micro-lysimeter experiments. In the micro-lysimeter experiment, 0.076 mg of N were transferred per plant from clover to ryegrass during the course of the experiment. Ammonium exudation was much higher than amino acid exudation. The most abundant amino acids in both clover and ryegrass root exudates were serine and glycine. However, there was no correlation between the free amino acid profile of root extracts and exudates for both plant species: Asparagine was the major amino acid in clover roots, while glutamine, glutamate and aspartate were the major amino acids in ryegrass roots. Comparison of exudates obtained from plants grown in non-sterile or axenic conditions provides evidence of plant origin of ammonium, serine and glycine.  相似文献   

4.
Abstract

Crude root extracts of the black beetle-resistant legumes red clover, white clover, lupin, Lotus pedunculatus, and lucerne significantly reduced feeding by 3rd-instar black beetle larvae when incorporated in an artificial medium containing a strong feeding stimulant. The same extracts were toxic when administered orally. Lucerne and L. pedunculatus contain particularly active feeding deterrents and toxins. The root of the black beetle-resistant grass Phalaris aquatica (= P. tuberosa), like that of the susceptible perennial ryegrass, had no effect on larval feeding or survival. Lotus pedunculatus was very much more active against black beetle larvae than L. corniculatus or L. corniculatus × pedunculatus.  相似文献   

5.
Plants may respond to herbivore attacks by changing their chemical profile. Such induced responses occur both locally and systemically throughout the plant. In this paper we studied how Brassica nigra (L.) Koch (Brassicaceae) plants respond to two different root feeders, the endoparasitic nematode Pratylenchus penetrans Cobb (Tylenchida: Pratylenchidae) and the larvae of the cabbage root fly Delia radicum L. (Diptera: Anthomyiidae). We tested whether the activities of the root feeders affected the survival and development of the shoot feeding crucifer specialist Pieris rapae (L.) (Lepidoptera: Pieridae) via systemically induced changes in the shoots. Overall, P. rapae larvae grew slower and produced fewer pupae on plants that were infested with root feeders, especially on plants infested with P. penetrans. This effect could not be attributed to lower water or protein levels in these plants, as the percentage of water in the controls and root infested shoots was similar, and protein content was even higher in root infested plants. Both glucosinolate as well as phenolic levels were affected by root feeding. Initially, glucosinolate levels were the lowest in root infested plants, but on P. penetrans infested plants they increased more rapidly after P. rapae started feeding than in controls or D. radicum infested plants. Plants with D. radicum feeding on their roots had the highest phenolic levels at all harvest dates. Our results indicate that root feeding can significantly alter the nutritional quality of shoots by changes in secondary metabolite levels and hence the performance of a specialist shoot feeder.  相似文献   

6.

Backgrounds and aims

N rhizodeposition by legumes leads to enrichment of N in soils and in companion plants. N rhizodeposition can be divided into two major components, root exudation and root senescence. Our aim was to quantify N root exudation in white clover (Trifolium repens L.) through an estimation of short-term N rhizodeposition and to assess its impact on N transfer to companion perennial ryegrass (Lolium perenne L.) grown in mixture with clover.

Method

15N2 provided in the root atmosphere for 3 days was used to estimate transfer of symbiotically fixed nitrogen (SFN) to the growing medium by clover grown in pure stand and to ryegrass by clover grown in mixture for 2 months.

Results

The proportion of N rhizodeposited over the 3 days increased from 3.5 % of SFN in pure stand to 5.3 % in mixture. The 15N-enrichment of ammonium from the adhering substrate shows that a part of the rhizodeposited N was released in the form of ammonium. 4 % of the rhizodeposited N was taken up by ryegrass during the labelling period.

Conclusions

This study showed a significant contribution of root N exudation to the total N rhizodeposition of legumes and in the transfer of N to grasses.  相似文献   

7.
An experiment is described in which the magnitude of N transferred from damaged white clover roots to perennial ryegrass was determined, using 15N labelling of the grass plant. There was no effect on the growth and N-fixation of the clover plants after removing part of the root system. The 15N data suggested that N had been acquired by all grass plants, even in plants grown alone with no further N supplied after labelling. However, after quantifying the mobile and stored N pools of the grass plants it was evident that significant transfer of N from clover to grass only took place from damaged clover roots. Dilution of the atom% 15N in the roots of the grass plants grown alone, and in association with undamaged clover roots, was explained by remobilisation of N within the plant.  相似文献   

8.
Ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) have contrasting responses to soil mineral N availability and clover has the ability to fix atmospheric N(2) symbiotically. It has been hypothesized that these differences are the key to understanding grass-clover coexistence and vegetative dynamics in pastures. However, the whole plant response of clover and ryegrass to mineral N availability has not been fully characterized and inter-cultivar variability in the N-handling dynamics of clover has not been assessed. A detailed experimental study to address these issues was undertaken. For all clover cultivars and ryegrass, mass specific mineral N uptake rates (of whole plants) were similar saturating functions of mineral N availability. For all clover cultivars total N assimilation rates, whole plant C : N ratios and root : shoot ratios were independent of mineral N availability. Clover growth rates were also independent of mineral N availability except for a slight (<10%) reduction at very low N availability levels. Specific N(2) fixation rate (whole plant) was precisely controlled to ensure fixation balanced the deficit between mineral N uptake and the total N assimilation required to maintain constant whole plant C : N ratio. There was always a deficit between N uptake and the total N assimilation required to maintain C : N ratio. Consequently, some N(2) fixation remained engaged even at high mineral N availability levels. All inter-cultivar variation in N(2) fixation dynamics could be attributed to variations in growth rate. Clover mass specific growth rate declined as plant size increased. Ryegrass specific growth rate, whole plant C : N ratio and root : shoot ratio were dependent on N availability. Increased N availability led to increased growth rate and decreased C : N and root : shoot ratios. Specific growth rate was also dependent on plant size, growth rate declining as plant size increased. It is concluded that clover inter-cultivar variation in field performance is unlikely to be a consequence of variation in N-handling characteristics. Inter-cultivar differences in growth rate are likely to be a much more important source of variation.  相似文献   

9.
Measurements of feeding damage by sitona weevil (Sitona lineatus L.) adults on differing numbers of seedlings of white clover (Trifolium repens L.) at the first and fourth trifoliate leaf stage were made in the glasshouse at 20°C. S. lineatus consumed more of the trifoliate component of the seedling. Sitona adults caused significant yield reduction at all levels of plant population. Total clover consumption increased with increasing size of sitona population, but consumption per adult weevil was reduced.  相似文献   

10.

The influence of natural plant odours on the locomotory behaviour of 3rd‐instar larvae of Costelytra zealandica (White) was studied by observing their movement in glass‐sided test chambers. Through an analysis of the paths followed by individual larvae in single‐option choice‐chamber tests it was possible to evaluate the responses of the larvae to different plant materials. The odour of fresh young perennial ryegrass (Loliumperenne) root was more attractive to the insects than was that of older plants. Larvae were also more strongly attracted to the root of lucerne (Medicago sativa), Lotus pedunculatus, red clover (Trifolium pratense), and white clover (T. repens) than to that of perennial ryegrass. The possible role of volatile chemical factors in plant resistance to grass grub attack is discussed.  相似文献   

11.
A field study was carried out near Zürich (Switzerland) to determine the yield of symbiotically fixed nitrogen (15N dilution) from white clover (Trifolium repens L.) grown with perennial ryegrass (Lolium perenne L) and from red clover (Trifolium pratense L.) grown with Italian ryegrass (Lolium multiflorum Lam.). A zero N fertilizer treatment was compared to a 30 kg N/ha per cut regime (90 to 150 kg ha−1 annually). The annual yield of clover N derived from symbiosis averaged 131 kg ha−1 (49 to 227 kg) without N fertilization and 83 kg ha−1 (21 to 173 kg) with 30 kg of fertilizer N ha−1 per cut in the seeding year. Values for the first production year were 308 kg ha−1 (268 to 373 kg) without N fertilization and 232 kg ha−1 (165 to 305 kg) with 30 kg fertilizer N ha−1 per cut. The variation between years was associated mainly with the proportion of clover in the mixtures. Apparent clover-to-grass transfer of fixed N contributed up to 52 kg N ha−1 per year (17 kg N ha−1 on average) to the N yield of the mixtures. Percentage N derived from symbiosis averaged 75% for white and 86% for red clover. These percentages were affected only slightly by supplemental nitrogen, but declined markedly during late summer for white clover. It is concluded that the annual yield of symbiotically fixed N from clover/grass mixtures can be very high, provided that the proportion of clover in the mixtures exceeds 50% of total dry mass yield.  相似文献   

12.
Legumes play a crucial role in nitrogen supply to grass-legume mixtures for ruminant fodder. To quantify N transfer from legumes to neighbouring plants in multi-species grasslands we established a grass-legume-herb mixture on a loamy-sandy site in Denmark. White clover (Trifolium repens L.), red clover (Trifolium pratense L.) and lucerne (Medicago sativa L.) were leaf-labelled with 15N enriched urea during one growing season. N transfer to grasses (Lolium perenne L. and xfestulolium), white clover, red clover, lucerne, birdsfoot trefoil (Lotus corniculatus L.), chicory (Cichorium intybus L.), plantain (Plantago lanceolata L.), salad burnet (Sanguisorba minor L.) and caraway (Carum carvi L.) was assessed. Neighbouring plants contained greater amounts of N derived from white clover (4.8?g?m-2) compared with red clover (2.2?g?m-2) and lucerne (1.1?g?m-2). Grasses having fibrous roots received greater amounts of N from legumes than dicotyledonous plants which generally have taproots. Slurry application mainly increased N transfer from legumes to grasses. During the growing season the three legumes transferred approximately 40?kg?N ha-1 to neighbouring plants. Below-ground N transfer from legumes to neighbouring plants differed among nitrogen donors and nitrogen receivers and may depend on root characteristics and regrowth strategies of plant species in the multi-species grassland.  相似文献   

13.
Pasture swards containing perennial ryegrass (Lolium perenne L.) alone or with one of five different white clover (Trifolium repens L.) cultivars were examined for production and transfer of fixed nitrogen (N) to grass under dairy cow grazing. Grass-only swards produced 21% less than mixed clover-grass swards during the second year after sowing. Production from grass-only plots under a mowing and clipping removal regime was 44% less than from grass-only plots under grazing. Much of this difference could be attributed to N transfer. In swards without clover, the ryegrass component also decreased in favour of other grasses.The average amount of fixed N in herbage from all clover cultivars was 269 kg N ha–1 yr–1. Above-ground transfer of fixed N to grasses (via cow excreta) was estimated at 60 kg N ha–1 yr–1. Below-ground transfer of fixed N to grasses was estimated at 70 kg N ha–1 yr–1 by 15N dilution and was similar for all clover cultivars. Thus, about 50% of grass N was met by transfer of fixed N from white clover during the measurement year. Short-term measurements using a 15N foliar-labelling method indicated that below-ground N transfer was largest during dry summer conditions.  相似文献   

14.
The consumotion, utilization and growth of third-instar larvae of black beetle, Heteronychus arator (F.) feeding on roots of ryegrass (Lolium perenne), paspalum (Paspalum dilatatum) and white clover (Trifolium repens) were studied. Consumption was greater on the grasses than on white clover when assessed by gravimetric methods. Larvae had a higher growth rate on the grasses. Utilization of the roots of the three species was similar indicating that poor growth on white clover is the result of low consumption probably induced by the presence of feeding deterrents in the roots.This work is part of a study carried out by the senior author for the degree of D. Phil. at the University of Waikato.  相似文献   

15.
Boller  B. C.  Nösberger  J. 《Plant and Soil》1988,112(2):167-175
The temporal N-uptake patterns of white clover (Trifolium repens L.) mixed with perennial ryegrass (Lolium perenne L.) and of red clover (Trifolium pratense L.) mixed with Italian ryegrass (Lolium multiflorum Lam.) were determined in successive harvests of herbage within the growth cycles of a ley established near Zürich (Switzerland). Rooting patterns were examined by injecting15N-fertilizer at soil depths ranging from 10 to 40 cm. The results were analyzed to determine the effect of variations in time and depth of N-uptake on the15N-based measurement of N from symbiosis (Nsym) and N from transfer (Ntrans).Grasses in mixture appeared to have deeper rooting systems than grass monocultures, which led to an overestimation of N transfer from white clover to perennial ryegrass if15N was spread on the soil surface.White clover generally lagged behind grass in soil N- uptake. Soil N-uptake of red clover slowed down before that of the grass because % Nsym almost reached 100% during the second half of each growth cycle. However, the effect of these dissimilarities on the seasonal average of %Nsym did not exceed 2%.It is concluded that at the observed high levels of N2 fixation, failure to account for the N-uptake patterns of the test and reference crops only slightly affected the estimates of % Nsym and % Ntrans, and did not invalidate the observed differences between species.  相似文献   

16.
Mixing the ryegrass mosaic virus (RMV) resistant perennial ryegrass (Lolium perenne) cv. Endura with the susceptible Italian ryegrass (L. multiflorum) cv. RvP decreased infection of RvP wth RMV from 37% when grown alone to 22% when mixed. However, Endura yielded less than RvP and there was no yield benefit from mixing the two cultivars. Mixing red clover (Trifolium pratense) cv. Hungaropoly with RvP had no detectable effect on RMV incidence in RvP but did decrease the incidence of red clover necrotic mosaic virus in Hungaropoly from 9% to 1% and of white clover mosaic virus from 53-5% to 41%. The yield of the mixture was equal to that of RvP grown alone but given nitrogen fertiliser. The numbers of eriophyid mites, including Abacarus hystrix the vector of RMV, on ryegrass leaves were similar in pure and mixed swards. It is concluded that with herbage crops, the common practice of sowing mixtures of species may help control virus diseases.  相似文献   

17.
For pastures, root turnover can have an important influence on nutrient and carbon cycling, and plant performance. Turnover was calculated from mini‐rhizotron observations for chicory (Cichorium intybus), lucerne (Medicago sativa), perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) grown in the Manawatu, New Zealand. The species were combined factorially with four earthworm species treatments and a no‐earthworm control. Split plots compared the effects of not cutting and cutting the shoots at intervals. Observations were made c. 18 days apart for 2.5 years. This article concentrates on differences between plant species in root turnover in the whole soil profile to 40 cm depth. At this scale, earthworm effects were generally small and short lived. For ryegrass and white clover, root length and mass were linearly related (R2 = 0.82–0.99). For chicory and lucerne, the relationships were poorer (R2 = 0.38–0.77), so for those species length turnover may be a poor indicator of mass turnover. Standing root length, total growth and death generally decreased in the sequence ryegrass > lucerne > chicory = white clover. In length terms, scaled turnover (growth divided by average standing root length) generally followed the sequence lucerne > white clover > perennial ryegrass = chicory. Across species the scaled turnover rate averaged 3.4 per year or 0.9% per day. Cutting shoots reduced standing root length, growth and death, but increased scaled turnover. These results indicate fast and prolonged root turnover. For ryegrass and white clover, at least there is need to reappraise how to measure and model shoot : root ratios, dry matter production and carbon cycling.  相似文献   

18.
A plant mixture of white clover (Trifolium repens L.), red clover (Trifolium pratense L.), and ryegrass (Lolium perenne L.) was established in the spring of 1991 under a cover-crop of barley. Treatments were two levels of nitrogen (400 and 20 kg N ha-1) and two cutting intensities (3 and 6 cuts per season). Fixation of atmospheric derived nitrogen was estimated by two 15N dilution methods, one based on application of 15N to the soil, the other utilising small differences in natural abundance of 15N.Both methods showed that application of 400 kg N ha-1 significantly reduced dinitrogen fixation, while cutting frequency had no effect. Atmospheric derived nitrogen constituted between 50 and 64% of harvested clover nitrogen in the high-N treatment, while between 73% and 96% of the harvested clover nitrogen was derived from the atmosphere in the low-N treatment. The amounts of fixed dinitrogen varied between 31–72 kg N ha-1 and 118–161 kg N ha-1 in the high-N and low-N treatment, respectively. The highest values for biological dinitrogen fixation were estimated by the enriched 15N dilution method.Estimates of transfer of atmospheric derived nitrogen from clover to grass obtained by the natural 15N abundance method were consistently higher than those obtained by the enriched 15N dilution method. Neither mineral nitrogen application nor defoliation frequency affected transfer of atmospheric derived nitrogen from clover to grass.Isotopic fractionation of 14N and 15N (B value) was estimated by comparing results for nitrogen fixation obtained by the enriched 15N dilution and the natural 15N abundance method, respectively. B was on average +1.20, which was in agreement with a B value determined by growing white clover in a nitrogen free media.  相似文献   

19.
Although cutting the foliage is known to increase Fusarium root rot severity in red clover (Trifolium pratense L.), no quantitative relationship has so far been determined. In this study, results from a number of greenhouse experiments, where plants were artificially inoculated with Fusarium avenaceum (Corda ex Fr.) Sacc., show a linear relationship between cutting intensity and Fusarium root rot in red clover, cv. ‘Hermes II’ an increased cutting intensity giving an increased root rot severity. Theoretically, a threshold value can be calculated beyond which no increase in root rot severity, compared to an uncut plant, should be expected.  相似文献   

20.
 The effect of arbuscular mycorrhiza (AM) on white clover and ryegrass grown together in a soil spiked with polycyclic aromatic hydrocarbons (PAH) was assessed in a pot experiment. The soil was spiked with 500 mg kg–1 anthracene, 500 mg kg–1 chrysene and 50 mg kg–1 dibenz(a,h)anthracene, representing common PAH compounds with three, four and five aromatic rings, respectively. Three treatments and two harvest times (8 and 16 weeks) were imposed on plants grown in spiked soil: no mycorrhizal inoculation, mycorrhizal inoculation (Glomus mosseae P2, BEG 69) and mycorrhizal inoculation and surfactant addition (Triton X-100). Pots without PAH were also included as a control of plant growth and mycorrhizal colonization as affected by PAH additions. The competitive ability of clover vis-à-vis ryegrass regarding shoot and root growth was enhanced by AM, but reduced by PAH and the added surfactant. This was reflected by mycorrhizal root colonization which was moderate for clover (20–40% of total root length) and very low for ryegrass (0.5–5% of total root length). Colonization of either plant was similar in spiked soil with and without the added surfactant, but the PAH reduced colonization of clover to half that in non-spiked soil. P uptake was maintained in mycorrhizal clover when PAH were added, but was reduced in non-mycorrhizal clover and in mycorrhizal clover that received surfactant. Similar effects were not observed on ryegrass. These results are discussed in the context of the natural attenuation of organic pollutants in soils. Accepted: 12 June 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号