首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
l-myo-Inositol-1-phosphate synthase (EC 5.5.1.4, MIPS), an evolutionarily conserved enzyme protein, catalyzes the synthesis of inositol, which is implicated in a number of metabolic reactions in the biological kingdom. Here we report on the isolation of the gene (PINO1) for a novel salt-tolerant MIPS from the wild halophytic rice, Porteresia coarctata (Roxb.) Tateoka. Identity of the PINO1 gene was confirmed by functional complementation in a yeast inositol auxotrophic strain. Comparison of the nucleotide and deduced amino acid sequences of PINO1 with that of the homologous gene from Oryza sativa L. (RINO1) revealed distinct differences in a stretch of 37 amino acids, between amino acids 174 and 210. Purified bacterially expressed PINO1 protein demonstrated a salt-tolerant character in vitro compared with the salt-sensitive RINO1 protein as with those purified from the native source or an expressed salt-sensitive mutant PINO1 protein wherein amino acids 174-210 have been deleted. Analysis of the salt effect on oligomerization and tryptophan fluorescence of the RINO1 and PINO1 proteins revealed that the structure of PINO1 protein is stable toward salt environment. Furthermore, introgression of PINO1 rendered transgenic tobacco plants capable of growth in 200-300 mm NaCl with retention of approximately 40-80% of the photosynthetic competence with concomitant increased inositol production compared with unstressed control. MIPS protein isolated from PINO1 transgenics showed salt-tolerant property in vitro confirming functional expression in planta of the PINO1 gene. To our knowledge, this is the first report of a salt-tolerant MIPS from any source.  相似文献   

2.
3.
The INO1 gene of yeast is expressed in logarithmically growing, wild-type cells when inositol is absent from the medium. However, the INO1 gene is repressed when inositol is present during logarithmic growth and it is also repressed as cells enter stationary phase whether inositol is present or not. In this report, we demonstrate that transient nitrogen limitation also causes INO1 repression. The repression of INO1 in response to nitrogen limitation shares many features in common with repression in response to the presence of inositol. Specifically, the response to nitrogen limitation is dependent upon the presence of a functional OPI1 gene product, it requires ongoing phosphatidylcholine biosynthesis and it is mediated by the repeated element, UASINO, found in the promoter of INO1 and other co-regulated genes of phospholipid biosynthesis. Thus, we propose that repression of INO1 in response to inositol and in response to nitrogen limitation occurs via a common mechanism that is sensitive to the status of ongoing phospholipid metabolism.  相似文献   

4.
Introgression and functional expression of either the PcINO1 (l-myo-inositol 1-phosphate synthase or MIPS coding gene from the wild halophytic rice, Porteresia coarctata) or McIMTI (inositol methyl transferase, IMTI coding gene from common ice plant Mesembryanthemum crystallinum) has earlier been shown to confer salt tolerance to transgenic tobacco plants (Sheveleva et al., Plant Physiol 115:1211–1219, 1997; Majee et al., J Biol Chem 279:28539–28552, 2004). In this communication, we show that transgenic tobacco plants co-expressing PcINO1 and McIMT1 gene either in cytosol or in chloroplasts accumulate higher amount of total inositol (free and methyl inositol) compared to non-transgenic plants. These transgenic plants were more competent in terms of growth potential and photosynthetic activity and were less prone to oxidative stress under salt stress. A positive correlation between the elevated level of total inositol and methylated inositol and the capability of the double transgenic plants to withstand a higher degree of salt stress compared to the plants expressing either PcINO1 or McIMT1 alone is inferred.  相似文献   

5.
The enzyme inositol-1-phosphate synthase (I-1-P synthase), product of the INO1 locus, catalyzes the synthesis of inositol-1-phosphate from the substrate glucose-6-phosphate. The activity of this enzyme is dramatically repressed in the presence of inositol. By selecting for mutants which overproduce and excrete inositol, we have identified mutants constitutive for inositol-1-phosphate synthase as well as a mutation in phospholipid biosynthesis. Genetic analysis of the mutants indicates that at least three loci (designated OPI1, OPI2 and OPI4) direct inositol-mediated repression of I-1-P synthase. Mutants of these loci synthesize I-1-P synthase constitutively. Three loci are unlinked to each other and to INO1, the structural gene for the enzyme. A mutant of a fourth locus, OPI3, does not synthesize I-1-P synthase constitutively, despite its inositol excretion phenotype. This mutant is preliminarily identified as having a defect in phospholipid synthesis.  相似文献   

6.

Key message

Co-suppressed MIPS2 transgenic lines allow bypass of the embryo lethal phenotype of the previously published triple knock-out and demonstrate the effects of MIPS on later stages of development.

Abstract

Regulation of inositol production is of interest broadly for its effects on plant growth and development. The enzyme l-myo-inositol 1-phosphate synthase (MIPS, also known as IPS) isomerizes d-glucose-6-P to d-inositol 3-P, and this is the rate-limiting step in inositol production. In Arabidopsis thaliana, the MIPS enzyme is encoded by three different genes, (AtMIPS1, AtMIPS2 and AtMIPS3), each of which has been shown to produce proteins with biochemically similar properties but differential expression patterns. Here, we report phenotypic and biochemical effects of MIPS co-suppression. We show that some plants engineered to overexpress MIPS2 in fact show reduced expression of AtMIPS1, AtMIPS2 and AtMIPS3, and show altered vegetative phenotype, reduced size and root length, and delayed flowering. Additionally, these plants show reduced inositol, increased glucose levels, and alteration of other metabolites. Our results suggest that the three AtMIPS genes work together to impact the overall synthesis of myo-inositol and overall inositol homeostasis.
  相似文献   

7.
8.
Chatterjee A  Majee M  Ghosh S  Majumder AL 《Planta》2004,218(6):989-998
l-myo-Inositol 1-phosphate synthase (EC 5.5.1.4; MIPS) catalyzes conversion of glucose 6-phosphate to l-myo-inositol 1-phosphate, the first and the rate-limiting step in the production of inositol, and has been reported from evolutionarily diverse organisms. Two forms of the enzyme have been characterized from higher plants, viz. cytosolic and chloroplastic, and the presence of MIPS has been earlier reported from the cyanobacteria (e.g. Spirulina sp.), the presumed chloroplast progenitors. The present study demonstrates possible multiple forms of MIPS and identifies the gene for one of them in the cyanobacterium Synechocystis sp. PCC 6803. Following detection of at least two immunologically cross-reactive MIPS forms, we have been able to identify from the fully sequenced Synechocystis genome an as yet unassigned open reading frame (ORF), sll1722, coding for the approx. 50-kDa MIPS protein, by using biochemical, molecular and bioinformatics tools. The DNA fragment corresponding to sll1722 was PCR-amplified and functional identity of the gene was confirmed by a complementation assay in Saccharomyces cerevisiae mutants containing a disrupted INO1 gene for the yeast MIPS. The sll1722 PCR product was cloned in Escherichia coli expression vector pET20b and the isopropyl -d-thiogalactopyranoside (IPTG)-induced overexpressed protein product was characterized following complete purification. Comparison of the sll1722 sequences with other MIPS sequences and its phylogenetic analysis revealed that the Synechocystis MIPS gene is quite divergent from the others.Abbreviations CBB Coomassie Brilliant Blue - EST Expressed sequence tag - G6P d-Glucose 6-phosphate - IPTG Isopropyl -d-thiogalactopyranoside - MIPS lmyo-Inositol 1-phosphate synthase - ORF Open reading frame  相似文献   

9.
l-myo-inositol 1-phosphate synthase (EC 5.5.1.4; MIPS) catalyzes the first rate limiting conversion of d-glucose 6-phosphate to l-myo-inositol 1-phosphate in the inositol biosynthetic pathway. In an earlier communication we have reported two forms of MIPS in Synechocystis sp. PCC6803 (Chatterjee et al. in Planta 218:989–998, 2004). One of the forms with a ~50 kDa subunit has been found to be coded by an as yet unassigned ORF, sll1722. In the present study we have purified the second isoform of MIPS as a ~65 kDa protein from the crude extract of Synechocystis sp. PCC6803 to apparent homogeneity and biochemically characterized. MALDI-TOF analysis of the 65 kDa protein led to its identification as acetolactate synthase large subunit (EC 2.2.1.6; ALS), the putatively assigned ORF sll1981 of Synechocystis sp. PCC6803. The PCR amplified ~1.6 kb product of sll1981 was found to functionally complement the yeast inositol auxotroph, FY250 and could be expressed as an immunoreactive ~65 kDa MIPS protein in the natural inositol auxotroph, Schizosaccharomyces pombe. In vitro MIPS activity and cross reactivity against MIPS antibody of purified recombinant sll1981 further consolidated its identity as the second probable MIPS gene in Synechocystis sp. PCC6803. Sequence comparison along with available crystal structure analysis of the yeast MIPS reveals conservation of several amino acids in sll1981 essential for substrate and co-factor binding. Comparison with other prokaryotic and eukaryotic MIPS sequences and phylogenetic analysis, however, revealed that like sll1722, sll1981 is quite divergent from others. It is probable that sll1981 may code for a bifunctional enzyme protein having conserved domains for both MIPS and acetolactate synthase (ALS) activities.Anirban Chatterjee and Krishnarup Ghosh Dastidar contributed equally.  相似文献   

10.
The Saccharomyces cerevisiae SCS2 gene has been cloned as a suppressor of inositol auxotrophy of CSE1 and hac1/ire15 mutants (J. Nikawa, A. Murakami, E. Esumi, and K. Hosaka, J. Biochem. 118:39–45, 1995) and has homology with a synaptobrevin/VAMP-associated protein, VAP-33, cloned from Aplysia californica (P. A. Skehel, K. C. Martin, E. R. Kandel, and D. Bartsch, Science 269:1580–1583, 1995). In this study we have characterized an SCS2 gene product (Scs2p). The product has a molecular mass of 35 kDa and is C-terminally anchored to the endoplasmic reticulum, with the bulk of the protein located in the cytosol. The disruption of the SCS2 gene causes yeast cells to exhibit inositol auxotrophy at temperatures of above 34°C. Genetic studies reveal that the overexpression of the INO1 gene rescues the inositol auxotrophy of the SCS2 disruption strain. The significant primary structural feature of Scs2p is that the protein contains the 16-amino-acid sequence conserved in yeast and mammalian cells. The sequence is required for normal Scs2p function, because a mutant Scs2p that lacks the sequence does not complement the inositol auxotrophy of the SCS2 disruption strain. Therefore, the Scs2p function might be conserved among eukaryotic cells.  相似文献   

11.
Myo-inositol participates in many different aspects of plant physiology and myo-inositol 1-phosphate synthase (MIPS; EC 5.5.1.4) catalyzes the rate limiting step of inositol biosynthetic pathway. Chickpea (Cicer arietinum), a drought-tolerant leguminous crop plant, is known to accumulate increased inositol during dehydration stress. Previously, we reported two differentially expressed divergent genes (CaMIPS1 and CaMIPS2) encoding two MIPS isoforms in chickpea. In this communication, we demonstrated that CaMIPS2 is an early dehydration-responsive gene and is also rapidly induced by exogenous ABA application, while CaMIPS1 expression is not much influenced by dehydration or ABA. The regulation of expression of these two genes has been studied by examining their promoter activity through GUS reporter gene and differential promoter activity has been observed. Moreover, unlike CaMIPS1 promoter, CaMIPS2 promoter contains CRT/DRE cis-regulatory element which seems to play a key role in dehydration-induced expression of CaMIPS2. Furthermore, CaMIPS1 and CaMIPS2 have been successfully complemented and shown to repair the defect of seedling growth and altered seed phenotype of Atmips1 mutant. Moreover, Arabidopsis transgenic plants overexpressing CaMIPS1 or CaMIPS2 exhibit improved tolerance to salinity and dehydration stresses and such tolerance of transgenic plants is correlated with their elevated level of inositol. Remarkably, CaMIPS2 transgenic lines perform better in all attributes than CaMIPS1 transformants under such stress conditions, due to comparatively unabated production of inositol by CaMIPS2 enzyme, as this enzyme retains significant activity under stress conditions.  相似文献   

12.
13.
14.
myo-Inositol-1-phosphate synthase is a conserved enzyme that catalyzes the first committed and rate-limiting step in inositol biosynthesis. Despite its wide occurrence in all eukaryotes, the role of myo-inositol-1-phosphate synthase and de novo inositol biosynthesis in cell signaling and organism development has been unclear. In this study, we isolated loss-of-function mutants in the Arabidopsis MIPS1 gene from different ecotypes. It was found that all null mips1 mutants are defective in embryogenesis, cotyledon venation patterning, root growth, and root cap development. The mutant roots are also agravitropic and have reduced basipetal auxin transport. mips1 mutants have significantly reduced levels of major phosphatidylinositols and exhibit much slower rates of endocytosis. Treatment with brefeldin A induces slower PIN2 protein aggregation in mips1, indicating altered PIN2 trafficking. Our results demonstrate that MIPS1 is critical for maintaining phosphatidylinositol levels and affects pattern formation in plants likely through regulation of auxin distribution.  相似文献   

15.
Improving crop tolerance to osmotic stresses is a longstanding goal of agricultural biotechnology. In the present work the PcINO1 gene coding for a salt-tolerant L-myo-inositol-1-phosphate synthase (MIPS) from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice was introgressed into cultivated mustard, Brassica juncea var B85. The transgenic plants demonstrate increased tolerance to salinity and oxidative stress with elevated level of inositol in both roots and shoots. The yield and crop quality of transgenic Brassica plants remain uncompromised and the plants were able to stably grow, set seeds and germinate in saline environments. When targeted to seeds of Nicotiana, PcINO1 was able to improve the seed survival rate under salinity and dehydration. Inositol and its derivatives regulate stress responses in various ways, serving as compatible solutes or signaling molecules. It is implicated that engineering inositol metabolism may affect the plant metabolic network leading to a stress tolerant phenotype as enumerated here in transgenic crop plants. How inositol itself or its derivatives affect the overall metabolic pathways leading to a stress-tolerant phenotype remains an intriguing question for future investigations.  相似文献   

16.
An 815 by region of the promoter of the Saccharomyces cerevisiae gene CTR/HNM1, encoding choline permease was sequenced and its regulatory function analysed by deletion studies in an in-frame promoter-lacZ construct. In addition to the TATA box, a 10 by motif (consensus 5′-CATGTGAAAT-3′) was found to be mandatory for CTR/HNM1 expression. This ‘decamer’ motif is located between nucleotides ?262 and ?271 and is identical in 9 of 10 by with the regulatory motif found in the S. cerevisiae INO1 and CHO1 genes. Constructs with the 10 by sequence show high constitutive expression, while elimination or alterations at three nucleotide positions, of the decamer motif in the context of an otherwise unchanged promoter leads to total loss of β-galactosidase production. Expression of the CTR/HNM1 gene in wild-type cells is regulated by the phospholipid precursors inositol and choline; no such influence is seen in cells bearing mutations in the phospholipid regulatory genes INO2, INO4, and OPI1. There is no regulation by INO2 and OPI1 in the absence of the decamer motif. However constructs not containing this sequence (promoter intact to positions ?213 or ?152) are still controlled by INO4. Other substrates of the choline permease, i.e. ethanolamine, nitrogen mustard and nitrogen half mustard do not regulate expression of CTR/HNM1.  相似文献   

17.
18.
Graves JA  Henry SA 《Genetics》2000,154(4):1485-1495
The ino2Delta, ino4Delta, opi1Delta, and sin3Delta mutations all affect expression of INO1, a structural gene for inositol-1-phosphate synthase. These same mutations affect other genes of phospholipid biosynthesis that, like INO1, contain the repeated element UAS(INO) (consensus 5' CATGTGAAAT 3'). In this study, we evaluated the effects of these four mutations, singly and in all possible combinations, on growth and expression of INO1. All strains carrying an ino2Delta or ino4Delta mutation, or both, failed to grow in medium lacking inositol. However, when grown in liquid culture in medium containing limiting amounts of inositol, the opi1Delta ino4Delta strain exhibited a level of INO1 expression comparable to, or higher than, the wild-type strain growing under the same conditions. Furthermore, INO1 expression in the opi1Delta ino4Delta strain was repressed in cells grown in medium fully supplemented with both inositol and choline. Similar results were obtained using the opi1Delta ino2Delta ino4Delta strain. Regulation of INO1 was also observed in the absence of the SIN3 gene product. Therefore, while Opi1p, Sin3p, and the Ino2p/Ino4p complex all affect the overall level of INO1 expression in an antagonistic manner, they do not appear to be responsible for transmitting the signal that leads to repression of INO1 in response to inositol. Various models for Opi1p function were tested and no evidence for binding of Opi1p to UAS(INO), or to Ino2p or Ino4p, was obtained.  相似文献   

19.
Myo-inositol-1-phosphate synthase (MIPS) catalyzes the conversion of glucose-6-phosphate to myo-inositol-1-phosphate. The reaction catalyzed by MIPS is the first step in the biosynthesis of inositol and inositol-containing molecules that serve important roles in both eukaryotes and prokaryotes. Consequently, MIPS is a target for the development of therapeutic agents for the treatment of infectious diseases and bipolar disorder. We recently reported a continuous spectrophotometric method for measuring MIPS activity using a coupled assay that allows the rapid characterization of MIPS in a multiwell plate format. Here we validate the continuous assay as a high-throughput alternative for measuring MIPS activity and report on one limitation of this assay—the inability to examine the effect of divalent metal ions (at high concentrations) on MIPS activity. In addition, we demonstrate that the activity of MIPS from Arabidopsis thaliana is moderately enhanced by the addition Mg2+ and is not enhanced by other divalent metal ions (Zn2+ and Mn2+), consistent with what has been observed for other eukaryotic MIPS enzymes. Our findings suggest that the continuous assay is better suited for characterizing eukaryotic MIPS enzymes that require monovalent cations as cofactors than for characterizing bacterial or archeal MIPS enzymes that require divalent metal ions as cofactors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号