首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effects of prostacyclin (PGI2) and its stable metabolite 6-oxo-PGF on various bioassay tissues are compared with those of PGE2 and PGF, using the cascade superfusion method. On vascular smooth muscle, PGI2 caused relaxation of all tissues tested except the rabbit aorta. PGE2 relaxed rabbit coeliac and mesenteric artery but contracted bovine coronary artery and had no effect on rabbit aorta. 6-oxo-PGF was ineffective at the concentrations tested.On gastro-intestinal smooth muscle, PGI2 contracted strips of rat and hamster stomach and the chick rectum. It was less potent than PGE2 or PGF. None of these substances contracted that cat terminal ileum. 6-oxo-PGF was inactive on these tissues at the doses tested.PGI2 was less active than PGE2 or PGF in contracting guinea-pig trachea and rat uterus; 6-oxo-PGF was active only on the rat uterus. Thus, PGI2 can be distinguished from the other stable prostaglandins using the cascade method of superfusion.  相似文献   

2.
To determine the influence of prostaglandins on cAMP metabolism in renal papillary collecting tubule (RPCT) cells, intracellular cAMP levels were measured after incubating cells with prostaglandins (PGs) alone or in combination with arginine vasopressin (AVP). PGE1, PGE2 and PGI2, but not PGD2 or PGF, increased intracellular cAMP concentrations. At maximal concentrations (10−5 tthe effects of PGE2 plus PGI2 (or PGE1), but not of PGI2 plus PGE1, were additive suggesting that at least two different PG receptors may be present in RPCT cell populations. Bradykinin treatment of RPCT cells caused an accumulation of intracellular cAMP which was blocked by aspirin and was quantitatively similar to that observed with 10−5 PGE2. PGs, when tested at concentrations (e.g. 10−9 ) which had no independent effect on intracellular cAMP levels, did not inhibit the AVP-induced accumulation of intracellular cAMP in RPCT cells. These results indicate that PGs do not block AVP-induced accumulation of intracellular cAMP in RPCT cells at concentrations of PGs which have been shown to inhibit the hydroosmatic effect of AVP on perfused collecting tubule segments. However, at higher concentrations of PGs (e.g. 10−5 ), the effects of AVP plus PGE1, PGE2, PGI2 or bradykinin on intracellular cAMP levels were not additive. Thus, under certain conditions, there is an interaction between PGs and AVP at the level of cAMP metabolism in RPCT cells.  相似文献   

3.
Since Prostacyclin (PGI2) is a major product of arachidonic acid metabolism in the human thyroid, we have studied the effects of PGI2 on cAMP accumulation in human thyroid slices and cultured thyrocytes. In both systems, PGI2 caused a dose- and time-dependent increase of cAMP accumulation with higher potency and efficacy than PGE2. Two optically active isomers of 5,6-dihydro-PGI2, i.e. stable synthetic analogs of PGI2, had qualitatively similar effects to PGI2. The relative potency ratio between the α- and β- isomer as well as their potency compared to PGI2 were substantially similar to their potency in inhibiting human platelet aggregation. In thyroid slices, PGI2 and its stable analogs had a greater than TSH in causing cAMP accumulation; however, in contrast to TSH, this effect was not associated with increased iodothyronine release except at maximal PGI2 concentrations. TSH had no detectable effect on thyroidal PGI2 synthesis and release. In cultured thyrocytes the effects of PGI2 and its stable analogs were considerably less than those obtained with TSH and required higher concentrations. Such a discrepancy was not found in the case of PGE2. These findings suggest the existence of a specific PGI2-responsive adenylate cyclase system in human significance.  相似文献   

4.
The ability of prostaglandin I2 (PGI2) to stimulate cyclic AMP production by granulosa cells, isolated from intact immature rats, has been demonstrated in vitro. The minimal effective dose was 15 ng/ml, which was comparable to the minimal effective dose for PGE2. However, a concentration of 15 μg/ml PGI2 was required to stimulate cyclic AMP production maximally, compared to a concentration of 1 μg/ml PGE2, which produced the maximum response. It therefore appears that PGI2 is not more effective than PGE2 in stimulating cyclic AMP production in granulosa cells, and is possibly less effective. Submaximal concentrations of PGI2 appeared to be able to modify the stimulation of cyclic AMP production by follicle- stimulating hormone (FSH), but whether or not PGI2 plays any role in follicular function remains to be established.  相似文献   

5.
The effects of prostacyclin (PGI2) and its breakdown product 6-oxo-PGF on various aspects of gastric function were investigated in the rat. PGI2 increased mucosal blood flow when infused intravenously. PGI2 was a more potent inhibitor of gastric acid secretion in vivo than PGE2. Like PGE2, PGI2 inhibited acid secretion from the rat stomach in vitro. PGI2 had comparable activity to PGE2 in inhibiting indomethacin-induced gastric erosions. Thus prostacyclin shares several of the activities of PGE2, and may be involved in the regulation of gastric mucosal function.  相似文献   

6.
The antithrombotic effect of topical application of the 3-oxamethano-prostaglandin (PG) I1 analog, SM-10902 in the microcirculation and in vitro antiplatelet functions of its active form SM-10906 were estimated in comparison with PGI2 and PGE1. In rat platelets, SM-10906 evoked accumulation of intracellular cyclic adenosine 3′,5′-monophosphate, and exhibited antiaggregatory and disaggregatory activities, which were all enhanced by the phosphodiesterase inhibitor theophylline. Additionally, SM-10906 was shown to inhibit platelet adhesion to collagen in human platelet-rich plasma. PGI2 and PGE1 also showed in vitro antiplatelet effects in the order of PGI2 > SM-10906 ≥ PGE1. SM-10902 exhibited a dose-dependent antithrombotic effect in the guinea pig mesenteric arteriole by a topical application, and this activity might be exerted by the antiplatelet functions of SM-10906. Although SM-10906, PGI2 and PGE1 also showed the antithrombotic effects, SM-10902 was the most potent. In conclusion, the present studies indicate that an external topical preparation of SM-10902 may be useful for the therapy of peripheral circulatory insufficiency.  相似文献   

7.
Several bisdeoxy PGE1 analogs are potent, competitive antagonists of PGE1-induced colonic contractions in the gerbil. The efficacy of these analogs in antagonizing PGE1-mediated systemic vasodepression has not been previously demonstrated. In this study, serial doses of PGs were administered before, during and after infusion of d,1–11, 15-bisdeoxy PGE1. Bolus injections of PGE1 (3.0 μk/kg), PGE2 (3.0 μg/kg) and PGI2 (0.3 μg/kg) were administered via the right external jugular vein to male Wistar rats. PGE1, PGE2 and PGI2 decreased systemic arterial pressure 41%, 38% and 38%, respectively. The PGE1 analog was infused (200 μg/kg/min) through the right common carotid artery. The analog itself had no effect on mean systemic arterial pressure, but maximum reversible inhibition (51%) of PGE1-mediated vasodepression occurred following a 50 minute infusion. No significant effect of the PGE1 analog was observed on PGE2 or PGI2-mediated vasodepression. These data demonstrate the ability to antagonize PGE1-mediated vasodepression, and to differentiate the vascular responses to PGE1 and PGE2 or PGI2.  相似文献   

8.
Prostaglandins (PG)E1, E2 and I2 were produced by polyoma virus transformed (py) 3T3 fibroblasts. The levels of PGE1, PGE2 and 6-keto-PGF (degradation product of PGI2) were 22.7, 225 and 33.2 ng/ml medium, respectively, 72 h after medium change. The stimulatory potencies of exogenous PGE1, PGE2 and PGI2 on adenosine 3′:5′-monophosphate (cyclic AMP) formation were similar. Therefore, the prostaglandin mediated increase in cyclic AMP levels observed during growth of these cells (Claesson, H.-E., Lindgren, J.Å. and Hammarström, S. (1977) Eur. J. Biochem. , 13) is largely (>80%) mediated by PGE2 and to lesser extents by PGE1 and PGI2.  相似文献   

9.
To examine further the possible prostanoid involvement in the influence of the epithelium on guinea-pig tracheal smooth muscle responsiveness, we have analyzed the effects of LTD4, methacholine and histamine on the level of airway smooth muscle tone and on the amounts of PGE and PGI2 (determined by radioimmunoassay) in the presence and absence of the epithelium. Removal of the epithelium increased the sensitivity of guinea-pig trachea to the contractile effects of LTD4, methacholine and histamine. LTD4 (3–100 nM), methacoline (0.1–10 μM) or histamine (0.3–30 μM) did not increase prostanoid release above control values in either the presence or absence of the epithelium. The unstimulated release of PGE2 and PGF but not PGI2, was decreased in tissues lacking epithelium. Indomethacin (1 μM) reduced the baseline tone to a smaller extent in the absence of epithelium. In the presence but not the absence of the epithelium, indomethacin increased the sensitivity of preparations to the contractile effect of methacholine. The results support the postulate of an epithelium-derived inhibitory factor modulating guinea-pig tracheal smooth muscle responsiveness. The identity of this factor is not known but is not PGI2 and is unlikely to be PGF or PGE2. However, the possibility remains that the basal release of PGE2 and/or PGF derived from the epithelium may markedly affect the responsiveness of guinea-pig tracheal smooth muscle. Furthermore, the epithelium is a significant source of PGE2 and PGF which may be involved in the maintenance of baseline tone.  相似文献   

10.
Experiments were performed in rats to study the effect of infusion of PGI2, PGE2, and PGF on tubuloglomerular feedback responses (i.e. the change of SNGFR in response to a change of loop of Henle flow rate) in the presence and absence of simultaneous inhibition of endogenous PG synthesis with indomethacin. Infusion of PGI2 or PGE2 at rates that did not alter arterial blood pressure did not significantly modify the magnitude of feedback responses (PGI2) 8.5 μg/hr, PGE2 85 μg/hr). Some inhibition of feedback responses was seen when PGI2 and PGE2 were administered at higher rates were associated with a reduction of blood pressure (PGI2 20 μg/hr, PGE2 200 μg/hr). PGI2 (8.5 μg/hr) and PGE2 (85 μg/hr) largely prevented feedback inhibition induced by indomethacin. When given subsequent to indomethacin PGI2 and PGE2 restored feedback responsiveness almost to normal. In contrast, PGF did not influence feedback inhibition caused by indomethacin. Infusion of PGI2 induced partial restoration of feedback responses in DOCA-salt treated animals in which the feedback system is virtually completely inactive. Our results indicate that availability of PGI2 or PGE2 is necessary for the normal operation of the tubuloglomerular feedback mechanism for control of nephron filtration rate.  相似文献   

11.
Mouse resident peritoneal macrophages stimulated by purified bacterial lipopolysaccharide (LPS) produced both prostaglandin E2 (PGE2) and prostaglandin I2 (PGI2), the latter detected as its stable metabolite, 6-keto PGF. Maximum production, induced in each case by 1 ng/ml purified LPS, was in the range of 10−7M for PGI2 and 3 × 10−8M for PGE2. A quantitatively similar increase in intracellular levels of macrophage cyclic AMP (measured on a whole cell basis), with a similar duration of effect, was stimulated by PGE2 and PGI2; however, only PGE2 had a negative regulatory effect on macrophage activation for tumor cell killing. These data confirm that more than a whole cell increase in the concentration of cyclic AMP is needed to shut off nonspecific tumor cell killing mediated by LPS-activated resident peritoneal macrophages.  相似文献   

12.
Methods for the evaluation of competitive interactions at receptors associated with platelet activation and inhibition using aggregometry of human PRP have been developed. The evidence supports the suggestion that PGE1 and PGI2 share a common receptor for inhibition of platelet reactivity, but only a portion (if any) of the aggregation stimulation associated with PGE2 is the result of PGE2 binding (without efficacy) to this receptor. PGE2 (@.3–20 μ ) is an effective antagonist of PGE1, PGI2, producing a shift of about one order of magnitude in the IC50-values obtained from complete aggregation inhibition dose response curves. The antagonism of PGD2 inhibition is particularly notable, 80 n PGE2 levels are detectable. This and other actions of PGE2 indicate another platelet receptor for PGE2. PGE1 acts at both the PGE2 and PGI2 receptor. Other substances showing PGI2-like actions only at high doses (1–30 μ ), display additive responses with PGI2 indicative of decreased affinity for the I2/E1 receptor and the absence of PGE2-like aggregation stimulation activity.PGI2 methyl ester has intrinsic inhibitory action not associated with in situ ester hydrolysis. The methyl ester is dissaggregatory showing particular specificity for inhibition of release and second wave aggregation.  相似文献   

13.
Prostaglandin E2 (PGE2) has previously been shown to inhibit sympathetic neurotransmission in different organs and species. Based on this inhibitory effect and on its reversal by cyclo-oxygenase inhibitors, PGE2 has been claimed to be a physiological modulator of in vivo release of norepinephrine (NE) from sympathetic nerves. It is now recognized that prostacyclin (PGI2) is the main cyclo-oxygenase product in the heart. We therefore addressed the question whether PGI2, within the same preparation, is formed in increased amounts during sympathetic nerve stimulation and has neuromodulatory activity.The effluent from isolated rabbit hearts subjected to sympathetic nerve stimulation or to infusion of NE or adenosine (ADO) was collected, and its content of PGE2 and 6-keto-PGF (dehydration product of PGI2) was analyzed using gas chromatography/mass spectrometry, operated in the negative ion/chemical ionization mode. Other hearts were infused with PGI2 and nerve stimulation induced outflow of endogenous NE into the effluent was analyzed using HPLC with electrochemical detection. Nerve stimulation at 5 or 10 Hz (before but not after adrenergic receptor blockade), as well as infusion of NE (10−6–10−5M) or ADO (10−4M) increased the cardiac outflow of 6-keto-PGF1α. Basal and nerve stimulation induced efflux of 6-keto-PGF1α was approximately 5 times higher than the corresponding efflux of PGE2. PGI2 dose-dependently inhibited the outflow of NE from sympathetically stimulated hearts, the inhibition at 10−6M being approximately 40%.On the basis of these observations we propose that PGI2 is a more likely candidate than PGE2 as a potential modulator of neurotransmission in cardiac tissue in vivo.  相似文献   

14.
It has been shown in vitro that the lamb ductus arteriosus forms prostaglandins PGE2, PGF2α, 6 keto PGF1α (and its unstable precursor PGI2). In this study the relative potencies of these endogenous prostaglandins were investigated on isolated lamb ductus arteriosus preparations contracted by exposure to elevated PO2 and indomethacin. All the prostaglandins (except PGF2α) relaxed the vessel. This is consistent with the hypothesis that endogenous prostaglandins inhibit the tendency of the vessel to contract in response to oxygen. Only PGE2, however, relaxed the vessel at concentrations below 10−8M. PGI2 and 6 keto PGF had approximately 0.001 and 0.0001 times the activity of PGE2. Although PGE2 has been observed to be a minor product of prostaglandin production in the lamb ductus arteriosus, the tissue's marked sensitivity to PGE2 might make it the most significant prostaglandin in regulating the patency of the vessel.  相似文献   

15.
Effects of prostaglandin E1(PGE1) and prostaglandin I2(PGI2) on the mechanical activity and tissue cyclic AMP content of the longitudinal muscle of rabbit intestine were examined, comparing that of isoproterenol. PGE1 or PGI2 caused a contraction and did not affect the tissue cyclic AMP content. Isoproterenol caused a relaxation and increasedtissue cyclic AMP content.  相似文献   

16.
The metabolism of endogenous PGI2 (released by angiotensin II or bradykinin) and exogenous PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase was studied in five different vascular beds of the anaesthetized cat. Plasma concentrations of 6-keto-PGF (the product of spontaneous hydrolysis of PGI2) and 6,15-diketo-13,14-dihydro-PGF (the metabolite formed from PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase) were determined in the efferent vessels of the respective vascular beds by specific radioimmunoassays.No major metabolism of PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase was detected in the head and the hindlimbs of the cat. In the lung exogenous (circulating) PGI2 was not metabolized, whereas PGI2 synthetized in the lung itself was converted to 6,15-diketo-13,14-dihydor-PGF. No significant amounts of 6,15-diketo-13,14-dihydro-PGF-immunoreactivity were detected in hepatic venous blood after infusion of PGI2 into the portal vein. However as also no 6-keto-PGF was found, the liver seems to efficiently extract PGI2 from the circulation. The cat kidney had the highest capacity of all vascular beds investigated to release endogenous and exogenous PGI2 as 6-15-diketo-13,14-dihydro-PGF. In other organs (vascular beds) investigated PGI2 is either metabolized less efficiently by the 15-hydroxy-PG-dehydrogenase or further transformed to other metabolites.  相似文献   

17.
In the Tyrode's perfused rabbit kidney PGI2 (1.3 × 10−8-3.3 × 10−7M) dose-dependently inhibited vasoconstrictor responses to sympathetic nerve stimulation, as did PGE2. The dose-effect curve of the two compounds differed, making PGI2 the less potent in the low concentration and the more potent in the high. PGI2 also inhibited the vasoconstrictor response to exogenous noradrenaline, but it had no effect on transmitter release. The main metabolite of PGI2, 6-keto-PGF, was ineffective both on noradrenaline release and on vascular responses to nerve stimulation or exogenous noradrenaline. It is suggested that PGI2,if a significant renal prostaglandin, may modulate renal neuroeffector transmission post-junctionally, thereby forming a complement to the prejunctional action of PGE2.  相似文献   

18.
Prostaglandins (PG)I2, PGE2 and 6-keto PGF1α were infused directly into the gastric arterial supply at 10−9, 10−8 and 10−7 g/kg/min during an intra-gastric artery pentagastrin infusion in anesthetized dogs. 6-keto PGF1α was also infused at 10−6 g/kg/min. Gastric arterial blood flow was measured continuously with a non-cannulating electromagnetic flow probe and gastric acid collected directly from the stomach. PGI2 and PGE2 produced similar dose-dependent increases in blood flow with an increase of more than four-fold at the highest dose. Both PGs inhibited acid output over this dose range with PGE2 having 10 times the potency of PGI2. 6-keto PGF1α was at least 1000 times less active than PGI2 or PGE2 at increasing blood flow and failed to inhibit acid output even at 10−6 g/kg/min.  相似文献   

19.
Intact rings and homogenates of aorta from spontaneously hypertensive rats (SHR) contain enhanced capacity over normal rats (NR) to convert arachidonic acid into PGI2. The PGI2 synthetic system in SHR is stimulated to a greater extent than NR by norepinephrine. Indomethacin blocks this stimulation. PGE2 and PGF were detected in much smaller amounts in homogenates (undetected in rings) but their formation was not enhanced by the hypertensive tissue. The identity of PGI2 was based on 1) direct pharmacological assay on the rat blood pressure. In this system identical vasodepressor responses to PGI2 are observed after intracarotid and intrajugular administration 2) indirectly as 6-keto PGF isolated after incubation of aortic homogenates with tritiated arachidonic acid and 3) indirectly by GC-MS assay of PGE2, PGF and 6-keto PGF formed during incubation of aortic homogenates with excess unlabeled arachidonic acid. These results provide additional support to our recent hypothesis that PGI2, of aortic origin, might actively participate in the regulation of systemic blood pressure. Its enhanced formation by intact hypertensive vascular tissue reflects an increase in the number of enzyme molecules immediately available to the substrate. This could probably be an adaptive response to the elevated levels of catecholamines in the circulation.  相似文献   

20.
Some pharmacological actions of prostaglandin E1 (PGE1), 6-oxo-PGE1 and PGI2 have been studied. 6-oxo-PGE1 and PGI1 relaxed guinea-pig tracheal muscle in vitro and increased nasal patency in normal volunteers and in subjects with vasomotor rhinitis whereas PGI2 produced opposite effects. All three compounds produced bronchodilatation in the anaesthetised guinea-pig and relaxed human respiratory tract muscle in vitro.PGI2 was several times more potent than either 6-oxo-PGE1 or PGE1 against ADP-induced aggregation of human and baboon platelets in vitro. Intravenous 6-oxo-PGE1 in the baboon caused an ex vivo inhibition of platelet aggregation, but the EC5 was 7.8 times that of PGI2. As a vasodepressor in the baboon 6-oxo-PGE1 and PGE2 were equipotent. Thus with the exception of the vasodepressor effect, the actions of 6-oxo-PGE1 qualitatively and quantitatively resembled those of the structurally related PGE1 rather than those of PGI2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号