首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Progress towards a deeper understanding of cellular biochemical networks demands the development of methods to both identify and validate component proteins of these networks. Here, we describe a cDNA library screening strategy that achieves these aims, based on a protein-fragment complementation assay (PCA) using green fluorescent protein (GFP) as a reporter. The strategy combines a simple cell-based cDNA-screening approach (interactions of a "bait" protein of interest with "prey" cDNA products) with specific functional assays that use the same system and provide initial validation of the cDNA products as being biologically relevant. We applied this strategy to identify novel interacting partners of the protein kinase PKB/Akt. This method provides very general means of identifying and validating genes involved in any cellular process and is particularly designed for identifying enzyme substrates or regulatory proteins for which the enzyme specificity can only be defined by their interactions with other proteins in cells in which the proteins are normally expressed.  相似文献   

2.
We have previously described a strategy for detecting protein protein interactions based on protein interaction assisted folding of rationally designed fragments of enzymes. We call this strategy the protein fragment complementation assay (PCA). Here we describe PCAs based on the enzyme TEM-1 beta-lactamase (EC: 3.5.2.6), which include simple colorimetric in vitro assays using the cephalosporin nitrocefin and assays in intact cells using the fluorescent substrate CCF2/AM (ref. 6). Constitutive protein protein interactions of the GCN4 leucine zippers and of apoptotic proteins Bcl2 and Bad, and the homodimerization of Smad3, were tested in an in vitro assay using cell lysates. With the same in vitro assay, we also demonstrate interactions of protein kinase PKB with substrate Bad. The in vitro assay is facile and amenable to high-throughput modes of screening with signal-to-background ratios in the range of 10:1 to 250:1, which is superior to other PCAs developed to date. Furthermore, we show that the in vitro assay can be used for quantitative analysis of a small molecule induced protein interaction, the rapamycin-induced interaction of FKBP and yeast FRB (the FKBP-rapamycin binding domain of TOR (target of rapamycin)). The assay reproduces the known dissociation constant and number of sites for this interaction. The combination of in vitro colorimetric and in vivo fluorescence assays of beta-lactamase in mammalian cells suggests a wide variety of sensitive and high-throughput large-scale applications, including in vitro protein array analysis of protein protein or enzyme protein interactions and in vivo applications such as clonal selection for cells expressing interacting protein partners.  相似文献   

3.
Remy I  Michnick SW 《BioTechniques》2007,42(2):137, 139, 141 passim
We have developed a general experimental strategy that enables the quantitative detection of dynamic protein-protein interactions in intact living cells, based on protein-fragment complementation assays (PCAs). In this method, protein-protein interactions are coupled to refolding of enzymes from cognate fragments where reconstitution of enzyme activity acts as the detector of a protein interaction. Here we discuss the application of PCA to different aspects of cell biology.  相似文献   

4.
Proteins are the building blocks, effectors and signal mediators of cellular processes. A protein’s function, regulation and localization often depend on its interactions with other proteins. Here, we describe a protocol for the yeast protein-fragment complementation assay (PCA), a powerful method to detect direct and proximal associations between proteins in living cells. The interaction between two proteins, each fused to a dihydrofolate reductase (DHFR) protein fragment, translates into growth of yeast strains in presence of the drug methotrexate (MTX). Differential fitness, resulting from different amounts of reconstituted DHFR enzyme, can be quantified on high-density colony arrays, allowing to differentiate interacting from non-interacting bait-prey pairs. The high-throughput protocol presented here is performed using a robotic platform that parallelizes mating of bait and prey strains carrying complementary DHFR-fragment fusion proteins and the survival assay on MTX. This protocol allows to systematically test for thousands of protein-protein interactions (PPIs) involving bait proteins of interest and offers several advantages over other PPI detection assays, including the study of proteins expressed from their endogenous promoters without the need for modifying protein localization and for the assembly of complex reporter constructs.  相似文献   

5.
6.
Despite progress in the development of methods to monitor protein interactions, studies of interactions between membrane proteins in mammalian cells remain challenging. Protein complementation assays (PCAs) are commonly used to study interactions between proteins due to their simplicity. They are based on interaction-mediated reconstitution of a reporter protein, which can be easily monitored. Recently, a protein complementation method named split-TEV (tobacco etch virus) has been developed and is based on the functional reconstitution of TEV protease and subsequent proteolytic-mediated activation of reporters. In this work, we have developed a modification of the split-TEV method to study the interactions between membrane proteins with increased specificity. This assay was validated by addressing the interactions between different membrane proteins, including G protein-coupled receptors (GPCRs) and ion channels. By comparing it with another PCA, we found that this new method showed a higher sensitivity.  相似文献   

7.
Protein complementation assays (PCAs) based on split protein fragments have become powerful tools that facilitate the study and engineering of intracellular protein-protein interactions. These assays are based on the observation that a given protein can be split into two inactive fragments and these fragments can reassemble into the original properly folded and functional structure. However, one experimentally observed limitation of PCA systems is that the folding of a protein from its fragments is dramatically slower relative to that of the unsplit parent protein. This is due in part to a poor understanding of how PCA design parameters such as split site position in the primary sequence and size of the resulting fragments contribute to the efficiency of protein reassembly. We used a minimalist on-lattice model to analyze how the dynamics of the reassembly process for two model proteins was affected by the location of the split site. Our results demonstrate that the balanced distribution of the “folding nucleus,” a subset of residues that are critical to the formation of the transition state leading to productive folding, between protein fragments is key to their reassembly.  相似文献   

8.
The proteins encoded by the UL34 and UL31 genes of herpes simplex virus are conserved among herpesviruses. They form a complex that is essential for the egress of the herpesvirus nucleocapsids from the nucleus. In previous work on the homologous protein complex in murine cytomegalovirus (MCMV), we defined their mutual binding domains. Here, we started to map binding domains within the UL34/UL31 proteins of alpha-, beta-, and gammaherpesviruses and to locate other functional properties. A protein complementation assay (PCA) using the TEM-1 beta-lactamase fragments fused to UL31 and UL34 protein homologues was used to study protein-protein interactions in cells. Wild-type MCMV M50 and M53 provided a strong reaction in the PCA, whereas mutants unable to form a complex did not. The homologous pairs of herpes simplex virus type 1, pseudorabies virus, human cytomegalovirus (HCMV), Epstein-Barr virus (EBV), and murine herpes virus 68 proteins also reacted, with the exception of the EBV proteins. Cross-complementation was found to be positive only within the same herpesvirus subfamily. Moreover, the HCMV homologues rescued replication-defective MCMV genomes lacking one or the other gene. We identified the binding site of M53 for M50 in the first conserved region (CR1) (M. Loetzerich, Z. Ruzsics, and U. H. Koszinowski, J. Virol. 80:73-84). Here we show that the CR1 of all tested UL31 proteins contains the UL34 binding site, and chimeric proteins carrying the subfamily-specific CR1 rescued the ability to cross-complement in the PCA.  相似文献   

9.
BACKGROUND: Modern drug discovery has been based on high-throughput screening using whole-cell assays. A prominent role has been assigned to the reporter gene technology based on a beta-lactamase and the fluorogenic substrate CCF2. Successful application of this technology requires fluorescence-activated cell sorting. We describe the preparation and characterization of calibration beads for sorting cells expressing the beta-lactamase gene using the CCF2 substrate. METHODS: To model Forster resonance energy transfer (FRET) between the coumarin donor and the fluorescein acceptor of the CCF2 reporting dye, we used activated polystyrene beads with primary amino groups. Donor and acceptor fluorophores were attached to the beads at different ratios via succinimidyl esters. The beads were characterized with a fluorescence plate reader and a flow cytometer. RESULTS: We prepared polystyrene beads with five different ratios of donor and acceptor fluorophores and beads that carried a donor or a receptor fluorophore alone. Fluorescence measurements demonstrated that the prepared beads well represent the FRET of CCF2 substrate. CONCLUSION: We have demonstrated that the prepared beads can be successfully used for the setup of fluorescence-activated cell sorting to sort cells with CCF2 reporter substrate and the beta-lactamase reporter gene.  相似文献   

10.
Remy I  Michnick SW 《Nature methods》2006,3(12):977-979
Protein-fragment complementation assays (PCAs) provide a general strategy to study the dynamics of protein-protein interactions in vivo and in vitro. The full potential of PCA requires assays that are fully reversible and sensitive at subendogenous protein expression levels. We describe a new assay that meets these criteria, based on the Gaussia princeps luciferase enzyme, demonstrating chemical reversal, and induction and inhibition of a key interaction linking insulin and TGFbeta signaling.  相似文献   

11.
The ability of Cre recombinase to excise genetic material has been used extensively for genome engineering in prokaryotic and eukaryotic cells. Recently, split‐Cre fragments have been described that advance control of recombinase activity in mammalian cells. However, whether these fragments can be utilized for monitoring protein‐protein interactions has not been reported. In this work, we developed a protein‐fragment complementation assay (PCA) based on split‐Cre for monitoring and engineering pairwise protein interactions in living Escherichia coli cells. This required creation of a dual‐fluorescent reporter plasmid that permits visualization of reconstituted Cre recombinase activity by switching from red to green in the presence of an interacting protein pair. The resulting split‐Cre PCA faithfully links cell fluorescence with differences in binding affinity, thereby allowing the facile isolation of high‐affinity binders based on phenotype. Given the resolution of its activity and sensitivity to interactions, our system may prove a viable option for poorly expressed or weakly interacting protein pairs that evade detection in other PCA formats. Based on these findings, we anticipate that our split‐Cre PCA will become a highly complementary and useful new addition to the protein‐protein interaction toolbox.  相似文献   

12.
13.
Biochemical 'pathways' are systems of dynamically assembling and disassembling protein complexes, and thus, much of modern biological research is concerned with how, when and where proteins interact with other proteins involved in biochemical processes. The demand for simple approaches to study protein-protein interactions, particularly on a large scale, has grown recently with the progress in genome projects, as the association of unknown with known gene products provides one crucial way of establishing the function of a gene. It was with this challenge in mind that our laboratory developed a simple survival protein-fragment complementation assay (PCA) based on the enzyme dihydrofolate reductase (DHFR). In the DHFR PCA strategy, two proteins of interest are fused to complementary fragments of DHFR. If the proteins of interest interact physically, the DHFR complementary fragments are brought together and fold into the native structure of the enzyme, reconstituting its activity, detectable by the survival of cells expressing the fusion proteins and growth in selective medium. Using the protocol described here, the survival selection can be completed in one to several days, depending on the cell type.  相似文献   

14.
Soluble proteins that bind membranes function in numerous cellular pathways yet facile, sensitive and quantitative methods that complement and improve sensitivity of widely used liposomes‐based assays remain unavailable. Here, we describe the utility of a photoactivable fluorescent lipid as a generic reporter of protein‐membrane interactions. When incorporated into liposomes and exposed to ultraviolet (UV), proteins bound to liposomes become crosslinked with the fluorescent lipid and can be readily detected and quantitated by in‐gel fluorescence analysis. This modification obviates the requirement for high‐speed centrifugation spins common to most liposome‐binding assays. We refer to this assay as Proximity‐based Labeling of Membrane‐Associated Proteins (PLiMAP).  相似文献   

15.
Signal transduction pathways mediated by MAP kinases are among the most studied. Direct analysis of MAP kinase pathways has been difficult because some details of MAP kinase signaling cannot be studied in vitro. Here, we describe a strategy for directly analyzing MAP kinase signaling pathways in living cells using protein-fragment complementation assays (PCA) based on intensely fluorescent proteins. The assays allow for spatial and temporal analysis of protein complexes including those that form upstream and downstream from MAPKs as well as complexes of MAPKs with regulator and effector proteins. We describe high-content assays, high-throughput quantitative microscopic methods to follow temporal changes in complex subcellular location and quantity. Spatial and temporal changes in response to perturbations (chemical, siRNA, and hormones) allow for delineation of MAPK signaling networks and a general and high-throughput approach to identify small molecules that act directly or indirectly on MAPK pathways.  相似文献   

16.
17.
A variety of fluorescent proteins with different spectral properties have been created by mutating green fluorescent protein. When these proteins are split in two, neither fragment is fluorescent per se, nor can a fluorescent protein be reconstituted by co-expressing the complementary N- and C-terminal fragments. However, when these fragments are genetically fused to proteins that associate with each other in cellulo, the N- and C-terminal fragments of the fluorescent protein are brought together and can reconstitute a fluorescent protein. A similar protein complementation assay (PCA) can be performed with two complementary fragments of various luciferase isoforms. This makes these assays useful tools for detecting the association of two proteins in living cells. Bioluminescence resonance energy transfer (BRET) or fluorescence resonance energy transfer (FRET) occurs when energy from, respectively, a luminescent or fluorescent donor protein is non-radiatively transferred to a fluorescent acceptor protein. This transfer of energy can only occur if the proteins are within 100 Å of each other. Thus, BRET and FRET are also useful tools for detecting the association of two proteins in living cells. By combining different protein fragment complementation assays (PCA) with BRET or FRET it is possible to demonstrate that three or more proteins are simultaneous parts of the same protein complex in living cells. As an example of the utility of this approach, we show that as many as four different proteins are simultaneously associated as part of a G protein-coupled receptor signalling complex.  相似文献   

18.
Many gram-negative bacteria including pathogenic Yersinia spp. employ type III secretion systems to translocate effector proteins into eukaryotic target cells. Inside the host cell the effector proteins manipulate cellular functions to the benefit of the bacteria. To better understand the control of type III secretion during host cell interaction, sensitive and accurate assays to measure translocation are required. We here describe the application of an assay based on the fusion of a Yersinia enterocolitica effector protein fragment (Yersinia outer protein; YopE) with TEM-1 beta-lactamase for quantitative analysis of translocation. The assay relies on cleavage of a cell permeant FRET dye (CCF4/AM) by translocated beta-lactamase fusion. After cleavage of the cephalosporin core of CCF4 by the beta-lactamase, FRET from coumarin to fluorescein is disrupted and excitation of the coumarin moiety leads to blue fluorescence emission. Different applications of this method have been described in the literature highlighting its versatility. The method allows for analysis of translocation in vitro and also in in vivo, e.g., in a mouse model. Detection of the fluorescence signals can be performed using plate readers, FACS analysis or fluorescence microscopy. In the setup described here, in vitro translocation of effector fusions into HeLa cells by different Yersinia mutants is monitored by laser scanning microscopy. Recording intracellular conversion of the FRET reporter by the beta-lactamase effector fusion in real-time provides robust quantitative results. We here show exemplary data, demonstrating increased translocation by a Y. enterocolitica YopE mutant compared to the wild type strain.  相似文献   

19.
The association and dissociation of protein-protein complexes play an important role in various processes in living cells. The disruption of protein-protein interactions is observed in various pathologies. The study of the nature of these interactions will contribute to a better understanding of the molecular basis of the pathogenesis of the disease and the development of new approaches to therapy. Now there is a set of methods that allow one to reveal and analyze the interaction of proteins in vitro. However, more accurate data can be obtained by studying protein-protein interactions in vivo. One of a few prospective methods is based on the effect of the complementation of fragments of reporter proteins. These reporter systems are based on the change in the fluorescent properties or enzymatic activity of the proteins that can be measured using colorimetric, fluorescent, or other substrates. The principle of the complementation is widely used to analyze protein interactions, to determine of order of interaction of protein partners in different signaling pathways, as well as in high-performance screening studies for detecting and mapping previously unknown protein-protein interactions. The possibilities of existing complementation reporter systems allow one to solve problems that are far beyond the simple registration of the interactions of two or more proteins.  相似文献   

20.
Recombinant antibodies (Abs) against the SARS-CoV-2 virus hold promise for treatment of COVID-19 and high sensitivity and specific diagnostic assays. Here, we report engineering principles and realization of a Protein-fragment Complementation Assay (PCA) detector of SARS-CoV-2 antigen by coupling two Abs to complementary N- and C-terminal fragments of the reporter enzyme Gaussia luciferase (Gluc). Both Abs display comparably high affinities for distinct epitopes of viral Spike (S)-protein trimers. Gluc activity is reconstituted when the Abs are simultaneously bound to S-protein bringing the Ab-fused N- and C-terminal fragments close enough together (8 nm) to fold. We thus achieve high specificity both by requirement of simultaneous binding of the two Abs to the S-protein and also, in a steric configuration in which the two Gluc complementary fragments can fold and thus reconstitute catalytic activity. Gluc activity can also be reconstituted with virus-like particles that express surface S-protein with detectable signal over background within 5 min of incubation. Design principles presented here can be readily applied to develop reporters to virtually any protein with sufficient available structural details. Thus, our results present a general framework to develop reporter assays for COVID-19, and the strategy can be readily deployed in response to existing and future pathogenic threats and other diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号