首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of osteoarthritis (OA) with nonsteroidal anti-inflammatory drugs (NSAIDs) diminishes inflammation along with mediators of cartilage destruction. However, NSAIDs may exert adverse direct effects on cartilage, particularly if treatment is prolonged. We therefore compared the direct effects of indomethacin, naproxen, aceclofenac and celecoxib on matrix turnover in human OA cartilage tissue. Human clinically defined OA cartilage from five different donors was exposed for 7 days in culture to indomethacin, naproxen, aceclofenac and celecoxib – agents chosen based on their cyclo-oxygenase (COX)-2 selectivity. As a control, SC-560 (a selective COX-1 inhibitor) was used. Changes in cartilage proteoglycan turnover and prostaglandin E2 production were determined. OA cartilage exhibited characteristic proteoglycan turnover. Indomethacin further inhibited proteoglycan synthesis; no significant effect of indomethacin on proteoglycan release was found, and proteoglycan content tended to decrease. Naproxen treatment was not associated with changes in any parameter. In contrast, aceclofenac and, prominently, celecoxib had beneficial effects on OA cartilage. Both were associated with increased proteoglycan synthesis and normalized release. Importantly, both NSAIDs improved proteoglycan content. Inhibition of prostaglandin E2 production indirectly showed that all NSAIDs inhibited COX, with the more COX-2 specific agents having more pronounced effects. Selective COX-1 inhibition resulted in adverse effects on all parameters, and prostaglandin E2 production was only mildly inhibited. NSAIDs with low COX-2/COX-1 selectivity exhibit adverse direct effects on OA cartilage, whereas high COX-2/COX-1 selective NSAIDs did not show such effects and might even have cartilage reparative properties.  相似文献   

2.
Differentiation induction as a therapeutic strategy has, so far, the greatest impact in hematopoietic malignancies, most notably leukemia. Diosgenin is a very interesting natural product because, depending on the specific dose used, its biological effect is very different in HEL (human erythroleukemia) cells. For example, at 10 μM, diosgenin induced megakaryocytic differentiation, in contrast to 40 μM diosgenin, which induced apoptosis in HEL cells previously demonstrated using sedimentation field-flow fractionation (SdFFF). The goal of this work focused on the correlation between cyclooxygenase-2 (COX-2) and thromboxane synthase (TxS) and megakaryocytic differentiation induced by diosgenin in HEL cells. Furthermore, the technique of SdFFF, having been validated in our models, was used in this new study as an analytical tool that provided us with more or less enriched differentiated cell fractions that could then be used for further analyses of enzyme protein expression and activity for the first time. In our study, we showed the implication of COX-2 and TxS in diosgenin-induced megakaryocytic differentiation in HEL cells. Furthermore, we showed that the analytical technique of SdFFF may be used as a tool to confirm our results as a function of the degree of cell differentiation.  相似文献   

3.
Human fibroblast-like synoviocytes (FLSs) play a role in joint synovial inflammation in rheumatoid arthritis (RA). Some evidence indicates that particulate matter (PM) in air pollution could contribute to the progression of RA. However, more research is needed to clarify this relationship. Up-regulation of cyclooxygenase (COX)-2 and its metabolite prostaglandin E2 (PGE2) are implicated in various inflammatory diseases. Resveratrol, a polyphenol found mainly in grapes and red wine, has antioxidant and anti-inflammatory activities. In the present study, we demonstrated that resveratrol reduced PM-induced COX-2/PGE2 expression in human FLSs, and attenuated PM-enhanced NADPH oxidase activity and ROS generation. In addition, PM induced Akt, ERK1/2, or p38 MAPK activation, which was inhibited by resveratrol. Finally, we demonstrated that PM enhanced NF-κB p65 phosphorylation and the NF-κB promoter activity, which were reduced by pretreatment with a ROS inhibitor or resveratrol. Thus, we concluded that resveratrol functions as a suppressor of PM-induced inflammatory signaling pathways by inhibiting COX-2/PGE2 expression.  相似文献   

4.
Chiang CT  Way TD  Tsai SJ  Lin JK 《FEBS letters》2007,581(30):5735-5742
Fatty acid synthase (FAS) expression is markedly elevated in HER2-overexpressing breast cancer cells. In this study, diosgenin, a plant-derived steroid, was found to be effective in suppressing FAS expression in HER2-overexpressing breast cancer cells. Diosgenin preferentially inhibited proliferation and induced apoptosis in HER2-overexpressing cancer cells. Furthermore, diosgenin inhibited the phosphorylation of Akt and mTOR, and enhanced phosphorylation of JNK. The use of pharmacological inhibitors revealed that the modulation of Akt, mTOR and JNK phosphorylation was required for diosgenin-induced FAS suppression. Finally, we showed that diosgenin could enhance paclitaxel-induced cytotoxicity in HER2-overexpressing cancer cells. These results suggested that diosgenin has the potential to advance as chemopreventive or chemotherapeutic agent for cancers that overexpress HER2.  相似文献   

5.
Human tumour necrosis factor (TNF)-like weak inducer of apoptosis (hTWEAK) and two anti-hTWEAK mAbs were tested for their ability to elicit or block inflammatory responses in cultured human dermal fibroblasts and synoviocytes. Incubation with hTWEAK increased the production of prostaglandin E2, matrix metalloproteinase-1 (MMP-1), IL-6, and the chemokines IL-8, RANTES (regulated on activation, normal T expressed and secreted) and interferon-γ-inducible protein-10 (IP-10) in culture supernatant of fibroblasts and synoviocytes. In combination with TNF or IL-1β, hTWEAK further stimulated the secretion of prostaglandin E2, MMP-1, IL-6 and IL-8 up to fourfold, and IP-10 and RANTES up to 70-fold compared to TNF or IL-1β alone. An anti-hTWEAK mAb, BCB10, blocked the effects of hTWEAK, whereas hTWEAK crosslinked by the anti-hTWEAK mAb, BEB3, further stimulated the inflammatory response of fibroblasts and synoviocytes. The anti-hTWEAK mAbs were ineffective in blocking or increasing the responses of TNF or IL-1β and blocking anti-TNF mAb was ineffective in preventing the responses to TWEAK. These results were also confirmed at the RNA level for MMP-1, macrophage chemoattractant protein-1, RANTES, macrophage inflammatory protein-1α, IP-10 and IL-8. TWEAK in synergism with IL-1 and TNF may be an additional cytokine that plays a role in destructive chronic arthritic diseases.  相似文献   

6.
Intrapleural injection of carrageenan in rats increased prostaglandin E2 (PGE2) production and induced newly synthesized cyclooxygenase-2 (COX-2) in pleural exudate cells without affecting COX-1 levels. Nimesulide, a preferential inhibitor of COX-2, reduced pleural PGE2 production and was almost as active as indomethacin and 10 times more active than ibuprofen. Only COX-1, and no COX-2, was detected in gastric mucosal cells, and PGE2 concentration of gastric mucosa was significantly decreased by indomethacin and ibuprofen. The decrease in gastric PGE2 production induced by indomethacin and ibuprofen was enhanced in stressed rats, resulting in aggravation of stress-induced gastric lesions at anti-inflammatory doses. However, nimesulide did not produce stress-induced gastric lesions even at 30 times the anti-inflammatory dose. This supports the hypothesis that inhibition of COX-1 causes unwanted side effects and inhibition of COX-2 produces anti-inflammatory effects.  相似文献   

7.
The therapeutic efficacy of the antineoplastic drug cisplatin is limited by its nephrotoxicity, which affects particularly to proximal tubular cells (PTC). Cisplatin-induced cytotoxicity appears to be multifactorial and involves inflammation, oxidative stress as well as apoptosis. We have recently shown that the cyclo-oxygenase-2 (COX-2)/intracellular prostaglandin E2 (iPGE2)/EP receptor pathway mediates the apoptotic effect of cisplatin on human proximal tubular HK-2 cells. Here, we studied the effects on HK-2 cells of apoptotic bodies (ABs) generated after treatment of HK-2 cells with cisplatin. We found that ABs inhibited cell growth, induced apoptosis and increased COX-2 expression and iPGE2 in ABs-recipient HK-2 cells. Inhibition of the COX-2/iPGE2/EP receptor pathway in these cells prevented the effects of ABs without interfering with their internalization. Interestingly, 2nd generation ABs (i.e. ABs released by cells undergoing apoptosis upon treatment with ABs) did not trigger apoptosis in naïve HK-2 cells, and stimulated cell proliferation through the COX-2/iPGE2/EP receptor pathway. These results suggest that ABs, through iPGE2-dependent mechanisms, might have a relevant role in the natural history of cisplatin-induced acute kidney failure because they contribute first to the propagation of the noxious effects of cisplatin to non-injured PTC and then to the promotion of the proliferative tubular response required for proximal tubule repair. Since iPGE2 also mediates both cisplatin-induced HK-2 cell apoptosis, intervention in the COX-2/iPGE2/EP receptor pathway might provide us with new therapeutic avenues in patients with cisplatin-induced acute kidney injury.  相似文献   

8.
Inhibitors against cyclooxygenase-2 (COX-2), an inducible enzyme that catalyzes prostaglandin synthesis, are widely used in clinical. However, the potential hepatic toxicity of COX-2 inhibitors remains incompletely investigated. We report in this study that a clinically available COX-2 inhibitor, celecoxib, exacerbates porcine serum (PS)-induced hepatic fibrosis and induces hepatocellular necrosis in an experimental liver fibrosis model. Histological results revealed that although celecoxib by itself did not cause notable hepatic damages, it markedly enhanced hepatic fibrosis that had been initiated by PS. While PS alone did not cause any necrotic change in liver cells, the addition of celecoxib resulted in hepatocellular necrosis in PS-treated animals. Notably, celecoxib enhanced reduction of plasma prostaglandin E2 (PGE2) levels induced by PS. Taken together, our results indicate that treatment with celecoxib may exacerbate liver fibrosis and cause hepatocellular necrosis. This may be associated with reduction in PGE2 as an inheritance consequence of inhibition of COX-2.  相似文献   

9.
Previously, we demonstrated that a plant steroid, diosgenin, altered cell cycle distribution and induced apoptosis in the human osteosarcoma 1547 cell line. The objective of this study was to investigate if the antiproliferative effect of diosgenin was similar for different human cancer cell lines such as laryngocarcinoma HEp-2 and melanoma M4Beu cells. Moreover, this work essentially focused on the mitochondrial pathway. We found that diosgenin had an important and similar antiproliferative effect on different types of cancer cells. In addition, our new results show that diosgenin-induced apoptosis is caspase-3 dependent with a fall of mitochondrial membrane potential, nuclear localization of AIF and poly (ADP-ribose) polymerase cleavage. Diosgenin treatment also induces p53 activation and cell cycle arrest in the different cell lines studied.  相似文献   

10.
There is a degree of cervical relaxation in the ewe at estrus that is regulated by changes in prostaglandin synthesis, prostaglandin receptor expression, and changes in the cervical extracellular matrix. It is likely that these are regulated by changes in periovulatory hormones, particularly estradiol. This study determined the effect of estradiol benzoate on the mRNA expression of cyclooxygenase-2 (COX-2) and the prostaglandin E receptors EP2 and EP4, the concentration of cervical hyaluronan, and the proportion of smooth muscle and collagen in the cervix of the hypogonadotrophic ovariectomized ewe (Ovis aries). Ovariectomized hypogonadotrophic ewes were given 100 μg estradiol benzoate, and their cervices were collected 0, 24, and 48 h thereafter to determine the expression of cervical COX-2, EP2, and EP4 mRNA by in situ hybridization, the concentration of hyaluronan by ELISA, and the proportion of smooth muscle and collagen by Masson's trichrome staining. Estradiol benzoate increased the mRNA expression of COX-2 and EP4 within 24 h after treatment (P < 0.05), whereas EP2 mRNA, hyaluronan, and the ratio of smooth muscle to collagen did not change within 48 h after treatment. The COX-2, EP2, and EP4 mRNA expression were greatest in the smooth muscle layers (P < 0.05) and least in the luminal epithelium (P < 0.05). In conclusion, we inferred that estradiol regulates cervical COX-2 and EP4 mRNA expression and may regulate cervical relaxation via the synthesis of prostaglandin E2 and activation of the PGE2 receptors EP2 and EP4.  相似文献   

11.
Infection is a major cause of preterm labor. Amniotic fluid from women in preterm labor associated with intrauterine infection contains increased concentrations of cytokines. The mechanism underlying this association may be a cytokine-mediated stimulation of amnion cell prostaglandin production. The biosynthesis of prostaglandins from arachidonic acid is regulated by the enzyme cyclooxygenase which exists in two forms; the constitutive form (COX-1) and the other mitogen inducible (COX-2). The purpose of this study was to evaluate the effect of the cytokine interleukin-4 (IL-4) on cyclooxygenase activity and PGE2 production in amnion. Amnion tissue was taken at caesarean section from term women not in labor and immediately incubated for 2 hours in media containing concentrations of IL-4 ranging from 1 to 100 ng/ml. An increase in both COX-2 enzyme and prostaglandin E2 (PGE2) production was observed for all concentrations of IL-4 greater than 25 ng/ml (P < 0.05, n = 8). No change in COX-1 was observed. Our data suggest that the cytokine IL-4 may be involved in the pathogenesis of premature labor by inducing COX-2 in amnion tissue resulting in increased production of PGE2 and subsequent myometrial activity.  相似文献   

12.
Prostaglandin E2 (PGE2) is a major mediator in the pathophysiology, and pathogenesis of gynecological diseases associated with abnormal endometrial disease with proliferation and inflammation, such as endometriosis. In this study, we investigated the effect of dienogest, a selective progesterone receptor agonist, on PGE2 production and the expression of aromatase, an estrogen synthase, in human immortalized endometrial epithelial cells. Compared with monolayer culture, the cells showed enhanced PGE2 production and expression of the PGE2 synthases cyclooxygenase-2 (COX-2), and microsomal prostaglandin E2 synthase-1 (mPGES-1) in a spheroid culture system. Dienogest inhibited PGE2 production and this effect was reversed by RU486, a progesterone receptor antagonist. Dienogest inhibited the PGE2 synthases mRNA and protein expression, and the nuclear factor-κB activation. Moreover, the suppressive effect of dienogest on PGE2 production was sustained 24 h after the drug was withdrawn. Dienogest but not COX inhibitors inhibited aromatase expression. These results suggest that progesterone receptor activation reduces the gene expressions of COX-2, mPGES-1, and aromatase. Our findings suggest that the pharmacological mechanism of dienogest includes the direct inhibition of PGE2 synthase and aromatase expression and may contribute to the therapeutic effect on the progression of endometriosis.  相似文献   

13.
Cyclooxygenase-2 (COX-2)-mediated prostaglandin E2 (PGE2) biosynthesis by macrophages downregulates microbicidal activities in innate and acquired immune responses against intracellular bacteria. Previous studies in mice showed that intraperitoneal administration of heat-killed Mycobacterium bovis bacillus Calmette-Guérin (HK-BCG) resulted in induction of splenic PGE2-releasing macrophages in 7–14 days. In contrast, HK-BCG induced catalytically inactive COX-2 at relatively high levels in the macrophages within 1 day. In the present study, we found that COX-2 was localized subcellularly in the nuclear envelope (NE) 7 and 14 days after HK-BCG treatment, whereas COX-2 was dissociated from the NE 1 day after treatment. At 1 day after treatment, the majority of COX-2-positive macrophages had phagocytosed HK-BCG. In contrast, no intracellular HK-BCG was detected 7 and 14 days after treatment in COX-2-positive macrophages, where COX-2 was associated with the NE. However, when macrophages phagocytosed HK-BCG in vitro, all COX-2 was associated with the NE. Thus the administration of HK-BCG induces the biphasic COX-2 expression of an NE-dissociated catalytically inactive or an NE-associated catalytically active form in splenic macrophages. The catalytically inactive COX-2-positive macrophages develop microbicidal activities effectively, since they lack PGE2 biosynthesis. nuclear envelope; autoimmune disease; prostaglandin E2  相似文献   

14.
Camphorquinone (CQ) is a popularly-used photosensitizer in composite resin restoration. In this study, the effects of CQ on cytotoxicity and inflammation-related genes and proteins expression of pulp cells were investigated. The role of reactive oxygen species (ROS), ATM/Chk2/p53 and hemeoxygenase-1 (HO-1) and MEK/ERK signaling was also evaluated. We found that ROS and free radicals may play important role in CQ toxicity. CQ (1 and 2 mM) decreased the viability of pulp cells to about 70% and 50% of control, respectively. CQ also induced G2/M cell cycle arrest and apoptosis of pulp cells. The expression of type I collagen, cdc2, cyclin B, and cdc25C was inhibited, while p21, HO-1 and cyclooxygenase-2 (COX-2) were stimulated by CQ. CQ also activated ATM, Chk2, and p53 phosphorylation and GADD45α expression. Besides, exposure to CQ increased cellular ROS level and 8-isoprostane production. CQ also stimulated COX-2 expression and PGE2 production of pulp cells. The reduction of cell viability caused by CQ can be attenuated by N-acetyl-L-cysteine (NAC), catalase and superoxide dismutase (SOD), but can be promoted by Zinc protoporphyin (ZnPP). CQ stimulated ERK1/2 phosphorylation, and U0126 prevented the CQ-induced COX-2 expression and prostaglandin E2 (PGE2) production. These results indicate that CQ may cause cytotoxicity, cell cycle arrest, apoptosis, and PGE2 production of pulp cells. These events could be due to stimulation of ROS and 8-isoprostane production, ATM/Chk2/p53 signaling, HO-1, COX-2 and p21 expression, as well as the inhibition of cdc2, cdc25C and cyclin B1. These results are important for understanding the role of ROS in pathogenesis of pulp necrosis and pulpal inflammation after clinical composite resin filling.  相似文献   

15.
Cholangiocarcinoma (CCA) is a rare, but highly malignant primary hepatobiliary cancer with a very poor prognosis and limited treatment options. Our recent studies reported that conjugated bile acids (CBAs) promote the invasive growth of CCA via activation of sphingosine 1-phosphate receptor 2 (S1PR2). Cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) is the most abundant prostaglandin in various human malignancies including CCA. Previous studies have indicated that COX-2 was highly expressed in CCA tissues, and the survival rate of CCA patients was negatively associated with high COX-2 expression levels. It has also been reported that CBAs induce COX-2 expression, whereas free bile acids inhibit COX-2 expression in CCA mouse models. However, the underlying cellular mechanisms and connection between S1PR2 and COX-2 expression in CCA cells have still not been fully elucidated. In the current study, we examined the role of S1PR2 in conjugated bile acid (taurocholate, (TCA))-induced COX-2 expression in a human HuCCT1 CCA cell line and further identified the potential underlying cellular mechanisms. The results indicated that TCA-induced invasive growth of human CCA cells was correlated with S1PR2-medated up-regulation of COX-2 expression and PGE2 production. Inhibition of S1PR2 activation with chemical antagonist (JTE-013) or down-regulation of S1PR2 expression with gene-specific shRNA not only reduced COX-2 expression, but also inhibited TCA-induced activation of EGFR and the ERK1/2/Akt-NF-κB signaling cascade. In conclusion, S1PR2 plays a critical role in TCA-induced COX-2 expression and CCA growth and may represent a novel therapeutic target for CCA.  相似文献   

16.
This study investigated the release of prostaglandin E2 (PGE2) from cartilage following an impact load in vitro and the possible chondroprotective effect of cyclooxygenase-2 (COX-2) inhibition using non-steroidal anti-inflammatory drugs (NSAIDs).  相似文献   

17.
Lipopolysaccharide (LPS) stimulated prostaglandin E2 (PGE2) formation and induction of cyclooxygenase-2 (COX-2) expression without changing the levels of COX-1 protein in rat peritoneal macrophages. Non-steroidal anti-inflammatory drugs (NSAIDs) (nimesulide, indomethacin and ibuprofen) strongly inhibited LPS-stimulated PGE2 production without any effect on COX-2 protein expression, suggesting that NSAIDs are active in inhibiting the ability of COX-2 to convert arachidonic acid (AA) endogenously released in response to LPS stimulation. Exogenous AA can be converted to PGE2 by both COX isoforms even in LPS-stimulated macrophages. NSAIDs inhibited PGE2 production from exogenous AA mediated by both COX-1 and COX-2. However, the two isoforms interacted differentially with different NSAIDs. Furthermore, NSAIDs were distinctly more active in inhibiting PGE2 production from endogenous AA than that from exogenous AA. These data suggest that PGE2 production through COX-2 from exogenous AA may not be subject to the same regulatory processes as that from endogenous AA and the two metabolic processes may be differentially sensitive to different NSAIDs.  相似文献   

18.
Cyclooxygenase (COX)-2-derived prostaglandin (PG)E2 controls many aspects of colon cancer development, modulating from apoptosis resistance and cell proliferation to angiogenesis, invasion, and metastasis. Here, we investigated the role of different phospholipases (PL)A2 in supplying arachidonic acid (AA) for COX-2-dependent PGE2 generation and signaling pathways involved in activation of colon cancer cells by a physiologically relevant stimulus. To emulate the hypertonic environment found physiologically in colon, the human colon cancer cell line Caco-2 was maintained in hypertonic complete DMEM medium. Human colon cancer cell line Caco-2 exposed to a hypertonic environment responded with marked AA release, COX-2 induction and PGE2 generation. Selective secretory (s)PLA2 and calcium-independent (i)PLA2 inhibitors did not modify PGE2 generation, while either COX-2 or cytosolic (c)PLA2 inhibitors completely inhibited PGE2 generation. cPLA2-α was responsible for AA supply for PGE2 generation, but had no role in COX-2 induction. Mitogen-activated protein (MAP) kinases, ERK 1/2, p38, and JNK, participated in the signaling events that lead to PGE2 generation by modulating AA release, but only ERK 1/2 was involved in COX-2 upregulation. Our results indicate that hypertonic stress activates PGE2 generation by Caco-2 cells through a mechanism dependent on MAP kinase-regulated AA mobilization, increased cPLA2-α activity, and COX-2 induction.  相似文献   

19.
Adipocytes can function as endocrine cells secreting a variety of adipocytokines including tumor necrosis factor (TNF)-α. Treatment of cultured mouse 3T3-L1 preadipocytes with TNF-α induced apoptosis, as was evident from increases in nuclear condensation and caspase-3 activity, but differentiated adipocytes during the maturation phase showed resistance to apoptosis by TNF-α. Antioxidants effectively reduced TNF-α-induced apoptosis in preadipocytes, indicating the involvement of reactive oxygen species. Exposure of preadipocytes to calcium ionophore A23187 reduced TNF-α-induced apoptosis, which was accompanied by increased production of prostaglandins (PGs) E2 and PGF2α. TNF-αpreferentially promoted gene expression of cyclooxygenase (COX)-2 without affecting that of COX-1. Consistently, NS-398, a COX-2 inhibitor, stimulated TNF-α-induced apoptosis, which was reversed by exogenous PGE2 and PGF2α. These results indicate that endogenous PGE2 and PGF2α synthesized by preadipocytes through the induction of COX-2 can serve as anti-apoptotic factors against apoptosis by TNF-α.  相似文献   

20.
Inflammation plays an important role in the pathophysiology of Chagas disease, caused by Trypanosoma cruzi. Prostanoids are regulators of homeostasis and inflammation and are produced mainly by myeloid cells, being cyclooxygenases, COX-1 and COX-2, the key enzymes in their biosynthesis from arachidonic acid (AA). Here, we have investigated the expression of enzymes involved in AA metabolism during T. cruzi infection. Our results show an increase in the expression of several of these enzymes in acute T. cruzi infected heart. Interestingly, COX-2 was expressed by CD68+ myeloid heart-infiltrating cells. In addition, infiltrating myeloid CD11b+Ly6G- cells purified from infected heart tissue express COX-2 and produce prostaglandin E2 (PGE2) ex vivo. T. cruzi infections in COX-2 or PGE2-dependent prostaglandin receptor EP-2 deficient mice indicate that both, COX-2 and EP-2 signaling contribute significantly to the heart leukocyte infiltration and to the release of chemokines and inflammatory cytokines in the heart of T. cruzi infected mice. In conclusion, COX-2 plays a detrimental role in acute Chagas disease myocarditis and points to COX-2 as a potential target for immune intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号