首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The E3 ubiquitin-protein ligase Chfr is a mitotic stress checkpoint protein that delays mitotic entry in response to microtubule damage; however, the molecular mechanism by which Chfr accomplishes this remains elusive. Here, we show that Chfr levels are elevated in response to microtubule-damaging stress. Moreover, G2/M transition is associated with cell cycle-dependent turnover of Chfr accompanied by high autoubiquitylation activity, suggesting that regulation of Chfr levels and auto-ubiquitylation activity are functionally significant. To test this, we generated Chfr mutants Chfr-K2A and Chfr-K5A in which putative lysine target sites of auto-ubiquitylation were replaced with alanine. Chfr-K2A did not undergo cell cycle-dependent degradation, and its levels remained high during G2/M phase. The elevated levels of Chfr-K2A caused a significant reduction in phosphohistone H3 levels and cyclinB1/Cdk1 kinase activities, leading to mitotic entry delay. Notably, polo-like kinase 1 levels at G2 phase, but not at S phase, were ∼2–3-fold lower in cells expressing Chfr-K2A than in wild-type Chfr-expressing cells. Consistent with this, ubiquitylation of Plk1 at G2 phase was accelerated in Chfr-K2A-expressing cells. In contrast, Aurora A levels remained constant, indicating that Plk1 is a major target of Chfr in controlling the timing of mitotic entry. Indeed, overexpression of Plk1 in Chfr-K2A-expressing cells restored cyclin B1/Cdk1 kinase activity and promoted mitotic entry. Collectively, these data indicate that Chfr auto-ubiquitylation is required to allow Plk1 to accumulate to levels necessary for activation of cyclin B1/Cdk1 kinase and mitotic entry. Our results provide the first evidence that Chfr auto-ubiquitylation and degradation are important for the G2/M transition.  相似文献   

3.
During G2 phase of cell cycle, centrosomes function as a scaffold for activation of mitotic kinases. Aurora-A is first activated at late G2 phase at the centrosome, facilitates centrosome maturation, and induces activation of cyclin B-Cdk1 at the centrosome for mitotic entry. Although several molecules including HEF1 and PAK are implicated in centrosomal activation of Aurora-A, signaling pathways leading to Aurora-A activation at the centrosome, and hence mitotic commitment in vertebrate cells remains largely unknown. Here, we have used Clostridium difficile toxin B and examined the role of Rho GTPases in G2/M transition of HeLa cells. Inactivation of Rho GTPases by the toxin B treatment delayed by 2 h histone H3 phosphorylation, Cdk1/cyclin B activation, and Aurora-A activation. Furthermore, PAK activation at the centrosome that was already present before the toxin addition was significantly attenuated for 2 h by the addition of toxin B, and HEF1 accumulation at the centrosome that occurred in late G2 phase was also delayed. These results suggest that Rho GTPases function in G2/M transition of mammalian cells by mediating multiple signaling pathways converging to centrosomal activation of Aurora-A.  相似文献   

4.
An ATR-dependent G(2) checkpoint responds to inhibition of topoisomerase II and delays entry into mitosis by sustaining nuclear exclusion of cyclin B1-Cdk1 complexes. Here we report that induction of this checkpoint with ICRF-193, a topoisomerase II catalytic inhibitor that does not cause DNA damage, was associated with an ATR-dependent inhibition of polo-like kinase 1 (Plk1) kinase activity and a decrease in cyclin B1 phosphorylation. Expression of constitutively active Plk1 but not wild type Plk1 reversed ICRF-193-induced mitotic delay in HeLa cells, suggesting that Plk1 kinase activity is important for the checkpoint response to ICRF-193. G(2)/M synchronized normal human fibroblasts, when treated with ICRF-193, showed a decrease in cyclin B1 phosphorylation and Plk1 kinase activity despite high cyclin B1-Cdk1 kinase activity. G(2) fibroblasts that were treated with caffeine to override the checkpoint response to ICRF-193 displayed a high incidence of chromosomal aberrations. Taken together, these results suggest that ATR-dependent inhibition of Plk1 kinase activity may be one mechanism to regulate cyclin B1 phosphorylation and sustain nuclear exclusion during the G(2) checkpoint response to topoisomerase II inhibition. Moreover, the results demonstrate an important role for the topoisomerase II-dependent G(2) checkpoint in the preservation of human genomic stability.  相似文献   

5.
Polo-like kinase 1 (Plk1) is an important mitotic kinase that is crucial for entry into mitosis after recovery from DNA damage-induced cell cycle arrest. Plk1 activation is promoted by the conserved protein Bora (SPAT-1 in C. elegans), which stimulates the phosphorylation of a conserved residue in the activation loop by the Aurora A kinase. In a recent article published in Cell Reports, we show that the master mitotic kinase Cdk1 contributes to Plk1 activation through SPAT-1/Bora phosphorylation. We identified 3 conserved Sp/Tp residues that are located in the N-terminal, most conserved part, of SPAT-1/Bora. Phosphorylation of these sites by Cdk1 is essential for Plk1 function in mitotic entry in C. elegans embryos and during DNA damage checkpoint recovery in mammalian cells. Here, using an untargeted Förster Resonance Energy Transfer (FRET) biosensor to monitor Plk1 activation, we provide additional experimental evidence supporting the importance of these phosphorylation sites for Plk1 activation and subsequent mitotic entry after DNA damage. We also briefly discuss the mechanism of Plk1 activation and the potential role of Bora phosphorylation by Cdk1 in this process. As Plk1 is overexpressed in cancer cells and this correlates with poor prognosis, understanding how Bora contributes to Plk1 activation is paramount for the development of innovative therapeutical approaches.  相似文献   

6.
Aurora family kinases contribute to regulation of mitosis. Using RNA interference in synchronized HeLa cells, we now show that Aurora-A is required for mitotic entry. We found that initial activation of Aurora-A in late G2 phase of the cell cycle is essential for recruitment of the cyclin B1-Cdk1 complex to centrosomes, where it becomes activated and commits cells to mitosis. A two-hybrid screen identified the LIM protein Ajuba as an Aurora-A binding protein. Ajuba and Aurora-A interact in mitotic cells and become phosphorylated as they do so. In vitro analyses revealed that Ajuba induces the autophosphorylation and consequent activation of Aurora-A. Depletion of Ajuba prevented activation of Aurora-A at centrosomes in late G2 phase and inhibited mitotic entry. Overall, our data suggest that Ajuba is an essential activator of Aurora-A in mitotic commitment.  相似文献   

7.
In mammalian cells entry into and progression through mitosis are regulated by multiple mitotic kinases. How mitotic kinases interact with each other and coordinately regulate mitosis remains to be fully understood. Here we employed a chemical biology approach using selective small molecule kinase inhibitors to dissect the relationship between Cdk1 and Aurora A kinases during G2/M transition. We find that activation of Aurora A first occurs at centrosomes at late G2 and is required for centrosome separation independently of Cdk1 activity. Upon entry into mitosis, Aurora A then becomes fully activated downstream of Cdk1 activation. Inactivation of Aurora A or Plk1 individually during a synchronized cell cycle shows no significant effect on Cdk1 activation and entry into mitosis. However, simultaneous inactivation of both Aurora A and Plk1 markedly delays Cdk1 activation and entry into mitosis, suggesting that Aurora A and Plk1 have redundant functions in the feedback activation of Cdk1. Together, our data suggest that Cdk1, Aurora A, and Plk1 mitotic kinases participate in a feedback activation loop and that activation of Cdk1 initiates the feedback loop activity, leading to rapid and timely entry into mitosis in human cells. In addition, live cell imaging reveals that the nuclear cycle of cells becomes uncoupled from cytokinesis upon inactivation of both Aurora A and Aurora B kinases and continues to oscillate in a Cdk1-dependent manner in the absence of cytokinesis, resulting in multinucleated, polyploidy cells.  相似文献   

8.
Mitotic entry and exit require activation and inactivation of the Cdk1-cyclin B kinase complex, respectively. The Cdc25 protein phosphatase family activates Cdk1-cyclin B at the G2/M transition by removing inhibitory phosphate groups. Cdc25 family members, held inactive during interphase, are activated during mitotic progression in an amplification loop involving Cdk1-cyclin B. While Cdc25 activation at the G2/M transition is required for the timely initiation of mitosis, recent evidence suggests that the inactivation of Cdc25 in late mitosis may play a role in supporting Cdk1-cyclin B inactivation. Here, we discuss the mechanisms of Cdc25 regulation and how they pertain to both mitotic entry and exit.  相似文献   

9.
Mitotic entry and exit require activation and inactivation of the Cdk1-cyclin B kinase complex, respectively. The Cdc25 protein phosphatase family activates Cdk1-cyclin B at the G2/M transition by removing inhibitory phosphate groups. Cdc25 family members, held inactive during interphase, are activated during mitotic progression in an amplification loop involving Cdk1-cyclin B. While Cdc25 activation at the G2/M transition is required for the timely initiation of mitosis, recent evidence suggests that the inactivation of Cdc25 in late mitosis may play a role in supporting Cdk1-cyclin B inactivation. Here, we discuss the mechanisms of Cdc25 regulation and how they pertain to both mitotic entry and exit.  相似文献   

10.
11.
BACKGROUND: The mitotic kinases, Cdk1, Aurora A/B, and Polo-like kinase 1 (Plk1) have been characterized extensively to further understanding of mitotic mechanisms and as potential targets for cancer therapy. Cdk1 and Aurora kinase studies have been facilitated by small-molecule inhibitors, but few if any potent Plk1 inhibitors have been identified. RESULTS: We describe the cellular effects of a novel compound, BI 2536, a potent and selective inhibitor of Plk1. The fact that BI 2536 blocks Plk1 activity fully and instantaneously enabled us to study controversial and unknown functions of Plk1. Cells treated with BI 2536 are delayed in prophase but eventually import Cdk1-cyclin B into the nucleus, enter prometaphase, and degrade cyclin A, although BI 2536 prevents degradation of the APC/C inhibitor Emi1. BI 2536-treated cells lack prophase microtubule asters and thus polymerize mitotic microtubules only after nuclear-envelope breakdown and form monopolar spindles that do not stably attach to kinetochores. Mad2 accumulates at kinetochores, and cells arrest with an activated spindle-assembly checkpoint. BI 2536 prevents Plk1's enrichment at kinetochores and centrosomes, and when added to metaphase cells, it induces detachment of microtubules from kinetochores and leads to spindle collapse. CONCLUSIONS: Our results suggest that Plk1's accumulation at centrosomes and kinetochores depends on its own activity and that this activity is required for maintaining centrosome and kinetochore function. Our data also show that Plk1 is not required for prophase entry, but delays transition to prometaphase, and that Emi1 destruction in prometaphase is not essential for APC/C-mediated cyclin A degradation.  相似文献   

12.
In addition to governing mitotic progression, Plk1 also suppresses the activation of the G2 DNA damage checkpoint and promotes checkpoint recovery. Previous studies have shown that checkpoint activation after DNA damage requires inhibition of Plk1, but the underlying mechanism of Plk1 regulation was unknown. In this study we show that the specific phosphatase activity toward Plk1 Thr-210 in interphase Xenopus egg extracts is predominantly PP2A-dependent, and this phosphatase activity is upregulated by DNA damage. Consistently, PP2A associates with Plk1 and the association increases after DNA damage. We further revealed that B55α, a targeting subunit of PP2A and putative tumor suppressor, mediates PP2A/Plk1 association and Plk1 dephosphorylation. B55α and PP2A association is greatly strengthened after DNA damage in an ATM/ATR and checkpoint kinase-dependent manner. Collectively, we report a phosphatase-dependent mechanism that responds to DNA damage and regulates Plk1 and checkpoint recovery.  相似文献   

13.
The role of BubR1 has been established mainly in mitosis as an essential mitotic checkpoint protein although it is expressed throughout the cell cycle. To explore a possible role of BubR1 in regulating the G2 phase of cell cycle, we have employed siRNA–mediated hBubR1 knockdown in HeLa cells. Here, we demonstrate that reducing BubR1 levels during the G2 phase causes accelerated mitotic entry. As expected, BubR1 depletion leads to degradation of cyclin B1 in the G2 phase. Intriguingly, cyclin B1 is prematurely targeted to centrosomes appearing at early G2 phase in BubR1-depleted cells despite its low levels. This is in contrast to control cells where cyclin B1 appears at the centrosomes in early prophase based on cell cycle-specific localization of CENP-F. Furthermore, cyclin B/Cdk1 kinase activity in early G2 is aberrantly high in BubR1-depleted cells. Together, our results indicate that hBubR1 depletion triggers premature centrosomal localization of cyclin B1 probably leading to premature mitotic entry. This study is the first to suggest a role of hBubR1 in controlling centrosome targeting of cyclin B1 and timing of mitotic entry.  相似文献   

14.
The role of the protein kinase B (PKB/Akt) in the regulation of cell survival and proliferation is well established. PKB is a key effector in the phosphatidylinositol 3-kinase pathway and plays a role in the initiation of S phase and in the G(2)-M transition. I report here that activated PKB shortens the G(2) arrest induced by DNA damage and promotes early entry into mitosis. Activated PKB supports high levels of expression and activity of the polo-like kinase 1 (Plk1) after DNA damage as cells accumulate in G(2). The checkpoint protein CHFR implicated in degradation of Plk1 is involved in the regulation of Plk1 by PKB. PKB phosphorylates CHFR in vitro and in vivo. Expression of a mutant form of CHFR that cannot be phosphorylated by PKB results in reduction of levels of Plk1 and inhibition of mitotic entry under normal conditions and after DNA damage. Results of this study support a model in which PKB facilitates mitotic resolution of DNA damage-induced G(2) arrest by inhibiting the checkpoint function of CHFR. The deregulated activation of PKB that occurs frequently in tumors might inhibit CHFR activity after DNA damage and therefore promote Plk1 accumulation leading to the disruption of the DNA damage checkpoint.  相似文献   

15.
Cell growth prior to cell division is restricted by the activity of cyclin-dependent kinase 1 (Cdk1)/cyclin B1 complexes. Recently, we identified that the death-effector domain (DED) containing protein, DEDD, acts as a novel inhibitor of mitotic Cdk1/cyclin B1, influencing cell size. Like cyclin B1, DEDD protein levels specifically peak during the G2/M phase. In the nucleus, DEDD associates with Cdk1/cyclin B1 complexes, via direct binding to cyclin B1, and reduces their function. In agreement, kinase activity of nuclear Cdk1/cyclin B1 in DEDD-null (DEDD-/-) embryonic fibroblasts is increased compared to that in DEDD+/+ cells. This accelerates mitotic progression in DEDD-/- cells, with a shortened G2/M phase, reduced rRNA, and diminished cell volume. Likewise, DEDD-/- mice show decreased body and organ weights relative to DEDD+/+ mice. Interestingly, the DED domain is not involved in the association of DEDD with Cdk1/cyclin B1, but is indispensable for the cell sizing function of DEDD. Together, in addition to the well-established machinery for activation of Cdk1 through dephosphorylation of its inhibitory-residues, we propose a novel mechanism for impeditive regulation of mitotic Cdk1/cyclin B1 mediated by DEDD within the nucleus, which allows sufficient cell growth prior to cell division.  相似文献   

16.
The IκB kinase (IKK) complex controls processes such as inflammation, immune responses, cell survival and the proliferation of both normal and tumor cells. By activating NFκB, the IKK complex contributes to G1/S transition and first evidence has been presented that IKKα also regulates entry into mitosis. At what stage IKK is required and whether IKK also contributes to progression through mitosis and cytokinesis, however, has not yet been determined. In this study, we use BMS-345541, a potent allosteric small molecule inhibitor of IKK, to inhibit IKK specifically during G2 and during mitosis. We show that BMS-345541 affects several mitotic cell-cycle transitions, including mitotic entry, prometaphase to anaphase progression and cytokinesis. Adding BMS-345541 to the cells released from arrest in S-phase blocked the activation of aurora A, B and C, Cdk1 activation and histone H3 phosphorylation. Additionally, treatment of the mitotic cells with BMS-345541 resulted in precocious cyclin B1 and securin degradation, defective chromosome separation and improper cytokinesis. BMS-345541 was also found to override the spindle checkpoint in nocodazole-arrested cells. In vitro kinase assays using BMS-345541 indicate that these effects are not primarily due to a direct inhibitory effect of BMS-345541 on mitotic kinases such as Cdk1, Aurora A or B, Plk1 or NEK2. This study points towards a new potential role of IKK in cell cycle progression. Since deregulation of the cell-cycle is one of the hallmarks of tumor formation and progression, the newly discovered level of BMS 345541 function could be useful for cell-cycle control studies and may provide valuable clues for the design of future therapeutics.  相似文献   

17.
In addition to governing mitotic progression, Plk1 also suppresses the activation of the G2 DNA damage checkpoint and promotes checkpoint recovery. Previous studies have shown that checkpoint activation after DNA damage requires inhibition of Plk1, but the underlying mechanism of Plk1 regulation was unknown. In this study we show that the specific phosphatase activity toward Plk1 Thr-210 in interphase Xenopus egg extracts is predominantly PP2A-dependent, and this phosphatase activity is upregulated by DNA damage. Consistently, PP2A associates with Plk1 and the association increases after DNA damage. We further revealed that B55α, a targeting subunit of PP2A and putative tumor suppressor, mediates PP2A/Plk1 association and Plk1 dephosphorylation. B55α and PP2A association is greatly strengthened after DNA damage in an ATM/ATR and checkpoint kinase-dependent manner. Collectively, we report a phosphatase-dependent mechanism that responds to DNA damage and regulates Plk1 and checkpoint recovery.  相似文献   

18.
The abrupt activation of CDK1 during mitotic entry requires suppression of CDK activity until a threshold concentration of cyclin B is synthesized, triggering the activation of a large pool of CDK. The cellular mechanisms that define the concentration of cyclin B at which the threshold occurs are unknown. Here we demonstrate that this threshold is regulated by Aurora-A kinase and phosphatase Inhibitor-2. In Xenopus CSF extracts that actively translate cyclin B1, immunodepletion of either endogenous xInhibitor-2 or endogenous xAurora-A caused delayed mitotic entry and normal timing was restored by addition of the respective recombinant proteins. Aurora-A depleted extracts also could be rescued by the addition of full-length xInhibitor-2, but not an xInhibitor-2 truncated of its PP1 binding motif. This demonstrates that inhibition of PP1 was required to compensate for the absence of Aurora-A. To test the hypothesis that the delays in mitotic entry in CSF extracts were due to increases in cyclin B thresholds, we employed interphase extracts, which are driven into mitosis by the addition of recombinant cyclin B in a non-linear (threshold) dose-response. Neutralization of endogenous xInhibitor-2 or xAurora with antibodies increased the cyclin B threshold concentration. Alternatively, the addition of exogenous Aurora-A or Inhibitor-2 lowered the concentration of cyclin B that triggered CDK activation. Because the cyclin B threshold could be raised or lowered by changing the amount of either Aurora-A or Inhibitor-2, the results demonstrate these regulatory proteins are involved in a signaling loop required to create the switching behavior characteristic of mitotic entry.  相似文献   

19.
Polo-like kinase 1 (Plk1) is essential for checkpoint recovery and the activation of key mitotic enzymes; however, its own activation mechanism has remained elusive. Recent findings show that Bora, a G(2)-M expressed protein, facilitates Plk1 activation by the oncogenic kinase Aurora A in G(2). During mitosis, Plk1-dependent Bora degradation promotes Aurora A localization to the centrosome and/or spindle. Bora-dependent regulation provides important new insights into interactions between key mitotic kinases.  相似文献   

20.
Nuclear interaction partner of ALK (NIPA) is an F-box-containing protein that defines a nuclear skp1 cullin F-box (SCF)-type ubiquitin E3 ligase (SCFNIPA) implicated in the regulation of mitotic entry. The SCFNIPA complex targets nuclear cyclin B1 for ubiquitination in interphase, whereas phosphorylation of NIPA in late G2 phase and mitosis inactivates the complex to allow for accumulation of cyclin B1. Here, we identify the region of NIPA that mediates binding to its substrate cyclin B1. In addition to the recently described serine residue 354, we specify 2 new residues, Ser-359 and Ser-395, implicated in the phosphorylation process at G2/M within this region. Moreover, we found cyclin B1/Cdk1 to phosphorylate NIPA at Ser-395 in mitosis. Mutation of both Ser-359 and Ser-395 impaired effective inactivation of the SCFNIPA complex, resulting in reduced levels of mitotic cyclin B1. These data are compatible with a process of sequential NIPA phosphorylation where cyclin B1/Cdk1 amplifies phosphorylation of NIPA once an initial phosphorylation event has dissociated the SCFNIPA complex. Thus, cyclin B1/Cdk1 may contribute to the regulation of its own abundance in early mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号