首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Recently it has become clear that only a small percentage (7%) of disease-associated single nucleotide polymorphisms (SNPs) are located in protein-coding regions, while the remaining 93% are located in gene regulatory regions or in intergenic regions. Thus, the understanding of how genetic variations control the expression of non-coding RNAs (in a tissue-dependent manner) has far-reaching implications. We tested the association of SNPs with expression levels (eQTLs) of large intergenic non-coding RNAs (lincRNAs), using genome-wide gene expression and genotype data from five different tissues. We identified 112 cis-regulated lincRNAs, of which 45% could be replicated in an independent dataset. We observed that 75% of the SNPs affecting lincRNA expression (lincRNA cis-eQTLs) were specific to lincRNA alone and did not affect the expression of neighboring protein-coding genes. We show that this specific genotype-lincRNA expression correlation is tissue-dependent and that many of these lincRNA cis-eQTL SNPs are also associated with complex traits and diseases.  相似文献   

11.
长链非编码RNAs(long noncoding RNAs, lncRNAs)可在表观遗传水平、转录水平和转录后水平调节基因的表达,对细胞功能起着重要的调节作用。RNA结合蛋白可与很多的RNA结合,并在转录后水平发挥重要的调节作用。然而,RNA结合蛋白是否可以在细胞内广泛结合lncRNAs对其发挥调节作用,仍需进一步证实。本研究通过RNA结合蛋白免疫沉淀技术联合高通量测序(RNA binding protein immunoprecipitation-high throughput sequencing, RIP-Seq)的方法在人肝癌细胞株HepG2中,鉴定与人抗原R(human antigen R, HuR)蛋白相结合的lncRNA分子,并进行了初步的验证。首先,通过HuR-RIP实验分离与HuR蛋白结合的RNA分子,然后高通量测序及生物信息学分析。根据分析结果,鉴定出HepG2细胞中361条与HuR蛋白结合的lncRNAs分子,包括基因间lncRNA(large intergenic noncoding RNA, LincRNA)、内含子lncRNA、与编码基因正义链有重叠的lncRNA和与编码基因反义链有重叠lncRNA(antisense lncRNA)等。并进一步通过RIP-qPCR技术,对其中20条LincRNA分子进行了定量检测,验证测序结果。在HepG2细胞中敲低HuR基因表达,发现这些LincRNA分子中,11条LincRNA分子表达水平显著降低(P<0.05),2条LincRNA显著升高(P<0.05),剩余7条LincRNA表达量未发生变化(P>0.05)。本研究结果说明,HuR在细胞内可以广泛结合lncRNA分子,并且可能对结合的lncRNA分子的表达量产生影响,这也为进一步研究这些lncRNA的功能和HuR调控网络的研究提供了基础。  相似文献   

12.
13.
Long non‐coding RNAs (lncRNAs) are involved in the resistance of plants to infection by pathogens via interactions with microRNAs (miRNAs). Long non‐coding RNAs are cleaved by miRNAs to produce phased small interfering RNAs (phasiRNAs), which, as competing endogenous RNAs (ceRNAs), function as decoys for mature miRNAs, thus inhibiting their expression, and contain pre‐miRNA sequences to produce mature miRNAs. However, whether lncRNAs and miRNAs mediate other molecular mechanisms during plant resistance to pathogens is unknown. In this study, as a positive regulator, Sl‐lncRNA15492 from tomato (Solanum lycopersicum Zaofen No. 2) plants affected tomato resistance to Phytophthora infestans. Gain‐ and loss‐of‐function experiments and RNA ligase‐mediated 5′‐amplification of cDNA ends (RLM‐5′ RACE) also revealed that Sl‐miR482a was negatively involved in tomato resistance by targeting SlNBS‐LRR genes and that silencing of SlNBS‐LRR1 decreased tomato resistance. Sl‐lncRNA15492 inhibited the expression of mature Sl‐miR482a, whose precursor was located within the antisense sequence of Sl‐lncRNA15492. Further degradome analysis and additional RLM‐5′ RACE experiments verified that mature Sl‐miR482a could also cleave Sl‐lncRNA15492. These results provide a mechanism by which lncRNAs might inhibit precursor miRNA expression through antisense strands of lncRNAs, and demonstrate that Sl‐lncRNA15492 and Sl‐miR482a mutually inhibit the maintenance of Sl‐NBS‐LRR1 homeostasis during tomato resistance to P. infestans.  相似文献   

14.
15.
Long non‐coding RNAs (lncRNAs), a group of non‐protein‐coding RNAs with more than 200 nucleotides in length, are involved in multiple biological processes, such as the proliferation, apoptosis, migration and invasion. Moreover, numerous studies have shown that lncRNAs play important roles as oncogenes or tumour suppressor genes in human cancers. In this paper, we concentrate on actin filament‐associated protein 1‐antisense RNA 1 (AFAP1‐AS1), a well‐known long non‐coding RNA that is overexpressed in various tumour tissues and cell lines, including oesophageal cancer, pancreatic ductal adenocarcinoma, nasopharyngeal carcinoma, lung cancer, hepatocellular carcinoma, ovarian cancer, colorectal cancer, biliary tract cancer and gastric cancer. Moreover, high expression of AFAP1‐AS1 was associated with the clinicopathological features and cancer progression. In this review, we sum up the current studies on the characteristics of AFAP1‐AS1 in the biological function and mechanism of human cancers.  相似文献   

16.
17.
18.
19.
Ulitsky I  Shkumatava A  Jan CH  Sive H  Bartel DP 《Cell》2011,147(7):1537-1550
Thousands of long intervening noncoding RNAs (lincRNAs) have been identified in mammals. To better understand the evolution and functions of these enigmatic RNAs, we used chromatin marks, poly(A)-site mapping and RNA-Seq data to identify more than 550 distinct lincRNAs in zebrafish. Although these shared many characteristics with mammalian lincRNAs, only 29 had detectable sequence similarity with putative mammalian orthologs, typically restricted to a single short region of high conservation. Other lincRNAs had conserved genomic locations without detectable sequence conservation. Antisense reagents targeting conserved regions of two zebrafish lincRNAs caused developmental defects. Reagents targeting splice sites caused the same defects and were rescued by adding either the mature lincRNA or its human or mouse ortholog. Our study provides a roadmap for identification and analysis of lincRNAs in model organisms and shows that lincRNAs play crucial biological roles during embryonic development with functionality conserved despite limited sequence conservation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号