首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The variable severity of lung disease associated with cystic fibrosis (CF) cannot be explained by the genotype of the cystic fibrosis transmembrane conductance regulator (CFTR) locus alone. Lung disease has been reported in a congenic CF mouse model of C57BL/6J genetic background (B6 CF), in the absence of detectable infection, but not in CF mice of mixed genetic background, nor in wild-type animals maintained in identical environments. In this report, studies are presented to show that the same CF mutation in mice of a BALB/c background (BALB CF) results in minimal lung disease. By 12 weeks of age B6 CF mice developed a lung disease consisting of mononuclear cell interstitial infiltrate and fibrosis, and BALB CF or littermate control mice developed minimal histopathology. Therefore, it is possible to identify the chromosomal locations of genes that can contribute to the susceptibility to lung disease in B6 CF mice compared with BALB CF mice by means of a quantitative trait loci (QTL) mapping strategy based on the variable histology of the (B6 × BALB) F2 CF mice. Significant linkage of the fibrotic lung phenotype was detected for a region on Chromosome (Chr) 6, defined by markers D6Mit194 to D6Mit201, and suggestive linkage was found for regions on Chr 1, 2, 10, and 17. Additional loci, suggestive of linkage, were also detected for the interstitial thickening phenotype. Most of these putative loci are specific to the sex of the animals. These results suggest that multiple genes can influence the severity of CF lung disease in mice.  相似文献   

2.
Neuroadapted Sindbis virus (NSV) infection of mice causes hindlimb paralysis and 100% mortality in the C57BL/6 mouse strain, while adults of the BALB/cBy mouse strain are resistant to fatal encephalomyelitis. Levels of viral RNA are higher in the brains of infected C57BL/6 mice than in BALB/cBy mice (D. C. Thach et al., J. Virol. 74:6156-6161, 2000). These phenotypic differences between the two strains allowed us to map genetic loci involved in mouse susceptibility to NSV and to find relationships between mortality, paralysis, and viral RNA levels. Analysis of percent mortality in H2-congenic and F(1) mice suggested that the H2 locus, sex linkage, and imprinting were not involved in determining susceptibility and that resistance was partially dominant over susceptibility. Segregation analysis using CXB recombinant inbred (RI) mice indicated that the percent mortality was multigenic. Interval mapping detected a suggestive quantitative trait locus (QTL) on chromosome 2 near marker D2Mit447. Analysis of paralysis in the RI mice detected the same suggestive QTL. Viral RNA level in F(1) mice was intermediate. Interval mapping using viral RNA levels in RI mice detected a significant QTL near marker D2Mit447 that explained 69% of the genetic variance. This QTL was confirmed in F2 mice and was designated as Nsv1. Viral RNA level, percent paralyzed, and percent mortality were linearly correlated (r = 0.8 to 0.9). These results indicate that mortality, paralysis, and viral RNA levels are related complex traits and that Nsv1 controls early viral load and determines the likelihood of paralysis and death.  相似文献   

3.
The susceptibility of BALB/c mice to pristane-induced plasmacytomas is a complex genetic trait involving multiple loci, while DBA/2 and C57BL/6 strains are genetically resistant to the plasmacytomagenic effects of pristane. In this model system for human B-cell neoplasia, one of the BALB/c susceptibility and modifier loci, Pctr1, was mapped to a 5.7-centimorgan (cM) chromosomal region that included Cdkn2a, which encodes p16(INK4a) and p19(ARF), and the coding sequences for the BALB/c p16(INK4a) and p19(ARF) alleles were found to be polymorphic with respect to their resistant Pctr1 counterparts in DBA/2 and C57BL/6 mice (45). In the present study, alleles of Pctr1, Cdkn2a, and D4Mit15 from a resistant strain (BALB/cDAG) carrying DBA/2 chromatin were introgressively backcrossed to the susceptible BALB/c strain. The resultant C.DAG-Pctr1 Cdkn2a D4Mit15 congenic was more resistant to plasmacytomagenesis than BALB/c, thus narrowing Pctr1 to a 1.5-cM interval. Concomitantly, resistant C57BL/6 mice, from which both gene products of the Cdkn2a gene have been eliminated, developed pristane-induced plasma cell tumors over a shorter latency period than the traditionally susceptible BALB/cAn strain. Biological assays of the p16(INK4a) and p19(ARF) alleles from BALB/c and DBA/2 indicated that the BALB/c p16(INK4a) allele was less active than its DBA/2 counterpart in inducing growth arrest of mouse plasmacytoma cell lines and preventing ras-induced transformation of NIH 3T3 cells, while the two p19(ARF) alleles displayed similar potencies in both assays. We propose that the BALB/c susceptibility/modifier locus, Pctr1, is an "efficiency" allele of the p16(INK4a) gene.  相似文献   

4.
The susceptibility to tumors induced by raf and raf/myc retroviruses was investigated in BALB/c, C57BL/6, (BALB/c x C57BL/6)F1 and (BALB/c x C57BL/6) backcross mice. Newborn mice were susceptible to neoplasms generated by both viruses, but resistance to raf-induced leukemia developed rapidly in all mice as they matured. Older C57BL/6 mice were also resistant to raf/myc lymphomas, whereas BALB/c mice remained susceptible to the virus at all ages, indicating that different genes control susceptibility to raf and raf/myc tumors. From these data and the susceptibility of C x B recombinant inbred strains, it appears that very few genes (perhaps even a single gene) may govern susceptibility to raf/myc lymphomas and that resistance is the dominant trait.  相似文献   

5.
The total body fat mass and serum concentration of total cholesterol, HDL cholesterol, and triglyceride (TG) differ between standard diet-fed female inbred mouse strains MRL/MpJ (MRL) and SJL/J (SJL) by 38-120% (P < 0.01). To investigate genetic regulation of obesity and serum lipid levels, we performed a genome-wide linkage analysis in 621 MRLx SJL F2 female mice. Fat mass was affected by two significant loci, D11Mit36 [43.7 cM, logarithm of the odds ratio (LOD) 11.2] and D16Mit51 (50.3 cM, LOD 3.9), and one suggestive locus at D7Mit44 (50 cM, LOD 2.4). TG levels were affected by two novel loci at D1Mit43 (76 cM, LOD 3.8) and D12Mit201 (26 cM, LOD 4.1), and two suggestive loci on chromosomes 5 and 17. HDL and cholesterol concentrations were influenced by significant loci on chromosomes 1, 3, 5, 7, and 17 that were in the regions identified earlier for other strains of mice, except for a suggestive locus on chromosome 14 that was specific to the MRL x SJL cross. In summary, linkage analysis in MRL x SJL F2 mice disclosed novel loci affecting TG, HDL, and fat mass, a measure of obesity. Knowledge of the genes in these quantitative trait loci will enhance our understanding of obesity and lipid metabolism.  相似文献   

6.
Identification of Hepatocarcinogen-Resistance Genes in Dba/2 Mice   总被引:6,自引:0,他引:6       下载免费PDF全文
Male DBA/2J mice are ~20-fold more susceptible than male C57BL/6J mice to hepatocarcinogenesis induced by perinatal treatment with N,N-diethylnitrosamine (DEN). In order to elucidate the genetic control of hepatocarcinogenesis in DBA/2J mice, male BXD recombinant inbred, D2B6F(1) X B6 backcross, and D2B6F(2) intercross mice were treated at 12 days of age with DEN and liver tumors were enumerated at 32 weeks. Interestingly, the distribution of mean tumor multiplicities among BXD recombinant inbred strains indicated that hepatocarcinogen-sensitive DBA/2 mice carry multiple genes with opposing effects on the susceptibility to liver tumor induction. By analyzing D2B6F(1) X B6 backcross and D2B6F(2) intercross mice for their liver tumor multiplicity phenotypes and for their genotypes at simple sequence repeat marker loci, we mapped two resistance genes carried by DBA/2J mice, designated Hcr1 and -2, to chromosomes 4 and 10, respectively. Hcr1 and Hcr2 resolved the genetic variance in the backcross population well, indicating that these resistance loci are the major determinants of the variance in the backcross population. Although our collection of 100 simple sequence repeat markers allowed linkage analysis for ~95% of the genome, we failed to map any sensitivity alleles for DBA/2J mice. Thus, it is likely that the susceptibility of DBA/2J mice is the consequence of the combined effects of multiple sensitivity loci.  相似文献   

7.
Day 3 thymectomy (D3Tx) results in a loss of peripheral tolerance mediated by CD4(+)CD25(+) T cells and the development of autoimmune ovarian dysgenesis (AOD) in A/J and (C57BL/6J x A/J)F(1) (B6AF(1)) hybrids but not in C57BL/6J mice. Quantitative trait loci (QTL) linkage analysis using a B6AF(1) x C57BL/6J backcross population verified Aod1 and Aod2 that were previously mapped as qualitative traits. Additionally, three new QTL intervals, Aod3, Aod4, and Aod5, on chromosomes 1, 2, and 7, respectively, influencing specific subphenotypes of AOD were identified. QTL linkage analysis using the A x B and B x A recombinant inbred lines verified Aod3 and confirmed linkage to H2. Aod5 colocalized with Mater, an ovarian-specific autoantigen recognized by anti-ovarian autoantibodies in the sera of D3Tx mice. Sequence analysis of Mater identified allelic, strain-specific splice variants between A/J and C57BL/6J mice making it an attractive candidate gene for Aod5. Interaction analysis revealed significant epistatic effects between Aod1-5 and Gasa2, a locus associated with susceptibility to D3Tx-induced autoimmune gastritis, as well as with H2. These results indicate that the QTL controlling D3Tx-induced autoimmune phenomenon are both organ specific and more generalized in their effects with respect to the genesis and activity of the immunoregulatory mechanisms maintaining peripheral tolerance.  相似文献   

8.
DBA/2 (D2) mice are susceptible and C57BL/6 (B6) mice are resistant to lethal mousepox. A congenic resistant strain, D2.B6-Rmp-4r (D2.R4), was developed by serially backcrossing male mice that survived ectromelia virus infection with D2 mice, beginning with (B6 x D2)F1 mice. Male D2.R4 mice were at least 300-fold more resistant to lethal mousepox than male D2 mice. Female D2.R4 mice were 100-fold more resistant than male D2.R4 mice and 500-fold more resistant than female D2 mice. Neonatal gonadectomy prevented development of resistance in D2.R4 mice of both sexes. Differences in resistance between strains and between sexes correlated with restriction of virus replication in spleen and liver, but gender differences were less evident in liver than in spleen. High-resolution interval mapping of the 19 autosomes of D2.R4 mice using dispersed informative microsatellites as marker loci revealed a segment of distal chromosome 1 to be of B6 origin. Haplotypes for a marker locus, D1Mit57, from the differential segment were determined in (D2.R4 x D2)F1 x D2 backcross mice, which were then infected with ectromelia virus. Significantly more heterozygotes than homozygotes survived ectromelia virus infection in both sexes. Whereas nearly all surviving males were heterozygotes, 44% of surviving females were homozygotes. These results indicate that resistance in D2.R4 mice is determined by a gonad-dependent gene on distal chromosome 1, provisionally named Rmp-4, and by an ovary-dependent factor that is not genetically linked to Rmp-4.  相似文献   

9.
Previously, we demonstrated that Ath1 is a quantitative trait locus for aortic fatty streak formation, located on Chromosome (chr) 1, with susceptibility in C57BL/6J mice and resistance in C3H/HeJ and BALB/cJ mice fed an atherogenic diet. In this study, we find an atherosclerosis susceptibility locus in the same region of Chr 1 by constructing two congenic strains with the resistance phenotype transferred from different resistant strains, PERA/EiJ or SPRETUS/EiJ. By backcrossing one congenic strain to C57BL/6J and testing recombinant animals, we reduced the distance of the atherosclerosis susceptibility region to 2.3 cM between D1Mit14 and D1Mit10. Further testing of nine recombinant animals showed that eight of the nine were consistent with a further narrowing between D1Mit159 and D1Mit398 a distance of 0.66 cM. This region encompasses a number of potential candidate genes including the thiol-specific antioxidant gene Aop2, also known as peroxiredoxin 5 (Prdx5). AOP2 is capable of reducing hydroperoxides and lipid peroxides in the cell. To investigate Aop2 as a potential candidate, we mapped Aop2 in our backcross and localized it to the atherosclerosis susceptibility interval. We determined that Aop2 is highly expressed in atherosclerosis-related tissues including liver and heart. We also found an inverse correlation between Aop2 mRNA in liver and atherosclerosis phenotype for strains C57BL/6 and the resistant congenic derived from SPRETUS/EiJ. Since LDL oxidation has been implicated in the pathogenesis of this disease, and AOP2 possesses antioxidant activity, we suggest the role of Aop2 in atherosclerosis susceptibility needs to be further explored.  相似文献   

10.
Kang M  Cho JW  Kim JK  Kim E  Kim JY  Cho KH  Song CW  Yoon SK 《BMB reports》2008,41(9):651-656
A mouse with cataract, Kec, was generated from N-ethyl-N-nitrosourea (ENU) mutagenesis. Cataract in the Kec mouse was observable at about 5 weeks after birth and this gradually progressed to become completely opaque by 12 weeks. Dissection microscopy revealed that vacuoles with a radial or irregular shape were located primarily in the cortex of the posterior and equatorial regions of the lens. At the late stage, the lens structure was distorted, but not ruptured. This cataract phenotype was inherited in an autosomal recessive manner. We performed a genetic linkage analysis using 133 mutant and 67 normal mice produced by mating Kec mutant (BALB/c) and F1 (C57BL/6 x Kec) mice. The Kec locus was mapped to the 3 cM region encompassed by D14Mit34 and D14Mit69. In addition we excluded coding sequences of 9 genes including Rcbtb2, P2ry5, Itm2b, Med4, Nudt15, Esd, Lcp1, Slc25a30, and 2810032E02Rik as the candidate gene that causes cataract in the Kec mouse.  相似文献   

11.
One of the poorly understood clinical manifestations of cystic fibrosis (CF) is low body weight. Mice in which the CF causative gene, cystic fibrosis transmembrane conductance regulator (Cftr), has been knocked out reflect this as they are smaller than age-matched littermates. The variable weight of F2 Cftr -/- (CF) mice derived from a cross between congenic C57BL/6J and BALB/cJ Cftr heterozygotic mice permits the mapping of modifiers of this cystic fibrosis phenotype. In this report, quantitative trait loci (QTL) mapping was used to identify the chromosomal locations of genes that contribute to the body weight of 12-week-old F2 CF mice. Five loci of CF body weight were detected with four of the five acting in a sex-specific manner. Significant linkage of the phenotype to a region of Chromosome (Chr) 13 from D13Mit179 to D13Mit254 (LOD = 4.2) was established in female mice; and suggestive loci on Chrs 7 and 10 were identified. The weights of F2 male CF mice were suggestively linked to regions of Chrs 1 and 6, and to the same locus on Chr 7 as in female mice. The suggestive loci did not influence the weight of the limited set of control mice and thus are presumed to be CF specific in their effects. Further study of these putative CF body weight modifiers may provide insight on the pathogenesis of cystic fibrosis.  相似文献   

12.
A spontaneous morphological mutation characterized by a short and kinky tail (Tail-short Shionogi: Tss) was observed in a BALB/cMs mouse breeding colony. The inheritance mode of the Tss mutation is semi-dominant, and homozygotes (Tss/Tss) are probably embryonic lethal. The viability of the Tss/+ heterozygotes appear to be influenced by the mating partner: 47.1% of the (BALB/cMs-Tss/+ x C57BL/6J)F1 embryos were the mutant phenotype, whereas there were no (BALB/cMs-Tss/+ x A/J)F1 embryos with the mutant phenotype. The Tss locus was mapped by linkage analysis between microsatellite markers D11Mit128 and D11Mit256 on mouse Chromosome 11. These results suggest that the Tss mutation is a new allele on the Tail-short (Ts) locus.  相似文献   

13.
Although the phenomenon of innate resistance to flaviviruses in mice was recognized many years ago, it was only recently that the genetic locus (Flv) controlling this resistance was mapped to mouse Chromosome (Chr) 5. Here we report the fine mapping of the Flv locus, using 12 microsatellite markers which have recently been developed for mouse Chr 5. The new markers were genotyped in 325 backcross mice of both (C3H/HeJxC3H/ RV)F1xC3H/HeJ and (BALB/cxC3H/RV)F1xBALB/c backgrounds, relative to Flv. The composite genetic map that has been constructed identifies three novel microsatellite loci, D5Mit68, D5Mit159, and D5Mit242, tightly linked to the Flv locus. One of those loci, D5Mit159, showed no recombinations with Flv in any of the backcross mice analyzed, indicating tight linkage (<0.3 cM). The other two, D5Mit68 and D5Mit242, exhibited two and one recombinations with Flv (0.6 and 0.3 cM) respectively, defining the proximal and distal boundaries of a 0.9-cM segment around this locus. The proximal flanking marker, D5Mit68, maps to a segment on mouse Chr 5 homologous to human Chr 4. This, together with the previous data produced by our group, locates Flv to a region on mouse Chr 5 carrying segments that are conserved on either human Chr 4, 12, or 7, but present knowledge does not allow precise identification of the syntenic element.  相似文献   

14.
New Zealand Black (NZB) and New Zealand White (NZW) mice are genetically predisposed to a lupus-like autoimmune syndrome. To further define the loci linked to disease traits in NZB and NZW mice in the context of the BALB/c genetic background, linkage analyses were conducted in two crosses: (NZW x BALB/c.H2(z))F(1) x NZB and (NZB x BALB/c)F(2). Novel loci linked to autoantibody production and glomerulonephritis, present in both NZB and NZW mice, were identified on proximal chromosomes 12 and 4. The chromosome 12 locus showed the strongest linkage to anti-nuclear Ab production. Additionally, a number of other novel loci linked to lupus traits derived from both the New Zealand and non-autoimmune BALB/c genomes were identified. Furthermore, we confirm the linkage of disease to a number of previously described lupus-associated loci, demonstrating that they are relatively background independent. These data provide a number of additional candidate gene regions in murine lupus, and highlight the powerful effect the non-autoimmune background strain has in influencing the genetic loci linked to disease.  相似文献   

15.
The present study mapped quantitative trait loci (QTL) that control 6-fold genetic differences in hormone-induced ovulation rate (HIOR) between C57BL/6J (B6) (HIOR = 54) and A/J strain mice (HIOR = 9). (The gene name is Ovulation Rate Induced [ORI] QTL and the gene symbol is Oriq.) QTL linkage analysis was conducted on 167 (B6xA)xA backcross mice at 165 loci. Suggestive B6 ORI QTL that control the number of eggs in cumulus mapped, as follows, near: Cyp19 and D9Mit4 on chromosome (Chr) 9 (Oriq1); D2Mit433 on Chr2 (Oriq2); D6Mit316 on Chr6 (Oriq3); DXMit22 on ChrX (Oriq4) and were associated with a 2.7, 2.7, 2.6, and 4.2 egg increases in HIOR, respectively. Oriq3 was significant (LOD = 3.45) based on composite interval mapping. QTL linkage analysis of the number of eggs matured by endogenous gonadotropins and ovulated by eCG mapped a significant Oriq5 to Chr 10 and suggestive Oriq to Chr 6, 7, and X. These data provide the first molecular genetic markers for reproductive QTL that control major differences in ovarian responsiveness to gonadotropins. These and closely linked syntenic molecular markers will enable a more accurate prediction of ovarian responsiveness to gonadotropins and provide selection criteria for improving reproductive performance in diverse mammalian species.  相似文献   

16.
BALB/c mice thymectomized on their third day of life develop a high incidence of experimental autoimmune gastritis (EAG) which closely resembles human chronic atrophic (type A, autoimmune) gastritis. Linkage analysis of (BALB/cCrSlcxC57BL/6)F2 mice previously demonstrated that the Gasa1 and Gasa2 genes on distal Chromosome (Chr) 4 have major effects on the development of EAG in this murine model, while other loci displayed a trend towards linkage. Here, we implemented partitioned chi(2)-analysis in order to develop a better understanding of the genotypes contributing to susceptibility and resistance at each linkage region. This approach revealed that linkage of Gasa1 and Gasa2 to EAG was due to codominant and recessive BALB/cCrSlc alleles, respectively. To identify additional EAG susceptibility genes, separate linkage studies were performed on Gasa1 heterozygotes and Gasa2 C57BL/6 homozygotes plus heterozygotes so as to minimize the effects of these disease genes. The enhanced sensitivity of these analyses confirmed the existence of a third EAG susceptibility gene (designated Gasa3) on Chr 6. Epistatic interactions between the Gasa2 EAG susceptibility gene and the H2 were also identified, and the presence of an H2-linked susceptibility gene (Gasa4) confirmed by analysis of H2 congenic mice.  相似文献   

17.
Four genetic loci were tested for linkage with loci that control genetic resistance to lethal ectromelia virus infection in mice. Three of the loci were selected because of concordance with genotypes assigned to recombinant inbred (RI) strains of mice derived from resistant C57BL/6 and susceptible DBA/2 (BXD) mice on the basis of their responses to challenge infection. Thirty-six of 167 male (C57BL/6 x DBA/2)F1 x DBA/2 backcross (BC) mice died (22%), of which 27 (75%) were homozygous for DBA/2 alleles at Hc and H-2D. Twenty-eight percent of sham-castrated and 6% of sham-ovariectomized BC mice were susceptible to lethal mousepox, whereas 50% of gonadectomized mice were susceptible. There was no linkage evident between Hc or H-2D and loci that controlled resistance to lethal ectromelia virus infection in 44 castrated BC mice. Mortality among female mice of BXD RI strains with susceptible or intermediate male phenotypes was strongly correlated (r = 0.834) with male mortality. Gonadectomized C57BL/6 mice were as resistant as intact mice to lethal ectromelia virus infection. These results indicate that two gonad-dependent genes on chromosomes 2 and 17 and one gonad-independent gene control resistance to mousepox virus infection, that males and females share gonad-dependent genes, and that the gonad-independent gene is fully protective.  相似文献   

18.
Genetics of two traits, survival and brain cyst number after peroral Toxoplasma gondii infection, were studied by using recombinant inbred strains of mice derived from resistant A/J (A) and susceptible C57BL/6J (B) progenitors, F1 progeny of crosses between A/J and C57BL/6J mice, and congenic mice (B10 background). Analysis of strain distribution pattern of survival of A x B/B x A recombinant mice indicated that survival is regulated by a minimum of five genes. One of these genes appears to be linked to the H-2 complex and another is related to an as yet unmapped gene controlling resistance to Ectromelia virus. Associations of defined traits with resistance or susceptibility to Toxoplasma cyst formation were also analyzed. Cyst number is regulated by a locus on chromosome 17 within 0 to 4 centimorgans of the H-2 complex (p = 0.001). Mice with the H-2a haplotype are resistant and those with the H-2b haplotype are susceptible. This analysis also indicated that the Bcg locus on chromosome 1 may effect cyst number (map distance = 12 centimorgans, p = 0.05). Resistance to cyst formation is a dominant trait. To analyze relative roles of H-2 and Bcg loci on cyst numbers, C57BL10 (B10)-derived congenic strains of mice with known H-2 and Bcg type were studied. These studies indicated that the H-2 complex locus has the primary effect on cyst number.  相似文献   

19.
Most inbred strains of mice, including DBA/2 (D2), are highly susceptible to the lethal effects of ectromelia virus, but C57BL/6 (B6) mice are innately resistant. Resistance is controlled by multiple, unlinked, autosomal dominant genes. Of 101 male (B6 x D2)F1 x D2 backcrossed (N2) mice, 18 died after ectromelia virus challenge and all were homozygous for the D2 allele at the proline-rich protein (Prp) locus on distal chromosome 6 (P < 0.001). This association was suggested by the patterns of susceptibility to lethal mousepox in recombinant inbred strains derived from B6 and D2 mice (D. G. Brownstein, P. N. Bhatt, L. Gras, and R. O. Jacoby, J. Virol. 65:1946-1951, 1991). The association between the Prp locus and susceptibility to lethal mousepox also held for N2 male mice that were castrated as neonates, which increased the percentage that were susceptible to 40. Spleen virus titers were significantly augmented in B6 (NK1.1+) mice depleted of asialo GM1+ or NK1.1+ cells, whereas spleen virus titers were unaffected in D2 (NK1.1-) mice depleted of asialo GM1+ cells. These results suggest that a gene or genes within the natural killer gene complex, adjacent to the Prp locus, determine strain variations in resistance to lethal ectromelia virus infection.  相似文献   

20.
Autoimmune spondylitis was induced in BALB/c mice and their MHC-matched (BALB/c x DBA/2)F1 and F2 hybrids by systemic immunization with cartilage/intervertebral disk proteoglycan (PG). As in human ankylosing spondylitis, the MHC was the major permissive genetic locus in murine PG-induced spondylitis (PGIS). Two major non-MHC chromosome loci with highly significant linkage were found on chromosomes 2 (Pgis2) and 18 (Pgis1) accounting for 40% of the entire F2 trait variance. The dominant spondylitis-susceptibility allele for Pgis2 locus is derived from the BALB/c strain, whereas the Pgis1 recessive allele was present in the disease-resistant DBA/2 strain. The Pgis1 locus significantly affected the disease-controlling Pgis2 locus, inducing as high incidence of spondylitis in F2 hybrids as was found in the spondylitis-susceptible parent BALB/c strain. Additional disease-controlling loci with suggestive linkage were mapped to the chromosomes 12, 15, and 19. Severity of spondylitis in F2 mice positively correlated with serum levels of amyloid A, IL-6, and Pg-specific Abs, and showed negative correlation with Ag-induced T cell proliferation, IFN-gamma, IL-4, and TNF-alpha production. A major locus controlling serum IL-6 was found on chromosome 14 near osteoclast differentiation factor Tnfsf11. Locus on chromosome 11 near the Stat3 and Stat5 genes controlled serum level of the Ig IgG2a isotype. The two major genetic loci Pgis1 and Pgis2 of murine spondylitis were homologous to chromosome regions in human genome, which control ankylosing spondylitis in human patients. Thus, this animal model of experimentally induced spondylitis might facilitate the identification of spondylitis-susceptibility genes in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号