首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To study the function of activin E, a TGF-β superfamily member, in the regulation of affective behavior, we investigated the behavior of transgenic mice overexpressing activin E (TgActβE mice). Male TgActβE mice showed aggressive behavior in resident-intruder tests. In elevated plus-maze tests, the percentage of open arm entries was significantly increased in female TgActβE mice compared with that in wild-type mice. Furthermore, female TgActβE mice stayed in the central area for a significantly longer time than wild-type mice in open field tests. These results indicated that TgActβE mice had less anxiety-like behavior. The number of restraint-stress-evoked c-Fos-positive cells in the hypothalamic paraventricular nucleus in TgActβE mice was significantly decreased compared with that in wild-type mice. This suggests that synthesis of corticotrophin-releasing hormone induced by stress was decreased in TgActβE mice. Taking these results together, activin E may act as a regulator of the hypothalamic-pituitary-adrenal axis.  相似文献   

3.
    
Acid‐sensing ion channels (ASICs) have been implicated in fear‐, addiction‐ and depression‐related behaviors in mice. While these effects have been attributed to ASIC1A in neurons, it has been reported that ASICs may also function in nonneuronal cells. To determine if ASIC1A in neurons is indeed required, we generated neuron‐specific knockout (KO) mice with floxed Asic1a alleles disrupted by Cre recombinase driven by the neuron‐specific synapsin I promoter (SynAsic1a KO mice). We confirmed that Cre expression occurred in neurons, but not all neurons, and not in nonneuronal cells including astrocytes. Consequent loss of ASIC1A in some but not all neurons was verified by western blotting, immunohistochemistry and electrophysiology. We found ASIC1A was disrupted in fear circuit neurons, and SynAsic1a KO mice exhibited prominent deficits in multiple fear‐related behaviors including Pavlovian fear conditioning to cue and context, predator odor‐evoked freezing and freezing responses to carbon dioxide inhalation. In contrast, in the nucleus accumbens ASIC1A expression was relatively normal in SynAsic1a KO mice, and consistent with this observation, cocaine conditioned place preference (CPP) was normal. Interestingly, depression‐related behavior in the forced swim test, which has been previously linked to ASIC1A in the amygdala, was also normal. Together, these data suggest neurons are an important site of ASIC1A action in fear‐related behaviors, whereas other behaviors likely depend on ASIC1A in other neurons or cell types not targeted in SynAsic1a KO mice. These findings highlight the need for further work to discern the roles of ASICs in specific cell types and brain sites.  相似文献   

4.
Hydroxyurea, an inhibitor of ribonucleoside diphosphate reductase, completely arrested the net synthesis of DNA for 3–4 h, when it was added in 30 mM concentration to growing cultures ofEscherichia coli K12. Thereafter the net synthesis of DNA started again, although slowly, and simultaneously with it the formation of inorganic pyrophosphatase activity was stimulated leading to a 2-fold increase in the specific activity of the enzyme in 2–3 h. Subsequently cell division began again. In this way a new steady state, stable in the presence of hydroxyurea, was reached. This new state was characterized by the high specific activity of inorganic pyrophosphatase, a small but constant amount of DNA/cell mass (1/4 of the normal value), and large elongated cells. All these changes were slowly reversed during 5–6 h, when the cells were transferred into a drug-free medium.The activity of isoleucyl-tRNA synthetase, assayed as a control, did not change significantly in the presence of hydroxyurea.Hydroxyurea had no effect on the activity of inorganic pyrophosphatase in vitro.  相似文献   

5.
A series of benzothiophene methyl amines were examined in an effort to identify non-amidine chemotypes with reduced polypharmacology from existing leads with the goal of finding potent ASIC3 channel blockers to advance the therapeutic evaluation of ASIC3 inhibition.  相似文献   

6.
By controlling spike timing and sculpting neuronal rhythms, inhibitory interneurons play a key role in regulating neuronal circuits and behavior. The pronounced diversity of GABAergic (gamma-aminobutyric acid) interneurons is paralleled by an extensive diversity of GABAA receptor subtypes. The region- and domain-specific location of these receptor subtypes offers the opportunity to gain functional insights into the role of defined neuronal circuits. These developments are reviewed with regard to the regulation of sleep, anxiety, memory, sensorimotor processing and post-natal developmental plasticity.  相似文献   

7.
目的: 研究Synaptotagmin 1基因敲除(Syt1+/-)对小鼠情绪行为的影响并初步探讨其可能机制。方法: 选取8周龄雄性Syt1+/-小鼠及同窝野生型(WT)小鼠各5只,采用免疫荧光染色方法观察小鼠前额叶皮层、海马、杏仁核、伏隔核、纹状体和腹侧被盖区等6个脑区中Syt1的表达;选用8周龄雄性Syt1+/-小鼠9只,以及WT小鼠10只为对照,通过旷场实验、高架十字迷宫实验和强迫游泳实验检测比较成年Syt1+/-小鼠和WT小鼠的焦虑样行为;另选用8周龄雄性Syt1+/-小鼠及WT小鼠各5只,检测小鼠前额叶皮层、海马和杏仁核的谷氨酸含量。结果: 与WT小鼠相比,Syt1+/-小鼠在前额叶皮层、海马、杏仁核、伏隔核、纹状体和腹侧被盖区Syt1阳性细胞数目显著减少(P<0.01);Syt1+/-小鼠在旷场中总移动距离显著减少(P<0.01),并更偏爱在外周区域活动(P<0.01),对中心区域的探索欲望显著下降(P<0.01);Syt1+/-小鼠更偏好待在封闭安全环境中(P<0.01),开臂探索次数(P<0.05)和在其中运动的时间显著减少(P<0.01);Syt1+/-小鼠在强迫游泳实验中不动时间明显增加(P<0.01);同时,Syt1+/-小鼠杏仁核中谷氨酸的含量显著增加(P<0.01)。结论: Syt1基因敲除可以引起小鼠显著的焦虑样行为,推测与杏仁核中谷氨酸含量增加有关。  相似文献   

8.
From a systematic screening of animal venoms, we isolated a new toxin (APETx2) from the sea anemone Anthopleura elegantissima, which inhibits ASIC3 homomeric channels and ASIC3-containing heteromeric channels both in heterologous expression systems and in primary cultures of rat sensory neurons. APETx2 is a 42 amino-acid peptide crosslinked by three disulfide bridges, with a structural organization similar to that of other sea anemone toxins that inhibit voltage-sensitive Na+ and K+ channels. APETx2 reversibly inhibits rat ASIC3 (IC50=63 nM), without any effect on ASIC1a, ASIC1b, and ASIC2a. APETx2 directly inhibits the ASIC3 channel by acting at its external side, and it does not modify the channel unitary conductance. APETx2 also inhibits heteromeric ASIC2b+3 current (IC50=117 nM), while it has less affinity for ASIC1b+3 (IC50=0.9 microM), ASIC1a+3 (IC50=2 microM), and no effect on the ASIC2a+3 current. The ASIC3-like current in primary cultured sensory neurons is partly and reversibly inhibited by APETx2 with an IC50 of 216 nM, probably due to the mixed inhibitions of various co-expressed ASIC3-containing channels.  相似文献   

9.
The mechanisms that regulate synapse formation and maintenance are incompletely understood. In particular, relatively few inhibitors of synapse formation have been identified. Receptor protein tyrosine phosphatase σ (RPTPσ), a transmembrane tyrosine phosphatase, is widely expressed by neurons in developing and mature mammalian brain, and functions as a receptor for chondroitin sulfate proteoglycans that inhibits axon regeneration following injury. In this study, we address RPTPσ function in the mature brain. We demonstrate increased axon collateral branching in the hippocampus of RPTPσ null mice during normal aging or following chemically induced seizure, indicating that RPTPσ maintains neural circuitry by inhibiting axonal branching. Previous studies demonstrated a role for pre-synaptic RPTPσ promoting synaptic differentiation during development; however, subcellular fractionation revealed enrichment of RPTPσ in post-synaptic densities. We report that neurons lacking RPTPσ have an increased density of pre-synaptic varicosities in vitro and increased dendritic spine density and length in vivo. RPTPσ knockouts exhibit an increased frequency of miniature excitatory post-synaptic currents, and greater paired-pulse facilitation, consistent with increased synapse density but reduced synaptic efficiency. Furthermore, RPTPσ nulls exhibit reduced long-term potentiation and enhanced novel object recognition memory. We conclude that RPTPσ limits synapse number and regulates synapse structure and function in the mature CNS.  相似文献   

10.
    
Aggressive behaviors are disabling, treatment refractory, and sometimes lethal symptoms of several neuropsychiatric disorders. However, currently available treatments for patients are inadequate, and the underlying genetics and neurobiology of aggression is only beginning to be elucidated. Inbred mouse strains are useful for identifying genomic regions, and ultimately the relevant gene variants (alleles) in these regions, that affect mammalian aggressive behaviors, which, in turn, may help to identify neurobiological pathways that mediate aggression. The BALB/cJ inbred mouse strain exhibits relatively high levels of intermale aggressive behaviors and shows multiple brain and behavioral phenotypes relevant to neuropsychiatric syndromes associated with aggression. The A/J strain shows very low levels of aggression. We hypothesized that a cross between BALB/cJ and A/J inbred strains would reveal genomic loci that influence the tendency to initiate intermale aggressive behavior. To identify such loci, we conducted a genomewide scan in an F2 population of 660 male mice bred from BALB/cJ and A/J inbred mouse strains. Three significant loci on chromosomes 5, 10 and 15 that influence aggression were identified. The chromosome 5 and 15 loci are completely novel, and the chromosome 10 locus overlaps an aggression locus mapped in our previous study that used NZB/B1NJ and A/J as progenitor strains. Haplotype analysis of BALB/cJ, NZB/B1NJ and A/J strains showed three positional candidate genes in the chromosome 10 locus. Future studies involving fine genetic mapping of these loci as well as additional candidate gene analysis may lead to an improved biological understanding of mammalian aggressive behaviors.  相似文献   

11.
    
With the advent of recombinant DNA methodology, it has become possible to dissect the molecular mechanisms of complex traits, including brain function and behaviour. The increasing amount of available information on the genomes of mammalian organisms, including our own, has facilitated this research. The present review focuses on a somewhat neglected area of genetics, one that involves the study of inbred mouse strains. It is argued that the use of inbred mice is complementary to transgenic approaches in the analysis of molecular mechanisms of complex traits. Whereas transgenic technology allows one to manipulate a single gene and investigate the in vivo effects of highly specific, artificially induced mutations, the study of inbred mouse strains should shed light on the roles of naturally occurring allelic variants in brain function and behaviour. Systematic characterization of the behavioural, electrophysiological, neurochemical, and neuroanatomical properties of a large number of inbred strains is required to elucidate mechanisms of mammalian brain function and behaviour. In essence, a 'mouse phenome' project is needed, entailing the construction of databases to investigate possible causal relationships amongst the phenotypical characteristics. This review focuses on electrophysiological and behavioural characterization of mouse strains. Nevertheless, it is emphasized that the full potential of the analysis of inbred mouse strains may be attained if techniques of numerous disciplines, including gene expression profiling, biochemical analysis, and quantitative trait loci (QTL) mapping, to name but a few, are also included.  相似文献   

12.
Acid-sensing ion channels (ASICs) are cationic channels activated by extracellular acidosis that are expressed in both central and peripheral nervous systems. Although peripheral ASICs seem to be natural sensors of acidic pain (e.g., in inflammation, ischaemia, lesions or tumours), a direct demonstration is still lacking. We show that approximately 60% of rat cutaneous sensory neurons express ASIC3-like currents. Native as well as recombinant ASIC3 respond synergistically to three different inflammatory signals that are slight acidifications (approximately pH 7.0), hypertonicity and arachidonic acid (AA). Moderate pH, alone or in combination with hypertonicity and AA, increases nociceptors excitability and produces pain suppressed by the toxin APETx2, a specific blocker of ASIC3. Both APETx2 and the in vivo knockdown of ASIC3 with a specific siRNA also have potent analgesic effects against primary inflammation-induced hyperalgesia in rat. Peripheral ASIC3 channels are thus essential sensors of acidic pain and integrators of molecular signals produced during inflammation where they contribute to primary hyperalgesia.  相似文献   

13.
    
Enhancer of zeste homolog 2 (EZH2) serves as the catalytic subunit of the polycomb repression complex 2 (PRC2), which is implicated in cancer progression metastasis and poor prognosis. Based on our EZH2 inhibitor SKLB1049 with low nanomolar activity, we extended the “tail” region to get a series of (E)-1,2-diphenylethene derivatives as novel EZH2 inhibitors. SAR exploration and preliminary assessment led to the discovery of the potent novel EZH2 inhibitor 9b (EZH2WT IC50 = 22.0 nM). Compound 9b inhibited the proliferation of WSU-DLCL2 and SU-DHL-4 cell lines (IC50 = 1.61 µM and 2.34 µM, respectively). The biological evaluation showed that 9b was a potent inhibitor for wild-type EZH2 and greatly reduced the overall levels of H3K27me3 in a concentration-dependent manner. Further study indicated that 9b could significantly induce apoptosis of SU-DHL-4 cells. These findings indicated that 9b would be an attractive lead compound for further optimization and evaluation.  相似文献   

14.
Three experiments were conducted to determine (1) the pharmacodynamics of 5-hydroxytryptamine in juvenile lobsters; (2) the effects of 5-hydroxytryptamine, using a range of dosages, on a motor behavior used to escape an aversive situation; and (3) the effect of doses that did and did not inhibit this motor behavior on measures of dominance and shelter competition. The fate of 5-hydroxytryptamine in hemolymph over a 60-min post-injection period showed that the concentration fell rapidly to a low plateau that was maintained for at least 1 h. Low doses of 5-hydroxytryptamine did not affect locomotor behavior, but higher doses inhibited it. Dominance and subsequent possession of a shelter were unaffected by a low dose of 5-hydroxytryptamine but a higher dose that inhibited locomotion resulted in lobsters that lost fights and did not secure or retain possession of the shelter. In the context of dominance and shelter competition, we were unable to demonstrate any advantage of the low dose of exogenous 5-hydroxytryptamine and a severe disadvantage with the higher dose. Previous reports of transient increases in aggression in 5-hydroxytryptamine-treated subordinate lobsters did not take into account motor inhibition as a possible critical variable in aggression. Accepted: 14 April 2000  相似文献   

15.
表没食子儿茶素-3-O-(3-O-甲基)没食子酸酯(EGCG3"Me)是茶叶中最常检测到的甲基化表没食子儿茶素没食子酸酯(EGCG"Me),具有较表没食子儿茶素没食子酸酯(EGCG)更好的保健功效。本文对EGCG3"Me的理化性质、制备方法、保健功效、茶树EGCG3"Me含量影响因素、EGCG3"Me体内合成路径等国内外研究现状进行了综述,展望EGCG3"Me的体内代谢途径及其深加工产品研发将成为研究热点。  相似文献   

16.
Serotonin transporter (5-HTT) null mutant mice provide a model system to study the role genetic variation in the 5-HTT plays in the regulation of emotion. Anxiety-like behaviors were assessed in 5-HTT null mutants with the mutation placed on either a B6 congenic or a 129S6 congenic background. Replicating previous findings, B6 congenic 5-HTT null mutants exhibited increased anxiety-like behavior and reduced exploratory locomotion on the light ↔ dark exploration and elevated plus-maze tests. In contrast, 129S6 congenic 5-HTT null mutant mice showed no phenotypic abnormalities on either test. 5-HTT null mutants on the 129S6 background showed reduced 5-HT1A receptor binding (as measured by quantitative autoradiography) and reduced 5-HT1A receptor function (as measured by 8-OH-DPAT-indcued hypothermia). These data confirm that the 5-HTT null mutation produced alterations in brain 5-HT function in mice on the 129S6 background, thereby discounting the possibility that the absence of an abnormal anxiety-like phenotype in these mice was due to a suppression of the mutation by 129 modifier genes. Anxiety-like behaviors in the light ↔ dark exploration and elevated plus-maze tests were significantly higher in 129S6 congenic +/+ mice as compared to B6 congenic +/+ mice. This suggests that high baseline anxiety-like behavior in the 129S6 strain might have precluded detection of the anxiety-like effects of the 5-HTT null mutation on this background. Present findings provide further evidence linking genetic variation in the 5-HTT to abnormalities in mood and anxiety. Furthermore, these data highlight the utility of conducting behavioral phenotyping of mutant mice on multiple genetic backgrounds.  相似文献   

17.
高架十字迷宫(the elevated plus maze,EPM)是研究小鼠焦虑行为的重要实验,本文介绍了EPM的原理和实验步骤。将小鼠置于开臂闭臂接合处,面向开臂,通过录像记录分析小鼠在EPM的表现。结果发现,两种小鼠均可成功完成实验,C57小鼠在EPM内较不活跃,闭臂滞留时间占总时间百分比显著高于129Sv小鼠。应用EPM可以简单直观地分析小鼠焦虑行为。  相似文献   

18.
    
A very-low-calorie conventional Japanese diet of 370 kcal/day has been shown to be useful for weight reduction and its long-term maintenance. Sources of the diet were mainly from chicken fillet, egg white, fish white-meat, mushroom, seaweed and low-or non-calorie fiber-rich vegetable, and contained 4.4g fat, 38.1g protein, 45.2g carbohydrate and essential minerals and vitamins. However, metabolic and neural implications of a commercial very-low-calorie liquid formula diet have rarely been investigated from the view point of food intake and appetite regulation. Animal studies have demonstrated the rationale for efficacy of the very-low calorie conventional Japanese diet as follows: (1)Increased hypothalamic histamine suppressed food intake through H1-receptors in the ventromedial hypothalamus (VMH) and paraventricular nucleus, the satiety centers. (2) Low energy intake enhanced satiety and decreased food intake through histaminergic activation of VMH neurons. (3) Mastication activated afferent signal transmission from proprioceptors in the oral cavity to the mesencephalic trigeminal nucleus(Me5). Histaminergic systems in the hypothalamus were activated by mastication and low energy supply, which was accompanied by satiation through the action of histamine in the VMH. Usefulness of the very-low-calorie conventional Japanese diet derives from utilization of conventional Japanese food stuffs as a fiber rich, low energy food source, and from enhancement of satiation by increased mastication required of the diet. The properties of the diet seemed to effect a closed positive feedback loop between histaminergic activation in hypothalamic satiety centers and behavioral changes to enhance satiation and cause feeding suppression.  相似文献   

19.
  总被引:1,自引:0,他引:1  
The purpose of this study was to investigate the effects of genetic and environmental factors, as well as their interaction, in the etiology of aggressive behavior in two mouse lines bidirectionally selected for offensive aggression. To this end, we raised the Finnish TA (aggressive) and TNA (nonagressive) selection lines either in isolation or in cohabitation with a female after weaning. At the age of 3 months we determined their aggressive behavior in three paradigms (intruder resident, neutral cage, resident intruder) against a male standard opponent. We also determined the animals' aggressive behavior against a female mouse. The results show genetic and environmental effects, as well as gene–environment interaction. We see prominent genotype effects under all conditions but each test is sensitive to a specific combination of environmental effects. A particularly noteworthy result is that variation in the unusual behavior of aggression towards a female is largely explained by the interaction of genotype with isolation. We also examined whether test experience influenced the outcome of an encounter between an experimental animal and an opponent, and found that this factor should not be underestimated, its effect size and direction depending on the type of paradigm and way of housing. These data suggest that the identification of genes underlying aggressive behavior in mice is by no means straightforward and that the result of this search will depend on the environmental design of the study (type of paradigm, housing conditions). These data also suggest that the use of 'test battery' mice might produce different results than the use of test-naïve animals.  相似文献   

20.
In this study, we characterized more thoroughly the social behavior of vasopressin 1b receptor null (V1bR-/-) mice. We confirmed that V1bR-/- males exhibit less social aggression than their wild-type (V1bR+/+) littermates. We tested social preference by giving male subjects a choice between pairs of soiled or clean bedding. In general, V1bR+/+ mice spent significantly more time engaged in chemoinvestigation of these social stimuli than V1bR-/- mice. Male V1bR+/+ mice preferred female-soiled bedding over male-soiled bedding, male-soiled bedding over clean bedding, and female-soiled bedding over clean bedding. In contrast, V1bR-/- males failed to exhibit a preference for any bedding. This difference in behavior is not explained by an anosmic condition as there were no differences between V1bR-/- and V1bR+/+ mice in their abilities to detect a cookie buried in clean bedding, or in their ability to perform in an operant conditioning task using a fully automated liquid dilution olfactometer. In the latter task, male V1bR-/- mice were fully capable of discriminating between male and female mouse urine. The latencies to learn this task did not differ between the two genotypes. Thus, a V1bR-/- male's ability to differentiate between male and female chemosensory cues appears no different than that of a V1bR+/+ male's. We propose that the V1bR plays an important role in social motivation, perhaps by coupling the processing, integration, and/or interpretation of chemosensory cues with the appropriate behavioral response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号