首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mice deficient in the neural cell adhesion molecule (NCAM) show behavioral abnormalities as adults, including altered exploratory behavior, deficits in spatial learning, and increased intermale aggression. Here, we report increased anxiety‐like behavior of homozygous (NCAM−/−) and heterozygous (NCAM+/−) mutant mice in a light/dark avoidance test, independent of genetic background and gender. Anxiety‐like behavior was reduced in both NCAM+/+ and NCAM−/− mice by systemic administration of the benzodiazepine agonist diazepam and the 5‐HT1A receptor agonists buspirone and 8‐OH‐DPAT. However, NCAM−/− mice showed anxiolytic‐like effects at lower doses of buspirone and 8‐OH‐DPAT than NCAM+/+ mice. Such increased response to 5‐HT1A receptor stimulation suggests a functional change in the serotonergic system of NCAM−/− mice, likely involved in the control of anxiety and aggression. However, 5‐HT1A receptor binding and tissue content of serotonin and its metabolite 5‐hydroxyindolacetic acid were found unaltered in every brain area of NCAM−/− mice investigated, indicating that expression of 5‐HT1A receptors as well as synthesis and release of serotonin are largely unchanged in NCAM−/− mice. We hypothesize a critical involvement of endogenous NCAM in serotonergic transmission via 5‐HT1A receptors and inwardly rectifying K+ channels as the respective effector systems. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 343–355, 1999  相似文献   

2.
3.
Catalepsy (pronounced motor inhibition) is a natural defensive reaction against predator. Recently, the quantitative trait locus for catalepsy was mapped on mouse chromosome 13 near the 5-HT(1A) serotonin receptor gene. Here, the linkage between catalepsy and the 5-HT(1A) receptor gene was verified using breeding experiment. Selective breeding for high predisposition to catalepsy was started from backcross BC[CBA x (CBA x AKR)] generation between catalepsy-prone (CBA) and catalepsy-resistant (AKR) mouse strains. CBA and AKR strains also differed in the 5-HT(1A) receptor functional activity. A rapid increase of cataleptic percentage from 21.2% in the backcrosses to 71% in the third generation of selective breeding (S3) was shown. The fragment of chromosome 13 including the 5-HT(1A) receptor gene was marked with D13Mit76 microsatellite. Breeding for catalepsy increased the concentration of CBA-derived and decreased the concentration of AKR-derived alleles of microsatellite D13Mit76 in the S1 and S2. All mice of the S9 and S12 were homozygous for CBA-derived allele of D13Mit76 marker. Mice of the S12 showed CBA-like receptor activity. These findings indicate that selective breeding for behavior can involve selection of polymorphic variants of the 5-HT(1A) receptor gene.  相似文献   

4.
Alcoholism is a complex disorder involving, among others, the serotoninergic (5‐HT) system, mainly regulated by 5‐HT1A autoreceptors in the dorsal raphe nucleus. 5‐HT1A autoreceptor desensitization induced by chronic 5‐HT reuptake inactivation has been associated with a decrease in ethanol intake in mice. We investigated here whether, conversely, chronic ethanol intake could induce 5‐HT1A autoreceptor supersensitivity, thereby contributing to the maintenance of high ethanol consumption. C57BL/6J mice were subjected to a progressive ethanol intake procedure in a free‐choice paradigm (3–10% ethanol versus tap water; 21 days) and 5‐HT1A autoreceptor functional state was assessed using different approaches. Acute administration of the 5‐HT1A receptor agonist ipsapirone decreased the rate of tryptophan hydroxylation in striatum, and this effect was significantly larger (+75%) in mice that drank ethanol than in those drinking water. Furthermore, ethanol intake produced both an increased potency (+45%) of ipsapirone to inhibit the firing of 5‐HT neurons, and a raise (+35%) in 5‐HT1A autoreceptor‐mediated stimulation of [35S]GTP‐γ‐S binding in the dorsal raphe nucleus. These data showed that chronic voluntary ethanol intake in C57BL/6J mice induced 5‐HT1A autoreceptor supersensitivity, at the origin of a 5‐HT neurotransmission deficit, which might be causally related to the addictive effects of ethanol intake.  相似文献   

5.
Corticosterone plays an important role in feeding behavior. However, its mechanism remains unclear. Therefore, the present study aimed to investigate the effect of corticosterone on feeding behavior. In this study, cumulative food intake was increased by acute corticosterone administration in a dose‐dependent manner. Administration of the 5‐HT2c receptor agonist m‐chlorophenylpiperazin (mCPP) reversed the effect of corticosterone on food intake. The anorectic effects of mCPP were also blocked by the 5‐HT2c receptor antagonist RS102221 in corticosterone‐treated mice. Both corticosterone and mCPP increased c‐Fos expression in hypothalamic nuclei, but not the nucleus of the solitary tract. RS102221 inhibited c‐Fos expression induced by mCPP, but not corticosterone. In addition, mCPP had little effect on TH and POMC levels in the hypothalamus. Furthermore, mCPP antagonized decreasing effect of the leptin produced by corticosterone. Taken together, our findings suggest that 5‐HT2c receptors and leptin may be involved in the effects of corticosterone‐induced hyperphagia.  相似文献   

6.
7.
Glycoprotein gp130 is involved in the interleukin‐6 (IL‐6) and related cytokines' signaling. Linkage between the gp130 coding gene and freezing reaction (catalepsy) was shown. Here, we compared the expression and function of the gp130 in male mice of catalepsy‐resistant AKR/J strain and catalepsy‐prone congenic AKR.CBA‐D13Mit76 strain created by transferring the gp130 gene allele from catalepsy‐prone CBA/Lac to the genome of AKR/J strain. No difference in the gp130 expression in the frontal cortex, hippocampus and midbrain between AKR and AKR.CBA‐D13Mit76 mice was found. However, AKR.CBA‐D13Mit76 mice were more sensitive to bacterial lipopolysaccharide (LPS). The administration of LPS (50 µg/kg, ip) significantly increased mRNA level of the gene coding IL‐6‐regulated glial fibrillary acidic protein (GFAP) in the midbrain, induced catalepsy and decreased locomotion in the open field and social investigation tests in AKR.CBA‐D13Mit76, but not in AKR mice. The result indicates (1) the association between gp130 and hereditary catalepsy, (2) increased functional activity rather than expression of gp130 in AKR.CBA‐D13Mit76 mice and (3) the involvement of gp130 in the mechanism of LPS‐induced alteration of behavior.  相似文献   

8.
G protein‐coupled receptors (GPCRs) have been found to trigger G protein‐independent signalling. However, the regulation of G protein‐independent pathways, especially their desensitization, is poorly characterized. Here, we show that the G protein‐independent 5‐HT4 receptor (5‐HT4R)‐operated Src/ERK (extracellular signal‐regulated kinase) pathway, but not the Gs pathway, is inhibited by GPCR kinase 5 (GRK5), physically associated with the proximal region of receptor’ C‐terminus in both human embryonic kidney (HEK)‐293 cells and colliculi neurons. This inhibition required two sequences of events: the association of β–arrestin1 to a phosphorylated serine/threonine cluster located within the receptor C‐t domain and the phosphorylation, by GRK5, of β–arrestin1 (at Ser412) bound to the receptor. Phosphorylated β‐arrestin1 in turn prevented activation of Src constitutively bound to 5‐HT4Rs, a necessary step in receptor‐stimulated ERK signalling. This is the first demonstration that β‐arrestin1 phosphorylation by GRK5 regulates G protein‐independent signalling.  相似文献   

9.
The 5‐hydroxytryptamine 1A receptor (serotonin 1A receptor; 5‐HT1AR) is involved in a large series of brain functions, and roles in anxiety, depression, and cognition have been reported. So far, published information on mass spectrometrical characterization of 5‐HT1AR is limited to the presence of two 5‐HT1AR peptides in rat's whole brain as observed by in‐solution digestion followed by LC‐MS/MS. Knowledge about the protein sequence and PTMs, however, would have implications for generation of specific antibodies and designing studies on the 5‐HT1AR at the protein level. A rat recombinant 5‐HT1AR was extracted from the tsA201 cell line, run using several gel‐based principles with subsequent in‐gel digestion with several proteases, chymotrypsin, trypsin, AspN, proteinase K, and pepsin followed by nano‐LC‐ESI‐MS/MS analysis on a high capacity ion trap and an LTQ Orbitrap Velos. Using two search engines, Mascot and Modiro?, the recombinant 5‐HT1AR was identified showing 94.55% sequence coverage. A single phosphorylation at S301 was identified and verified by phosphatase treatment and a series of amino acid substitutions were detected. Characterization of 5‐HT1AR, a key player of brain functions and neurotransmission, was shown and may enable generation of specific antibodies, design of future, and interpretation of previous studies in the rat at the protein level.  相似文献   

10.
The nucleus accumbens (NAc) is a crucial forebrain nucleus implicated in reward‐based decision‐making. While NAc neurons are richly innervated by serotonergic fibers, information on the functional role of serotonin 5‐hydroxytryptamine (5‐HT) in the NAc is still sparse. Here, we demonstrate that brief application of 5‐HT or 5‐HT1B receptor agonist CP 93129 induced a long‐term depression (LTD) of glutamatergic transmission in NAc neurons. This LTD was presynaptically mediated and inducible by endogenous 5‐HT. Remarkably, a single cocaine exposure impaired the induction of LTD by 5‐HT or CP 93129. The inhibition was blocked when a selective dopamine D1 receptor antagonist SCH23390 was coadministered with cocaine. Cocaine treatment resulted in increased phosphorylation of presynaptic proteins, rabphilin 3A and synapsin 1, and significantly attenuated CP 93129‐induced decrease in rabphilin 3A and synapsin 1 phosphorylation. Application of cAMP‐dependent protein kinase inhibitor KT5720 caused a prominent synaptic depression in NAc neurons of mice with a history of cocaine exposure. Our results reveal a novel 5‐HT1B receptor‐mediated LTD in the NAc and suggest that cocaine exposure may result in elevated phosphorylation of presynaptic proteins involved in regulating glutamate release, which counteracts the presynaptic depressant effects of 5‐HT1B receptors and thereby impairs the induction of LTD by 5‐HT.  相似文献   

11.
Serotonin (5‐HT)2C receptors play a role in psychoaffective disorders and often contribute to the antidepressant and anxiolytic effects of psychotropic drugs. During stress, activation of these receptors exerts a negative feedback on 5‐HT release, probably by increasing the activity of GABAergic interneurons. However, to date, the GABA receptor types that mediate the 5‐HT2C receptor‐induced feedback inhibition are still unknown. To address this question, we assessed the inhibition of 5‐HT turnover by a 5‐HT2C receptor agonist (RO 60‐0175) at the hippocampal level and under conditions of stress, after pharmacological or genetic inactivation of either GABA‐A or GABA‐B receptors in mice. Neither the GABA‐B receptor antagonist phaclofen nor the specific genetic ablation of either GABA‐B1a or GABA‐B1b subunits altered the inhibitory effect of RO 60‐0175, although 5‐HT turnover was markedly decreased in GABA‐B1a knock‐out mice in both basal and stress conditions. In contrast, the 5‐HT2C receptor‐mediated inhibition of 5‐HT turnover was reduced by the GABA‐A receptor antagonist bicuculline. However, a significant effect of 5‐HT2C receptor activation persisted in mutant mice deficient in the α3 subunit of GABA‐A receptors. It can be inferred that non‐α3 subunit‐containing GABA‐A receptors, but not GABA‐B receptors, mediate the 5‐HT2C‐induced inhibition of stress‐induced increase in hippocampal 5‐HT turnover in mice.

  相似文献   


12.
The serotonin 5‐HT4 receptor (5‐HT4‐R) is an unusually complex G‐protein coupled receptor that is likely to play important roles in brain development and that may underlie the comorbidity of central and peripheral abnormalities in some developmental disorders. We studied the expression of 5‐HT4‐Rs in the developing mouse forebrain at embryonic days 13, 15, 17, and at postnatal days 3 and 14 by using immunohistochemistry, tract tracing, and quantitative RT‐PCR. The developing thalamocortical projections transiently expressed 5‐HT4‐Rs in the embryonic brain and the 5‐HT4‐R expression in the forebrain changed from axonal to somatic around birth. From embryonic days 13–17, the forebrain mRNA levels of the 5‐HT4(a)‐R and 5‐HT4(b)‐R splice variants increased nine‐ and fivefold, respectively, whereas the levels of the 5‐HT4(e)‐R and 5‐HT4(f)‐R variants remained relatively low throughout the studied period of embryonic development. These results suggest that during development 5‐HT4‐R expression undergoes a dynamic regulation and that this regulation may be important for the normal development of sensory and limbic processing. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2010.  相似文献   

13.
BDNF is thought to provide critical trophic support for serotonin neurons. In order to determine postnatal effects of BDNF on the serotonin system, we examined a line of conditional mutant mice that have normal brain content of BDNF during prenatal development but later depletion of this neurotrophin in the postnatal period. These mice show a behavioral phenotype that suggests serotonin dysregulation. However, as shown here, the presynaptic serotonin system in the adult conditional mutant mice appeared surprisingly normal from histological, biochemical, and electrophysiological perspectives. By contrast, a dramatic and unexpected postsynaptic 5‐HT2A deficit in the mutant mice was found. Electrophysiologically, serotonin neurons appeared near normal except, most notably, for an almost complete absence of expected 5‐HT2A‐mediated glutamate and GABA postsynaptic potentials normally displayed by these neurons. Further analysis showed that BDNF mutants had much reduced 5‐HT2A receptor protein in dorsal raphe nucleus and a similar deficit in prefrontal cortex, a region that normally shows a high level of 5‐HT2A receptor expression. Recordings in prefrontal slice showed a marked deficit in 5‐HT2A‐mediated excitatory postsynaptic currents, similar to that seen in the dorsal raphe. These findings suggest that postnatal levels of BDNF play a relatively limited role in maintaining presynaptic aspects of the serotonin system and a much greater role in maintaining postsynaptic 5‐HT2A and possibly other receptors than previously suspected. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

14.
Agonists at G‐protein‐coupled receptors in neurons of the dorsal raphe nucleus (DRN) of knock‐out mice devoid of the serotonin transporter (5‐HTT?/?) exhibit lower efficacy to inhibit cellular discharge than in wild‐type counterparts. Using patch‐clamp whole‐cell recordings, we found that a G‐protein‐gated inwardly rectifying potassium (GIRK) current is involved in the inhibition of spike discharge induced by 5‐HT1A agonists (5‐carboxamidotryptamine (5‐CT) and (±)‐2‐dipropylamino‐8‐hydroxy‐1,2,3,4‐tetrahydronaphthalene hydrobromide (8‐OH‐DPAT); 50 nM–30 μM) in both wild‐type and 5‐HTT?/? female and male mice. These effects were mimicked by 5′‐guanylyl‐imido‐diphosphate (Gpp(NH)p; 400 μM) dialysis into cells with differences between genders. The 5‐HTT?/? knock‐out mutation reduced the current density induced by Gpp(NH)p in females but not in males. These data suggest that the decreased response of 5‐HT1A receptors to agonists in 5‐HTT?/? mutants reflects notably alteration in the coupling between G‐proteins and GIRK channels in females but not in males. Accordingly, gender differences in central 5‐HT neurotransmission appear to depend—at least in part—on sex‐related variations in corresponding receptor‐G protein signaling mechanisms. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

15.
Four known alkyl 4‐hydroxybenzoates, i.e., methyl 4‐hydroxybenzoate ( 1 ), ethyl 4‐hydroxybenzoate ( 2 ), propyl 4‐hydroxybenzoate ( 3 ), and butyl 4‐hydroxybenzoate ( 4 ), were isolated from the seeds of Nelumbo nucifera Gaertner (Nymphaeaceae) for the first time. The structures of the isolates were identified by 1D‐ and 2D‐NMR spectroscopy and comparison with published values. The compounds were evaluated for their effects on the 5‐HT‐stimulated inward current (I5‐HT) mediated by the human 5‐HT3A receptors expressed in Xenopus oocytes. Compounds 1 and 2 enhanced the I5‐HT, but 4 reduced it. These results indicate that 4 is an inhibitor of the 5‐HT3A receptors expressed in Xenopus oocytes.  相似文献   

16.
Serotonin1A receptor (5‐HT1AR) deficiency has been associated with anxiety and depression and mice with genetic receptor inactivation exhibit heightened anxiety. We have reported that 5‐HT1AR is not only a genetic but also a maternal ‘environmental’ factor in the development of anxiety in Swiss‐Webster mice. Here, we tested whether the emergence of maternal genotype‐dependent adult anxiety is preceded by early behavioral abnormalities or whether it is manifested following a normal emotional development. Pups born to null or heterozygote mothers had significantly reduced ultrasonic vocalization (USV) between postnatal day (P) 4 and 12, indicating an influence of the maternal genotype. The offspring's own genotype had an effect limited to P4. Furthermore, we observed reduced weight gain in the null offspring of null but not heterozygote mothers, indicating that a complete maternal receptor deficiency compromises physical development of the offspring. Except a short perinatal deficit during the dark period, heterozygote females displayed normal maternal behavior, which, with the early appearance of USV deficit, suggests a role for 5‐HT1AR during pre‐/perinatal development. Consistent with this notion, adult anxiety in the offspring is determined during the pre‐/perinatal period. In contrast to heterozygote females, null mothers exhibited impaired pup retrieval and nest building that may explain the reduced weight gain of their offspring. Taken together, our data indicate an important role for the maternal 5‐HT1AR in regulating emotional and physical development of their offspring. Because reduced receptor binding has been reported in depression, including postpartum depression, reduced 5‐HT1AR function in mothers may influence the emotional development of their offspring.  相似文献   

17.
18.
Glycoprotein gp130 is involved in signal transduction from the receptors of such important cytokines as interleukin-6 (IL-6), leukemia inhibitory factor, and ciliary neurotrophic factor, which play a critical role in immunity, inflammation, and neurogenesis. Both IL-6 and the brain neurotransmitter serotonin are involved in the mechanism of depression. The aim of this work was to investigate the role of gp130 in regulating the gene expression of the tryptophan hydroxylase 2 (TPH2), the key enzyme of the serotonin synthesis, as well as of the 5-HT transporter and the 5-HT1A and 5-HT2A receptors. The study was carried out on adult male mice of the congenic strains AKR and AKR.CBA-D13Mit76; the latter was created by transferring a gp130-containing fragment of chromosome 13 from the CBA/Lac strain into the AKR/J genome. The expression of 5-HT1A and 5-HT2A receptor genes in the hippocampus and midbrain and of the TPH2 gene in the midbrain was decreased in AKR.CBA-D13Mit76 mice in comparison to AKR mice. Activation of nonspecific immunity by administration of a bacterial endotoxin lipopolysaccharide did not affect the gene expression in AKR mice but increased the 5-HT2A receptor expression in the midbrain and decreased the 5-HT1A receptor expression in the cortex in AKR.CBA-D13Mit76 mice. These results suggest that gp130 is involved in the regulation of TPH2, 5-HT1A and 5-HT2A receptor genes and is associated with the genetically determined sensitivity to lipopolysaccharides.  相似文献   

19.
G protein‐coupled receptors (GPCR) exhibit the ability to form receptor complexes that include molecularly different GPCR (ie, GPCR heteromers), which endow them with singular functional and pharmacological characteristics. The relative expression of GPCR heteromers remains a matter of intense debate. Recent studies support that adenosine A2A receptors (A2AR) and dopamine D2 receptors (D2R) predominantly form A2AR‐D2R heteromers in the striatum. The aim of the present study was evaluating the behavioral effects of pharmacological manipulation and genetic blockade of A2AR and D2R within the frame of such a predominant striatal heteromeric population. First, in order to avoid possible strain‐related differences, a new D2R‐deficient mouse with the same genetic background (CD‐1) than the A2AR knock‐out mouse was generated. Locomotor activity, pre‐pulse inhibition (PPI) and drug‐induced catalepsy were then evaluated in wild‐type, A2AR and D2R knock‐out mice, with and without the concomitant administration of either the D2R agonist sumanirole or the A2AR antagonist SCH442416. SCH442416‐mediated locomotor effects were demonstrated to be dependent on D2R signaling. Similarly, a significant dependence on A2AR signaling was observed for PPI and for haloperidol‐induced catalepsy. The results could be explained by the existence of one main population of striatal postsynaptic A2AR‐D2R heteromers, which may constitute a relevant target for the treatment of Parkinson's disease and other neuropsychiatric disorders.  相似文献   

20.
Kiss1, a neuropeptide predominantly expressed in the habenula, modulates the serotonin (5‐HT) system to decrease odorant cue [alarm substance (AS)]‐evoked fear behaviour in the zebrafish. The purpose of this study was to assess the interaction of Kiss1 with the 5‐HT system as well as to determine the involvement of the 5‐HT receptor subtypes in AS‐evoked fear. We utilized 0. 28 mg/kg WAY 100635 (WAY), a selective 5‐HT1A receptor antagonist, to observe the effects of Kiss1 administration on AS‐evoked fear. We found WAY significantly inhibited the anxiolytic effects of Kiss1 (< 0.001) with an exception of freezing behaviour. Based on this, we utilized 92.79 mg/kg methysergide, a 5‐HT1 and 5‐HT2 receptor antagonist, and found that methysergide significantly blocked the anxiolytic effects of Kiss1 in the presence of the AS (< 0.001). From this, we conclude that Kiss1 modulates AS‐evoked fear responses mediated by the 5‐HT1A and 5‐HT2 receptors.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号