首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.

Background

During cell-cycle progression, substrates of a single master regulatory enzyme can be modified in a specific order. Here, we used experimental and computational approaches to dissect the quantitative mechanisms underlying the ordered degradation of the substrates of the ubiquitin ligase APC/CCdc20, a key regulator of chromosome segregation in mitosis.

Results

We show experimentally that the rate of catalysis varies with different substrates of APC/CCdc20. Using a computational model based on multi-step ubiquitination, we then show how changes in the interaction between a single substrate and APC/CCdc20 can alter the timing of degradation onset relative to APC/CCdc20 activation, while ensuring a fast degradation rate. Degradation timing and dynamics depend on substrate affinity for the enzyme as well as the catalytic rate at which the substrate is modified. When two substrates share the same pool of APC/CCdc20, their relative enzyme affinities and rates of catalysis influence the partitioning of APC/CCdc20 among substrates, resulting in substrate competition. Depending on how APC/CCdc20 is partitioned among its substrates, competition can have minor or major effects on the degradation of certain substrates. We show experimentally that increased expression of the early APC/CCdc20 substrate Clb5 does not delay the degradation of the later substrate securin, arguing against a role for competition with Clb5 in establishing securin degradation timing.

Conclusions

The degradation timing of APC/CCdc20 substrates depends on the multi-step nature of ubiquitination, differences in substrate-APC/CCdc20 interactions, and competition among substrates. Our studies provide a conceptual framework for understanding how ordered modification can be established among substrates of the same regulatory enzyme, and facilitate our understanding of how precise temporal control is achieved by a small number of master regulators to ensure a successful cell division cycle.
  相似文献   

2.
The execution of meiotic divisions in Saccharomyces cerevisiae is regulated by anaphase-promoting complex/cyclosome (APC/C)-mediated protein degradation. During meiosis, the APC/C is activated by association with Cdc20p or the meiosis-specific activator Ama1p. We present evidence that, as cells exit from meiosis II, APC/C(Ama1) mediates Cdc20p destruction. APC/C(Ama1) recognizes two degrons on Cdc20p, the destruction box and destruction degron, with either domain being sufficient to mediate Cdc20p destruction. Cdc20p does not need to associate with the APC/C to bind Ama1p or be destroyed. Coimmunoprecipitation analyses showed that the diverged amino-terminal region of Ama1p recognizes both Cdc20p and Clb1p, a previously identified substrate of APC/C(Ama1). Domain swap experiments revealed that the C-terminal WD region of Cdh1p, when fused to the N-terminal region of Ama1p, could direct most of Ama1p functions, although at a reduced level. In addition, this fusion protein cannot complement the spore wall defect in ama1Δ strains, indicating that substrate specificity is also derived from the WD repeat domain. These findings provide a mechanism to temporally down-regulate APC/C(Cdc20) activity as the cells complete meiosis II and form spores.  相似文献   

3.

Background

Failure to regulate the levels of Cdc25A phosphatase during the cell cycle or during a checkpoint response causes bypass of DNA damage and replication checkpoints resulting in genomic instability and cancer. During G1 and S and in cellular response to DNA damage, Cdc25A is targeted for degradation through the Skp1-cullin-β-TrCP (SCFβ-TrCP) complex. This complex binds to the Cdc25A DSG motif which contains serine residues at positions 82 and 88. Phosphorylation of one or both residues is necessary for the binding and degradation to occur.

Results

We now show that mutation of serine 88 to phenylalanine, which is a cancer-predisposing polymorphic variant in humans, leads to early embryonic lethality in mice. The mutant protein retains its phosphatase activity both in vitro and in cultured cells. It fails to interact with the apoptosis signal-regulating kinase 1 (ASK1), however, and therefore does not suppress ASK1-mediated apoptosis.

Conclusions

These data suggest that the DSG motif, in addition to its function in Cdc25A-mediated degradation, plays a role in cell survival during early embyogenesis through suppression of ASK1-mediated apoptosis.
  相似文献   

4.
The mechanisms that control E2F-1 activity are complex. We previously showed that Chk1 and Chk2 are required for E2F1 stabilization and p73 target gene induction following DNA damage. To gain further insight into the processes regulating E2F1 protein stability, we focused our investigation on the mechanisms responsible for regulating E2F1 turnover. Here we show that E2F1 is a substrate of the anaphase-promoting complex or cyclosome (APC/C), a ubiquitin ligase that plays an important role in cell cycle progression. Ectopic expression of the APC/C activators Cdh1 and Cdc20 reduced the levels of co-expressed E2F-1 protein. Co-expression of DP1 with E2F1 blocked APC/C-induced E2F1 degradation, suggesting that the E2F1/DP1 heterodimer is protected from APC/C regulation. Following Cdc20 knockdown, E2F1 levels increased and remained stable in extracts over a time course, indicating that APC/CCdc20 is a primary regulator of E2F1 stability in vivo. Moreover, cell synchronization experiments showed that siRNA directed against Cdc20 induced an accumulation of E2F1 protein in prometaphase cells. These data suggest that APC/CCdc20 specifically targets E2F1 for degradation in early mitosis and reveal a novel mechanism for limiting free E2F1 levels in cells, failure of which may compromise cell survival and/or homeostasis.Key words: cell cycle, ubiquitination, E2F1, APC/C, Cdc20, Cdh1  相似文献   

5.

Introduction

Boiling ethanol extraction is a frequently used method for metabolomics studies of biological samples. However, the stability of several central carbon metabolites, including nucleotide triphosphates, and the influence of the cellular matrix on their degradation have not been addressed.

Objectives

To study how a complex cellular matrix extracted from yeast (Saccharomyces cerevisiae) may affect the degradation profiles of nucleotide triphosphates extracted under boiling ethanol conditions.

Methods

We present a double-labelling LC–MS approach with a 13C-labeled yeast cellular extract as complex surrogate matrix, and 13C15N-labeled nucleotides as internal standards, to study the effect of the yeast matrix on the degradation of nucleotide triphosphates.

Results

While nucleotide triphosphates were degraded to the corresponding diphosphates in pure solutions, degradation was prevented in the presence of the yeast matrix under typical boiling ethanol extraction conditions.

Conclusions

Extraction of biological samples under boiling ethanol extraction conditions that rapidly inactivate enzyme activity are suitable for labile central energy metabolites such as nucleotide triphosphates due to the stabilizing effect of the yeast matrix. The basis of this phenomenon requires further study.

Graphical abstract

  相似文献   

6.

Background

Gestational trophoblastic disease (GTD) is a heterogeneous group of disorders characterized by abnormal trophoblast tissue. Molar and non-molar hydropic placental changes are the most common forms of GTD. Differential diagnosis of GTD is sometimes problematic. Recently, p53 expression was identified as a good marker for distinguishing GTD types.

Aims

Comparison of p53 expression in partial hydatidiform mole (PHM) and hydropic abortion.

Methods

In this prospective cross-sectional study, molar and non-molar hydropic pregnancy specimens were collected. Immunohistochemical staining, based on the Labeled Streptavidin Biotin (LSAB) technique, was carried out on multiple 4 mm paraffin block sections prepared from formalin-fixed trophoblastic tissues. Polymer-based Envision was used to assess p53 tumor suppressor protein immunoreactivity. p53 expression was then compared between both groups.

Results

In the study, 40 patients were included: 20 with confirmed PHM and 20 with hydropic pregnancy. p53 protein was positive in 60% of patients with PHM and 25% of patients with hydropic pregnancy. The p53 positive rate was significantly higher in patients with PHM (p = 0.027). Moreover, patients with PHM had a significantly high grade of staining (p<0.001).

Conclusion

Our findings indicate that immunohistochemical analysis of p53 protein can be used to distinguish PHM and hydropic pregnancy.
  相似文献   

7.
8.

Background

α-Santalol, an active component of sandalwood oil, has shown chemopreventive effects on skin cancer in different murine models. However, effects of α-santalol on cell cycle have not been studied. Thus, the objective of this study was to investigate effects of α-santalol on cell cycle progression in both p53 mutated human epidermoid carcinoma A431 cells and p53 wild-type human melanoma UACC-62 cells to elucidate the mechanism(s) of action.

Methods

MTT assay was used to determine cell viability in A431 cells and UACC-62; fluorescence-activated cell sorting (FACS) analysis of propidium iodide staining was used for determining cell cycle distribution in A431 cells and UACC-62 cells; immunoblotting was used for determining the expression of various proteins and protein complexes involved in the cell cycle progression; siRNA were used to knockdown of p21 or p53 in A431 and UACC-62 cells and immunofluorescence microscopy was used to investigate microtubules in UACC-62 cells.

Results

α-Santalol at 50-100 μM decreased cell viability from 24 h treatment and α-santalol at 50 μM-75 μM induced G2/M phase cell cycle arrest from 6 h treatment in both A431 and UACC-62 cells. α-Santalol altered expressions of cell cycle proteins such as cyclin A, cyclin B1, Cdc2, Cdc25c, p-Cdc25c and Cdk2. All of these proteins are critical for G2/M transition. α-Santalol treatment up-regulated the expression of p21 and suppressed expressions of mutated p53 in A431 cells; whereas, α-santalol treatment increased expressions of wild-type p53 in UACC-62 cells. Knockdown of p21 in A431 cells, knockdown of p21 and p53 in UACC-62 cells did not affect cell cycle arrest caused by α-santalol. Furthermore, α-santalol caused depolymerization of microtubules similar to vinblastine in UACC-62 cells.

Conclusions

This study for the first time identifies effects of α-santalol in G2/M phase arrest and describes detailed mechanisms of G2/M phase arrest by this agent, which might be contributing to its overall cancer preventive efficacy in various mouse skin cancer models.
  相似文献   

9.

Background

The phosphoinositide 3-kinase (PI3K)/Akt pathway is involved in neuroblastoma development where Akt/PKB activation is associated with poor prognosis. PI3K activity subsequently activates Akt/PKB, and as mutations of PI3K are rare in neuroblastoma and high levels of PI3K subunit p110delta is associated with favorable disease with low p-Akt/PKB, the levels of other PI3K subunits could be important for Akt activation.

Methods

Protein levels of Type IA PI3K catalytic and regulatory subunits were investigated together with levels of phosphorylated Akt/PKB and the PI3K negative regulator PTEN in primary neuroblastoma tumors. Relation between clinical markers and protein levels were evaluated through t-tests.

Results

We found high levels of p-Akt/PKB correlating to aggressive disease and p-Akt/PKB (T308) showed inverse correlation to PTEN levels. The regulatory isomers p55alpha/p50alpha showed higher levels in favorable neuroblastoma as compared with aggressive neuroblastoma. The PI3K-subunit p110alpha was found mainly in advanced tumors while p110delta showed higher levels in favorable neuroblastoma.

Conclusions

Activation of the PI3K/Akt pathway is seen in neuroblastoma tumors, however the contribution of the different PI3K isoforms is unknown. Here we show that p110alpha is preferentially expressed in aggressive neuroblastomas, with high p-Akt/PKB and p110delta is mainly detected in favorable neuroblastomas, with low p-Akt/PKB. This is an important finding as PI3K-specific inhibitors are suggested for enrollment in treatment of neuroblastoma patients.
  相似文献   

10.
In many eukaryotes, disruption of the spindle checkpoint protein Mad2 results in an increase in meiosis I nondisjunction, suggesting that Mad2 has a conserved role in ensuring faithful chromosome segregation in meiosis. To characterize the meiotic function of Mad2, we analyzed individual budding yeast cells undergoing meiosis. We find that Mad2 sets the duration of meiosis I by regulating the activity of APC(Cdc20). In the absence of Mad2, most cells undergo both meiotic divisions, but securin, a substrate of the APC/C, is degraded prematurely, and prometaphase I/metaphase I is accelerated. Some mad2Δ cells have a misregulation of meiotic cell cycle events and undergo a single aberrant division in which sister chromatids separate. In these cells, both APC(Cdc20) and APC(Ama1) are prematurely active, and meiosis I and meiosis II events occur in a single meiotic division. We show that Mad2 indirectly regulates APC(Ama1) activity by decreasing APC(Cdc20) activity. We propose that Mad2 is an important meiotic cell cycle regulator that ensures the timely degradation of APC/C substrates and the proper orchestration of the meiotic divisions.  相似文献   

11.
12.

Aim

This study was conducted to answer the question of whether clover can absorb asparagine in the presence and absence of inorganic nitrogen, as well as to determine the resulting concentration of post-uptake compounds closely involved in asparagine metabolism.

Methods

Clover was grown at two asparagine concentrations (10 μM and 1 mM) supplied in both the absence and presence of ammonium nitrate. Using dual-labeled 13C15N-asparagine, the uptake rate was analyzed via bulk 15N and 13C excess and the detection of intact 13C15N-asparagine in white clover.

Results

The results from the two methods indicated greater utilization of 13C15N-asparagine in the 10 μM treatment than in the 1 mM treatment. The 13C15N-asparagine uptake rate was higher when 13C15N-asparagine was provided alone than when it was supplemented with inorganic nitrogen. Up to nine times lower uptake rates were obtained when intact 13C15N-asparagine was measured than when bulk 15N and 13C excess were analyzed. The labeled amino acids that are closely related to 13C15N-asparagine metabolism (aspartic acid, glutamic acid and glutamine) were detected in clover roots and shoots.

Conclusions

Using two different methods, white clover’s potential to absorb intact asparagine, even in the presence of inorganic nitrogen, was confirmed. The dual-methodology approach employed in this study demonstrates how the post-uptake metabolism can affect quantification of amino acid uptake.
  相似文献   

13.

Objectives

To investigate the final product of the bioconversion of lutein by a novel lutein-degrading bacterium, Enterobacter hormaechei A20, and the kinetics of the process.

Results

A new product, 8-methyl-α-ionone, was resolved by GC–MS. The compound was further identified by NMR. A conversion yield of 90% was achieved by E. hormaechei in 36 h with 10 g lutein l?1.

Conclusions

This is the first report of the bioconversion of lutein to form 8-methyl-α-ionone. A degradation pathway is proposed.
  相似文献   

14.

Objectives

To investigate the biological functions of microRNA-144-3p with respect to proliferation and apoptosis of human salivary adenoid carcinoma cell lines via mTOR.

Results

After transfection of microRNA-144-3p agomir, cell viability assays confirmed that the salivary adenoid carcinoma cell (SACC) proliferation was inhibited and apoptosis was induced. Dual luciferase reporter assay validated that the mammalian target of rapamycin (mTOR) was a direct target of miR-144-3p. Western blot, immunofluorescent analysis and a xenograft mouse model of adenoid cystic carcinoma indicated that miR-144-3p was a tumor suppressor and repressed mTOR expression and signaling in SACCs.

Conclusions

MicroRNA-144-3p inhibits proliferation and induces apoptosis of human salivary adenoid carcinoma cells by downregulating mTOR expression in vitro and in vivo.
  相似文献   

15.

Objectives

To explore the roles of miR-130b-3p and miR-301b-3p which may regulate Rb1-inducible coiled-coil 1 (Rb1cc1) expression during myogenic differentiation of chicken primary myoblasts.

Results

After 4 days of myogenic differentiation, myotubes appeared and after 6 days the cells fused to each other and expression of MyHC could be detected by immunofluorescence staining. TargetScan and RNAhybrid 2.2 showed miR-130b-3p and miR-301b-3p were well complementary with the target site of Rb1cc1 3′-untranslated region (3′-UTR). Using the dual-luciferase assay, we found miR-130b-3p and miR-301b-3p could inhibit Rb1cc1 expression by binding to its 3′-UTR. Real-time PCR showed Rb1cc1 mRNA expression level was almost reciprocal to that of miR-130b-3p or miR-301b-3p during myogenic differentiation. Furthermore, over-expression of miR-130b-3p or miR-301b-3p down-regulated the expression levels of Rb1cc1, myoblast determination protein, myogenin and myosin heavy chain.

Conclusions

miR-130b-3p or miR-301b-3p negatively regulate Rb1cc1 expression to affect myogenic differentiation.
  相似文献   

16.

Introduction

Loquat leaf extract (LLE) is a mixture rich in terpenoids, and has broad biological activities including the inhibition of cancer cell growth. The exact metabolic mechanism of this growth inhibiting effect is not known.

Objectives

We investigated the cellular metabolic effect of LLE, and ursolic acid (UA) on pancreatic cancer cells using a 13C carbon tracing technology.

Methods

MIA PaCa-2 cells were cultured in medium containing [1, 2 13C2]-glucose in the presence of either LLE (50 µg/ml), UA (50 µM), or metformin (1 mM). The mass isotopomer distribution of glucose, lactate, ribose, glutamate and palmitate in medium was determined. Based on the mass isotopomer distribution in metabolites we were able to determine individual 13C enrichment (∑M?×?n) and the minimum fraction of new synthesis?(1-M0) in each metabolite. Several flux ratios of energy metabolic pathways were calculated from the mass isotopomer ratios of these metabolites.

Results

We found that tumor viability was suppressed by LLE and UA in a dose dependent manner, and the tumor-inhibiting effect was associated with the changes in oxidative/non-oxidative pentose (Ox/Non-ox) and pyruvate dehydrogenase/isocitrate dehydrogenase (PDH/ICDH) flux ratios resulting in decreased new syntheses of ribose and fatty acids.

Conclusion

Metabolic homeostasis (balance of fluxes) in cancer cells is maintained through the regulation of metabolic fluxes by oncogenes and tumor-suppressor genes. Treatment of MIA PaCa-2 cells by LLE, UA and metformin likely altered key metabolic flux ratios affecting metabolic homeostasis required for energy and macromolecular production in tumor growth.
  相似文献   

17.

Objective

To produce a therapeutic protein (endostatin) by fusion with two fragments of the carboxyl-terminal peptide (CTP) of the human chorionic gonadotropin β-subunit in Pichia pastoris.

Results

Two CTP sequences were fused to the C-terminal of human endostatin, and the fusion protein (endo-CTP) was expressed by P. pastoris. Endo-CTP inhibited proliferation of endothelial cells with an IC50 of 7 μg ml?1, and 30 % of cells were annexin V-positive after treatment with 20 μg endo-CTP ml?1 for 48 h. Migration of endothelial cells was inhibited by endo-CTP in a concentration-dependent manner. The half-life of endo-CTP in Sprague–Dawley rats was much longer than that of its commercial counterpart (Endostar).

Conclusion

A long-acting endostatin can be produced using CTP technology.
  相似文献   

18.

Objectives

To improve rhamnolipid production and its potential application in removal of crude oil, the recombinant Pseudomonas aeruginosa strain DAB was constructed to enhance yield of rhamnolipids.

Results

Strain DAB had a higher yield of 17.3 g rhamnolipids l?1 in the removal process with crude oil as the sole carbon source than 10 g rhamnolipids l?1 of wild-type strain DN1, where 1% crude oil was degraded more than 95% after 14 days cultivation. These rhamnolipids reduced the surface tension of water from 72.92 to 26.15 mN m?1 with CMC of 90 mg l?1. The predominant rhamnolipid congeners were Rha–C10–C10 and Rha–Rha–C10–C10 detected by MALDI-TOF MS analysis with approx. 70% relative abundance, although a total of 21 rhamnolipid congeners were accumulated.

Conclusion

Increasing the copy number of rhlAB genes efficiently enhanced the production of rhamnolipids by the recombinant P. aeruginosa DAB and thus presents a promising application for the bioremediation process.
  相似文献   

19.

Introduction

Gemcitabine is an important component of pancreatic cancer clinical management. Unfortunately, acquired gemcitabine resistance is widespread and there are limitations to predicting and monitoring therapeutic outcomes.

Objective

To investigate the potential of metabolomics to differentiate pancreatic cancer cells that develops resistance or respond to gemcitabine treatment.

Results

We applied 1D 1H and 2D 1H–13C HSQC NMR methods to profile the metabolic signature of pancreatic cancer cells. 13C6-glucose labeling identified 30 key metabolites uniquely altered between wild-type and gemcitabine-resistant cells upon gemcitabine treatment. Gemcitabine resistance was observed to reprogram glucose metabolism and to enhance the pyrimidine synthesis pathway. Myo-inositol, taurine, glycerophosphocholine and creatinine phosphate exhibited a “binary switch” in response to gemcitabine treatment and acquired resistance.

Conclusion

Metabolic differences between naïve and resistant pancreatic cancer cells and, accordingly, their unique responses to gemcitabine treatment were revealed, which may be useful in the clinical setting for monitoring a patient’s therapeutic response.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号