首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing demand for food and biofuel feedstocks may substantially affect soil nutrient budgets, especially in the United States where there is great potential for corn (Zea mays L) stover as a biofuel feedstock. This study was designed to evaluate impacts of projected stover harvest scenarios on budgets of soil nitrogen (N), phosphorus (P), and potassium (K) currently and in the future across the conterminous United States. The required and removed N, P, and K amounts under each scenario were estimated on the basis of both their average contents in grain and stover and from an empirical model. Our analyses indicate a small depletion of soil N (?4 ± 35 kg ha?1) and K (?6 ± 36 kg ha?1) and a moderate surplus of P (37 ± 21 kg ha?1) currently on the national average, but with a noticeable variation from state to state. After harvesting both grain and projected stover, the deficits of soil N, P, and K were estimated at 114–127, 26–27, and 36–53 kg ha?1 yr?1, respectively, in 2006–2010; 131–173, 29–32, and 41–96 kg ha?1 yr?1, respectively, in 2020; and 161–207, 35–39, and 51–111 kg ha?1 yr?1, respectively, in 2050. This study indicates that the harvestable stover amount derived from the minimum stover requirement for maintaining soil organic carbon level scenarios under current fertilization rates can be sustainable for soil nutrient supply and corn production at present, but the deficit of P and K at the national scale would become larger in the future.  相似文献   

2.
One-pass harvest equipment has been developed to collect corn (Zea mays L.) grain, stover, and cobs that can be used as bioenergy feedstock. Nutrients removed in these feedstocks have soil fertility implication and affect feedstock quality. The study objectives were to quantify nutrient concentrations and potential removal as a function of cutting height, plant organ, and physiological stage. Plant samples were collected in 10-cm increments at seven diverse geographic locations at two maturities and analyzed for multiple elements. At grain harvest, nutrient concentration averaged 5.5 g?N kg?1, 0.5 g?P kg?1, and 6.2 g?K kg?1 in cobs, 7.5 g?N kg?1, 1.2 g?P kg?1, and 8.7 g?K kg?1 in the above-ear stover fraction, and 6.4 g?N kg?1, 1.0 g?P kg?1, and 10.7 g?K kg?1 in the below-ear stover fraction (stover fractions exclude cobs). The average collective cost to replace N, P, and K was $11.66 Mg?1 for cobs, $17.59 Mg?1 for above-ear stover, and $18.11 Mg?1 for below-ear stover. If 3 Mg ha?1 of above-ear stover fraction plus 1 Mg of cobs are harvested, an average N, P, and K replacement cost was estimated at $64 ha?1. Collecting cobs or above-ear stover fraction may provide a higher quality feedstock while removing fewer nutrients compared to whole stover removal. This information will enable producers to balance soil fertility by adjusting fertilizer rates and to sustain soil quality by predicting C removal for different harvest scenarios. It also provides elemental information to the bioenergy industry.  相似文献   

3.
The anticipated 2014 launch of three full-scale corn stover bioenergy conversion facilities is a strong US market signal that cellulosic feedstock supplies must increase dramatically to supply the required biomass in a sustainable manner. This overview highlights research conducted by the USDA-Agricultural Research Service Renewable Energy Assessment Project (now known as the Resilient Economic Agricultural Practices) team as part of the National Institute for Food and Agriculture Sun Grant Regional Feedstock Partnership Corn Stover team. Stover and grain yield, soil organic carbon, soil aggregation, greenhouse gas, energy content of the stover, and several other factors affecting the fledgling bioenergy industry are addressed in this special issue of the journal.  相似文献   

4.
Corn (Zea mays L.) stover was identified as an important feedstock for cellulosic bioenergy production because of the extensive area upon which the crop is already grown. This report summarizes 239 site-years of field research examining effects of zero, moderate, and high stover removal rates at 36 sites in seven different states. Grain and stover yields from all sites as well as N, P, and K removal from 28 sites are summarized for nine longitude and six latitude bands, two tillage practices (conventional vs no tillage), two stover-harvest methods (machine vs calculated), and two crop rotations {continuous corn (maize) vs corn/soybean [Glycine max (L.) Merr.]}. Mean grain yields ranged from 5.0 to 12.0 Mg ha?1 (80 to 192 bu ac?1). Harvesting an average of 3.9 or 7.2 Mg ha?1 (1.7 or 3.2 tons ac?1) of the corn stover resulted in a slight increase in grain yield at 57 and 51 % of the sites, respectively. Average no-till grain yields were significantly lower than with conventional tillage when stover was not harvested, but not when it was collected. Plant samples collected between physiological maturity and combine harvest showed that compared to not harvesting stover, N, P, and K removal was increased by 24, 2.7, and 31 kg ha?1, respectively, with moderate (3.9 Mg ha?1) harvest and by 47, 5.5, and 62 kg ha?1, respectively, with high (7.2 Mg ha?1) removal. This data will be useful for verifying simulation models and available corn stover feedstock projections, but is too variable for planning site-specific stover harvest.  相似文献   

5.
Harvesting crop residue needs to be managed to protect agroecosystem health and productivity. DAYCENT, a process-based modeling tool, may be suited to accommodate region-specific factors and provide regional predictions for a broad array of agroecosystem impacts associated with corn stover harvest. Grain yield, soil C, and N2O emission data collected at Corn Stover Regional Partnership experimental sites were used to test DAYCENT performance modeling the impacts of corn stover removal. DAYCENT estimations of stover yields were correlated and reasonably accurate (adjusted r 2?=?0.53, slope?=?1.18, p?<<?0.001, intercept?=?0.36, p?=?0.11). Measured and simulated average grain yields across sites did not differ as a function of residue removal, but the model tended to underestimate average measured grain yields. Modeled and measured soil organic carbon (SOC) change for all sites were correlated (adjusted r 2?=?0.54, p?<<?0.001), but DAYCENT overestimated SOC loss with conventional tillage. Simulated and measured SOC change did not vary by residue removal rate. DAYCENT simulated annual N2O flux more accurately at low rates (≤2-kg N2O-N ha?1 year?1) but underestimated when emission rates were >3-kg N2O-N ha?1 year?1. Overall, DAYCENT performed well at simulating stover yields and low N2O emission rates, reasonably well when simulating the effects of management practices on average grain yields and SOC change, and poorly when estimating high N2O emissions. These biases should be considered when DAYCENT is used as a decision support tool for recommending sustainable corn stover removal practices to advance bioenergy industry based on corn stover feedstock material.  相似文献   

6.
Vertical Distribution of Corn Stover Dry Mass Grown at Several US Locations   总被引:1,自引:0,他引:1  
Corn (Zea mays L.) stover was identified as a renewable non-food agricultural feedstock for production of liquid fuels, biopower, and other bioproducts, but it is also needed for erosion control, carbon sequestration, and nutrient cycling. To help balance these multiple demands, our objectives were to (1) determine height distribution of corn stover biomass, (2) quantify the percentage of stover that is corn cob, and (3) develop a general relationship between plant harvest height and stover remaining in the field for a broad range of growing conditions, soil types, and hybrids in different regions. Plant height, dry grain, stover, and cob yield data were collected at eight US locations. Overall, stover yield increased about 0.85 Mg ha-1 and cob yield increased about 0.10 Mg ha-1 for each 1.0 Mg ha-1 increase in dry grain yield. At grain harvest, the stover-to-grain ratio ranged from 0.64 to 0.96 and cob-to-grain ratio ranged from 0.11 to 0.19. A strong nearly 1:1 linear (r 2?=?0.93) relationship between the relative cutting height and relative biomass remaining in the field was observed across all sites. These data were requested by the US Department of Agriculture-Natural Resource Conservation Service to help improve version 2 of the Revised Universal Soil Loss Equation (RUSLE2) and Wind Erosion Prediction System and better estimate corn stover harvest rates based on cutting height or selective organ harvest (e.g., grain and cob only). This information will improve the capacity of RUSLE2 and similar models to predict the erosion risk associated with harvesting corn residues.  相似文献   

7.
Corn’s (Zea mays L.) stover is a potential nonfood, herbaceous bioenergy feedstock. A vital aspect of utilizing stover for bioenergy production is to establish sustainable harvest criteria that avoid exacerbating soil erosion or degrading soil organic carbon (SOC) levels. Our goal is to empirically estimate the minimum residue return rate required to sustain SOC levels at numerous locations and to identify which macroscale factors affect empirical estimates. Minimum residue return rate is conceptually useful, but only if the study is of long enough duration and a relationship between the rate of residue returned and the change in SOC can be measured. About one third of the Corn Stover Regional Partnership team (Team) sites met these criteria with a minimum residue return rate of 3.9?±?2.18 Mg stover ha?1 yr?1, n?=?6. Based on the Team and published corn-based data (n?=?35), minimum residue return rate was 6.38?±?2.19 Mg stover ha?1 yr?1, while including data from other cropping systems (n?=?49), the rate averaged 5.74?±?2.36 Mg residue ha?1 yr?1. In broad general terms, keeping about 6 Mg residue ha?1 yr?1 maybe a useful generic rate as a point of discussion; however, these analyses refute that a generic rate represents a universal target on which to base harvest recommendations at a given site. Empirical data are needed to calibrate, validate, and refine process-based models so that valid sustainable harvest rate guidelines are provided to producers, industry, and action agencies.  相似文献   

8.
Excessive corn (Zea mays L.) stover removal for biofuel and other uses may adversely impact soil and crop production. We assessed the effects of stover removal at 0, 25, 50, 75, and 100% from continuous corn on water erosion, corn yield, and related soil properties during a 3‐year study under irrigated and no‐tillage management practice on a Ulysses silt loam at Colby, irrigated and strip till management practice on a Hugoton loam at Hugoton, and rainfed and no‐tillage management practice on a Woodson silt loam at Ottawa in Kansas, USA. The slope of each soil was <1%. One year after removal, complete (100%) stover removal resulted in increased losses of sediment by 0.36–0.47 Mg ha?1 at the irrigated sites, but, at the rainfed site, removal at rates as low as 50% resulted in increased sediment loss by 0.30 Mg ha?1 and sediment‐associated carbon (C) by 0.29 kg ha?1. Complete stover removal reduced wet aggregate stability of the soil at the irrigated sites in the first year after removal, but, at the rainfed site, wet aggregate stability was reduced in all years. Stover removal at rates ≥ 50% resulted in reduced soil water content, increased soil temperature in summer by 3.5–6.8 °C, and reduced temperature in winter by about 0.5 °C. Soil C pool tended to decrease and crop yields tended to increase with an increase in stover removal, but 3 years after removal, differences were not significant. Overall, stover removal at rates ≥50% may enhance grain yield but may increase risks of water erosion and negatively affect soil water and temperature regimes in this region.  相似文献   

9.
To prepare for a 2014 launch of commercial scale cellulosic ethanol production from corn/maize (Zea mays L.) stover, POET-DSM near Emmetsburg, IA has been working with farmers, researchers, and equipment dealers through “Project Liberty” on harvest, transportation, and storage logistics of corn stover for the past several years. Our objective was to evaluate seven stover harvest strategies within a 50-ha (125 acres) site on very deep, moderately well to poorly drained Mollisols, developed in calcareous glacial till. The treatments included the following: conventional grain harvest (no stover harvest), grain plus a second-pass rake and bale stover harvest, and single-pass grain plus cob-only biomass, grain plus vegetative material other than grain [(MOG) consisting of cobs, husks, and upper plant parts], grain plus all vegetative material from the ear shank upward (high cut), and all vegetative material above a 10 cm stubble height (low cut), with a John Deere 9750 STS combine, and grain plus direct baling of MOG with an AgCo harvesting system. Average grain yields were 11.4, 10.1, 9.7, and 9.5 Mg ha?1 for 2008, 2009, 2010, and 2011, respectively. Average stover harvest ranged from 0 to 5.6 Mg ha?1 and increased N, P, and K removal by an average of 11, 1.6, and 15 kg Mg?1, respectively. Grain yield in 2009 showed a significant positive response to higher 2008 stover removal rates, but grain yield was not increased in 2010 or 2011 due to prior-year stover harvest. High field losses caused the direct-bale treatment to have significantly lower grain yield in 2011 because the AgCo system could not pick up the severely lodged crop. We conclude that decreases in grain yield across the 4 years were due more to seasonal weather patterns, spatial variability, and not rotating crops than to stover harvest.  相似文献   

10.
Nitrogen fertilizer and harvest management will alter soils under bioenergy crop production and the long‐term effects of harvest timing and residue removal remain relatively unknown. Compared to no‐tilled corn (NT‐C, Zea mays L.), switchgrass (Panicum virgatum L.) is predicted to improve soil properties [i.e. soil organic C (SOC), soil microbial biomass (SMB‐C), and soil aggregation] due to its perennial nature and deep‐rooted growth form, but few explicit field comparisons exist. We assessed soil properties over 9 years for a rainfed study of N fertilizer rate (0, 60, 120, and 180 kg N ha?1) and harvest management on switchgrass (harvested in August and postfrost) and NT‐C (with and without 50% stover removal) in eastern NE. We measured SOC, aggregate stability, SMB‐C, bulk density (BD), pH, P and K in the top 0–30 cm. Both NT‐C and switchgrass increased SMB‐C, SOC content, and aggregate stability over the 9 years, reflecting improvement from previous conventional management. However, the soils under switchgrass had double the percent aggregate stability, 1.3 times more microbial biomass, and a 5–8% decrease in bulk density in the 0–5 and 5–10 cm depths compared to NT‐C. After 9 years, cumulative decrease in available P was significantly greater beneath NT‐C (?24.0 kg P ha?1) compared to switchgrass (?5.4 kg P ha?1). When all measured soil parameters were included in the Soil Management Assessment Framework (SMAF), switchgrass improved soil quality index over time (ΔSQI) in all depths. NT‐C without residue removal did not affect ΔSQI, but 50% residue removal decreased ΔSQI (0–30 cm) due to reduced aggregate stability and SMB‐C. Even with best‐management practices such as NT, corn stover removal will have to be carefully managed to prevent soil degradation. Long‐term N and harvest management studies that include biological, chemical, and physical soil measurements are necessary to accurately assess bioenergy impacts on soils.  相似文献   

11.
Belowground root biomass is infrequently measured and simply represented in models that predict landscape‐level changes to soil carbon stocks and greenhouse gas balances. Yet, crop‐specific responses to N fertilizer and harvest treatments are known to impact both plant allocation and tissue chemistry, potentially altering decomposition rates and the direction and magnitude of soil C stock changes and greenhouse gas fluxes. We examined switchgrass (Panicum virgatum L.) and corn (Zea mays L.,) yields, belowground root biomass, C, N and soil particulate organic matter‐C (POM‐C) in a 9‐year rainfed study of N fertilizer rate (0, 60, 120 and 180 kg N ha?1) and harvest management near Mead, NE, USA. Switchgrass was harvested with one pass in either August or postfrost, and for no‐till (NT) corn, either 50% or no stover was removed. Switchgrass had greater belowground root biomass C and N (6.39, 0.10 Mg ha?1) throughout the soil profile compared to NT‐corn (1.30, 0.06 Mg ha?1) and a higher belowground root biomass C:N ratio, indicating greater recalcitrant belowground root biomass C input beneath switchgrass. There was little difference between the two crops in soil POM‐C indicating substantially slower decomposition and incorporation into SOC under switchgrass, despite much greater root C. The highest N rate decreased POM‐C under both NT‐corn and switchgrass, indicating faster decomposition rates with added fertilizer. Residue removal reduced corn belowground root biomass C by 37% and N by 48% and subsequently reduced POM‐C by 22% compared to no‐residue removal. Developing productive bioenergy systems that also conserve the soil resource will require balancing fertilization that maximizes aboveground productivity but potentially reduces SOC sequestration by reducing belowground root biomass and increasing root and soil C decomposition.  相似文献   

12.
Corn (Zea mays L.) stover is a global resource used for livestock, fuel, and bioenergy feedstock, but excessive stover removal can decrease soil organic C (SOC) stocks and deteriorate soil health. Many site‐specific stover removal experiments report accrual rates and SOC stock effects, but a quantitative, global synthesis is needed to provide a scientific base for long‐term energy policy decisions. We used 409 data points from 74 stover harvest experiments conducted around the world for a meta‐analysis and meta‐regression to quantify removal rate, tillage, soil texture, and soil sampling depth effects on SOC. Changes were quantified by: (a) comparing final SOC stock differences after at least 3 years with and without stover removal and (b) calculating SOC accrual rates for both treatments. Stover removal generally reduced final SOC stocks by 8% in the upper 0–15 or 0–30 cm, compared to stover retained, irrespective of soil properties and tillage practices. A more sensitive meta‐regression analysis showed that retention increased SOC stocks within the 30–150 cm depth by another 5%. Compared to baseline values, stover retention increased average SOC stocks temporally at a rate of 0.41 Mg C ha?1 year?1 (statistically significant at p < 0.01 when averaged across all soil layers). Although SOC sequestration rates were lower with stover removal, with moderate (<50%) removal they can be positive, thus emphasizing the importance of site‐specific management. Our results also showed that tillage effects on SOC stocks were inconsistent due to the high variability in practices used among the experimental sites. Finally, we conclude that research and technological efforts should continue to be given high priority because of the importance in providing science‐based policy recommendations for long‐term global carbon management.  相似文献   

13.
Environmentally benign, economically viable, and socially acceptable agronomic strategies are needed to launch a sustainable lignocellulosic biofuel industry. Our objective was to demonstrate a landscape planning process that can ensure adequate supplies of corn (Zea mays L.) stover feedstock while protecting and improving soil quality. The Landscape Environmental Assessment Framework (LEAF) was used to develop land use strategies that were then scaled up for five U.S. Corn Belt states (Nebraska, Iowa, Illinois, Indiana, and Minnesota) to illustrate the impact that could be achieved. Our results show an annual sustainable stover supply of 194 million Mg without exceeding soil erosion T values or depleting soil organic carbon [i.e., soil conditioning index (SCI)?>?0] when no-till, winter cover crop, and vegetative barriers were incorporated into the landscape. A second, more rigorous conservation target was set to enhance soil quality while sustainably harvesting stover. By requiring erosion to be <1/2 T and the SCI-organic matter (OM) subfactor to be >?0, the annual sustainable quantity of harvestable stover dropped to148 million Mg. Examining removal rates by state and soil resource showed that soil capability class and slope generally determined the effectiveness of the three conservation practices and the resulting sustainable harvest rate. This emphasizes that sustainable biomass harvest must be based on subfield management decisions to ensure soil resources are conserved or enhanced, while providing sufficient biomass feedstock to support the economic growth of bioenergy enterprises.  相似文献   

14.
Biomass demand for energy will lead to utilization of marginal, low fertility soil. Application of fertilizer to such soil may increase switchgrass (Panicum virgatum L.) biomass production. In this three-way factorial field experiment, biomass yield response to potassium (K) fertilizer (0 and 68 kg?K?ha?1) on nitrogen (N)-sufficient and N-deficient switchgrass (0 and 135 kg?N?ha?1) was evaluated under two harvest systems. Harvest system included harvesting once per year after frost (December) and twice per year in summer (July) at boot stage and subsequent regrowth after frost. Under the one-cut system, there was no response to N or K only (13.4 Mg?ha?1) compared to no fertilizer (12.4 Mg?ha?1). Switchgrass receiving both N and K (14.6 Mg?ha?1) produced 18 % greater dry matter (DM) yield compared to no fertilizer check. Under the two-cut harvest system, N only (16.0 Mg?ha?1) or K only (14.1 Mg?ha?1) fertilizer produced similar DM to no fertilizer (15.1 Mg?ha?1). Switchgrass receiving both N and K in the two-cut system (19.2 Mg?ha?1) produced the greatest (P?<?0.05) DM yield, which was 32 % greater than switchgrass receiving both N and K in the one-cut system. Nutrient removal (biomass?×?nutrient concentration) was greatest in plots receiving both N and K, and the two-cut system had greater nutrient removal than the one-cut system. Based on these results, harvesting only once during winter months reduces nutrient removal in harvested biomass and requires less inorganic fertilizer for sustained yields from year to year compared to two-cut system.  相似文献   

15.
The Regional Feedstock Partnership is a collaborative effort between the Sun Grant Initiative (through Land Grant Universities), the US Department of Energy, and the US Department of Agriculture. One segment of this partnership is the field-scale evaluation of switchgrass (Panicum virgatum L.) in diverse sites across the USA. Switchgrass was planted (11.2 kg PLS ha?1) in replicated plots in New York, Oklahoma, South Dakota, and Virginia in 2008 and in Iowa in 2009. Adapted switchgrass cultivars were selected for each location and baseline soil samples collected before planting. Nitrogen fertilizer (0, 56, and 112 kg N ha?1) was applied each spring beginning the year after planting, and switchgrass was harvested once annually after senescence. Establishment, management, and harvest operations were completed using field-scale equipment. Switchgrass production ranged from 2 to 11.5 Mg ha?1 across locations and years. Yields were lowest the first year after establishment. Switchgrass responded positively to N in 6 of 19 location/year combinations and there was one location/year combination (NY in Year 2) where a significant negative response was noted. Initial soil N levels were lowest in SD and VA (significant N response) and highest at the other three locations (no N response). Although N rate affected some measures of biomass quality (N and hemicellulose), location and year had greater overall effects on all quality parameters evaluated. These results demonstrate the importance of local field-scale research and of proper N management in order to reduce unnecessary expense and potential environmental impacts of switchgrass grown for bioenergy.  相似文献   

16.
Organic fertilizers can improve soil health while providing nutrients for perennial grass growth for bioenergy feedstock, particularly under marginal soil conditions. The impact of organic fertilizer application on perennial grass composition needs clarification. Our objective was to evaluate feedstock composition, and N, P, and K dynamics of switchgrass (Panicum virgatum L.), tall fescue [Lolium arundinaceum (Schreb.)], and reed canarygrass (Phalaris arundinacea L.) provided with either inorganic or organic fertilizer sources. Grasses were established on a sandy soil and a clay soil at the Cornell University Willsboro Research Farm in Willsboro, NY. The experiment was a split-split plot randomization of a randomized block design with six replicates. Sites were whole plots, grass species were subplots, and fertility treatments were sub-subplots. Six treatments were (1) 168 kg ha?1 of N fertilizer for cool-season grasses; 84 kg ha?1 for switchgrass, (2) 56 kg ha?1 of 0-46-0 P fertilizer plus N (#1), (3) 112 kg ha?1 of 0-0-60 K fertilizer plus N (#1), (4) 89.6 Mg dairy manure ha?1, (5) 44.8 Mg dairy manure compost ha?1, and (6) a control without fertilizer. Organic fertilizers produced a net positive P and K balance, while other treatments had negative balances. Organic fertilizer treatments resulted in lower lignin and gross energy values, and higher total ash and Cl, compared to inorganic fertilizer treatments. Switchgrass biomass had higher fiber and gross energy, lower total ash, and much lower Cl content under organic fertilizer applications than cool-season grasses, making switchgrass a more desirable feedstock regardless of conversion process.  相似文献   

17.
Limited information is available about the economic benefits and costs associated with managing switchgrass (Panicum virgatum L.) produced for bioenergy feedstock in the K-deficient soils common in the southern Great Plains. The objectives of this study were to determine the most economical production system for harvesting and managing N and K fertilizations on switchgrass stands and to determine how sensitive the results are to various feedstock and fertilizer market price scenarios. A 4-year agronomic field experiment was conducted on a K-deficient site in South Central Oklahoma; the treatments included two harvest systems (summer and winter (SW) and winter only (W)), two N rates (0 and 135 kg ha?1), and two K rates (0 and 67 kg ha?1). Enterprise budgeting techniques and mixed ANOVA models were used to determine and compare the effects of eight harvest/N/K systems on yield, total cost, revenue, and net return. The harvest/N/K systems evaluated included SW/0/0, SW/0/67, SW/135/0, SW/135/67, W/0/0, W/0/67, W/135/0, and W/135/67. Results revealed the SW/135/67 system produced significantly (P?>?0.0001) greater average yield compared to the other systems; however, the SW/0/0 system was the most (P?>?0.0001) economical, realizing an average net return of $415 ha?1. Compared to the base–case net return of the SW/0/0 system, the value of the additional yield generated with the SW/135/67 system was less than the costs associated with the extra nutrients and additional harvest activity. For feedstock prices greater than $110 Mg?1, the most economical system shifted from the SW/0/0 to favor the SW/135/67 system.  相似文献   

18.
Biofuel crops may help achieve the goals of energy‐efficient renewable ethanol production and greenhouse gas (GHG) mitigation through carbon (C) storage. The objective of this study was to compare the aboveground biomass yields and soil organic C (SOC) stocks under four crops (no‐till corn, switchgrass, indiangrass, and willow) 7 years since establishment at three sites in Ohio to determine if high‐yielding biofuel crops are also capable of high levels of C storage. Corn grain had the highest potential ethanol yields, with an average of more than 4100 L ha?1, and ethanol yields increased if both corn grain and stover were converted to biofuel, while willow had the lowest yields. The SOC concentration in soils under biofuels was generally unaffected by crop type; at one site, soil in the top 10 cm under willow contained nearly 13 Mg C ha?1 more SOC (or 29% more) than did soils under switchgrass or corn. Crop type affected SOC content of macroaggregates in the top 10 cm of soil, where macroaggregates in soil under corn had lower C, N and C : N ratios than those under perennial grasses or trees. Overall, the results suggest that no‐till corn is capable of high ethanol yields and equivalent SOC stocks to 40 cm depth. Long‐term monitoring and measurement of SOC stocks at depth are required to determine whether this trend remains. In addition, ecological, energy, and GHG assessments should be made to estimate the C footprint of each feedstock.  相似文献   

19.
Nitrogen fixation in groundnut and soyabean and the residual benefits of incoporated legume stover to subsequent rice crops were estimated in farmers' fields using15N-isotope methods. Three field experiments were conducted, two which examined N2-fixation in groundnut by15N-isotope dilution using a non-nodulating groundnut as a reference crop and one in which N2-fixation in two soyabean genotypes was compared using maize as the non-fixing reference crop. Groundnut fixed 72–77% of its N amounting to 150–200 kg N ha-1 in 106–119 days and soyabean derived 66–68% of its N from N2-fixation which amounted to 108–152 kg N ha-1 under similar conditions. When legume stover was returned to the soil, there was a net contribution of N from N2-fixing varieties of groundnut in all cases ranging from 13–100 kg N ha-1, whilst due to the high % N harvest index in soyabean (87–88%) there was a net removal of N of 37–46 kg N ha-1. In all cases if the legume stover was removed there was a net removal of N in the legume crop which ranged between 54 and 74 kg N ha-1 in N2-fixing varieties of groundnut and from 58 to 73 kg N ha-1 in soyabean, whilst maize removed 66 kg N ha-1 if its stover was returned and 101 kg N ha-1 when the stover was removed. Growth of rice was improved in all cases where groundnut stover was returned resulting in increases in grain yield of 12–26% and increases in total dry matter production of 26–31%. Soyabean residues gave no increases in rice grain yield but increased total dry matter production by 12–20%. Rice accumulated more N in all cases where legume stover was returned to the soil, and N yields were larger in all cases after the N2-fixing legumes than after the non-fixing reference crops. N difference estimates of the total residual N benefits from the N2-fixing legumes ranged from 11–19 kg N ha-1 after groundnut and 15–16 kg N ha-1 after soyabean. The amounts of N estimated directly by application of15N-labelled stover amounted to 7.2–20.5 kg N ha-1 with groundnut which represented recovery of 8–22% of the N added in the stover. In soyabean only 3.0–5.8 kg N ha-1 was estimated to be recovered by15N-labelling which was 15–23% of the added N, whilst only 1.3 kg N ha-1 (4% of the N added) was recovered by rice from the maize stover. An indirect15N-method based on addition of unlabelled stover to microplots where the soil had previously been labelled with15N gave extremely variable and often negative estimates of residual N benefits. Estimates of residual N from the added stover made by N difference calculations did not correspond with the estimates by direct15N-labelling in all cases and possible reasons for this are discussed.  相似文献   

20.
Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential perennial bioenergy feedstocks. Feedstock storage limitations, labor constraints for harvest, and environmental benefits provided by perennials are rationales for developing localized perennial feedstock as an alternative or in conjunction with annual feedstocks (i.e., crop residues). Little information is available on yield, mineral, and thermochemical properties of native species as related to harvest time. The study’s objectives were to compare the feedstock quantity and quality between grasses harvested in the fall or the following spring. It was hypothesized that biomass yield may decline, but translocation and/or leaching of minerals from the feedstock would improve feedstock quality. Feedstock yield did not differ by crop, harvest time, or their interactions. Both grasses averaged 6.0 Mg ha?1 (fall) and 5.4 Mg ha?1 (spring) with similar high heating value (17.7 MJ kg?1). The K/(Ca?+?Mg) ratio, used as a quality indicator declined to below a 0.5 threshold, but energy yield (Megajoule per kilogram) decreased 13 % by delaying harvest until spring. Only once during the four study-years were conditions ideal for early spring harvest, in contrast during another spring, very muddy conditions resulted in excessive soil contamination. Early spring harvest may be hampered by late snow, lodging, and muddy conditions that may delay or prevent harvest, and result in soil contamination of the feedstock. However, reducing slagging/fouling potential and the mass of mineral nutrients removed from the field without a dramatic loss in biomass or caloric content are reasons to delay harvest until spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号