首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fusarium, graminearum KF 370 isolate is able to simultaneous biosynthesis of three toxic metabolites, namely: fusarenone-X (FUS), nivalenol (NIV) and zearalenone (F-2). After metabolites extraction with methanol — water (3:1) and defatting with n-heptane toxins were partitioned into chloroform layer. Purification of the? compounds was performed on Celite 545 — charcoal — Aluminiumoxid 90 column then metabolites were separated on Kieselgel 60 (200–300 mesh) column with developing solvent chloroform — methanol. This way FUS, NIV and F-2 were obtained as crystalline or high purity standards.  相似文献   

2.
A high-performance liquid chromatographic method was developed for the simultaneous determination of phenylbutazone and its metabolites, oxyphenbutazone and γ-hydroxyphenylbutazone, in plasma and urine. Samples were acidified with hydrochloric acid and extracted with benzene—cyclohexane (1:1, v/v). The extract was redissolved in methanol and chromatographed on a μBondapak C15 column using a mobile phase of methanol—0.01 M sodium acetate buffer (pH 4.0) in a linear gradient (50 to 100% methanol at 5%/min; flow-rate 2.0 ml/min) in a high-performance liquid chromatograph equipped with an ultra-violet absorbance detector (254 nm). The detection limit for phenylbutazone, oxyphenbutazone and for γ-hydroxyphenylbutazone was 0.05 μg/ml.A precise and sensitive assay for the determination of phenylbutazone and its metabolites was established.  相似文献   

3.
Analytical methods for the determination of ximelagatran, an oral direct thrombin inhibitor, its active metabolite melagatran, and intermediate metabolites, melagatran hydroxyamidine and melagatran ethyl ester, in biological samples by liquid chromatography (LC) positive electrospray ionization mass spectrometry (MS) using selected reaction monitoring are described. Isolation from human plasma was achieved by solid-phase extraction on octylsilica. Analytes and isotope-labelled internal standards were separated by LC utilising a C(18) analytical column and a mobile phase comprising acetonitrile-4 mmol/l ammonium acetate (35:65, v/v) containing 0.1% formic acid, at a flow-rate of 0.75 ml/min. Absolute recovery was approximately 80% for ximelagatran, approximately 60% for melagatran ethyl ester and >90% for melagatran and melagatran hydroxyamidine. Limit of quantification was 10 nmol/l, with a relative standard deviation <20% for each analyte and <5% above 100 nmol/l. Procedures for determination of these analytes in human urine and breast milk, plus whole blood from rat and mouse are also described.  相似文献   

4.
Ebastine (CAS 90729-43-4) is an antiallergic agent which selectively and potently blocks histamine H1-receptors in vivo. A simple and sensitive high-performance liquid chromatography (HPLC) method is described for the simultaneous determination of ebastine and its two oxidized metabolites, carebastine (CAS 90729-42-3) and hydroxyebastine (M–OH), in human plasma. After a pretreatment of plasma sample by solid-phase extraction, ebastine and its metabolites were analyzed on an HPLC system with ultraviolet detection at 254 nm. Chromatography was performed on a cyano column (250×4.0 mm I.D.) at 40 °C with the mobile phase of acetonitrile–methanol–0.012 M ammonium acetate buffer (20:30:48, v/v/v) at a flow rate of 1.2 ml/min. Accurate determinations were possible over the concentration range of 3–1000 ng/ml for the three compounds using 1 ml plasma samples. The intra- and inter-day assay accuracy of this method were within 100±15% of nominal values and the precision did not exceed 12.4% of relative standard deviation. The lower limits of quantitation were 3 ng/ml for ebastine and its metabolites in human plasma. This method was satisfactorily applied to the determination of ebastine and its two oxidized metabolites in human plasma after oral administration of ebastine.  相似文献   

5.
Studies investigating the relationship between CYP2C19 genotype and the stereoselective metabolism of omeprazole have not been reported. In the present study, we developed a simple and sensitive analytical method based on column switching reversed phase high-performance liquid chromatography (HPLC) with UV detection to determine the concentrations of (R)- and (S)-omeprazole and of its principal metabolites, (R)- and (S)-5-hydroxyomeprazole, and the non-chiral, omeprazole sulfone, in human plasma. Sample preparation involved liquid-liquid extraction with diethyl ether:dichloromethane (60:40, v/v) followed by clean-up on a TSK BSA-ODS/S column (5 μm, 10 mm × 4.6mm i.d.) using phosphate buffer:acetonitrile (97:3, v/v, pH 6.4). After column switching, separation was performed on a Shiseido CD-ph chiral column (5 μm, 150 mm × 4.6mm i.d.) using phosphate buffer:methanol (45:55, v/v, pH 5.0) as mobile phase. The limit of quantitation (LOQ) was 5 ng/mL for all analytes with intra- and inter-day precisions (as coefficient of variation) of <9.5% and <9.6%, respectively for all analytes. The present method was successfully applied to a chiral pharmacokinetic study of omeprazole in human volunteers with different CYP2C19 genotypes. The results show that the formation of (R)-5-hydroxyomeprazole gives the best correlation with CYP2C19 genotype.  相似文献   

6.
A miniaturized temperature-programmed packed capillary liquid chromatographic method with on-column large volume injection and UV detection for the simultaneous determination of the three selective serotonin reuptake inhibitors citalopram, fluoxetine, paroxetine and their metabolites in plasma is presented. An established reversed-phase C8 solid-phase extraction method was employed, and the separation was carried out on a 3.5-microm Kromasil C18 0.32x300 mm column with temperature-programming from 35 (3 min) to 100 degrees C (10 min) at 1.3 degrees C/min. The mobile phase consisted of acetonitrile-45 mM ammonium formate (pH 4.00) (25:75, v/v). The non-eluting sample focusing solvent composition acetonitrile-45 mM ammonium formate (pH 4.00) (3:97, v/v) allowed injection of 10 microl or more of the plasma extracts. The method was validated for the concentration range 0.05-5.0 microM, and the calibration curves were linear with coefficients of correlation >0.993. The limits of quantification for the antidepressants and their metabolites ranged from 0.05 to 0.26 microM. The within and between assay precision of relative peak height were in the range 2-22 and 2-15% relative standard deviation, respectively. The within and between assay recoveries were in the 61-99 and 54-92% range for the antidepressants, respectively, and between 52-102 and 51-102% for the metabolites.  相似文献   

7.
A new simple method was developed for the quantitative determination of the docetaxel (Taxotere) vehicle, polysorbate 80 (Tween 80), in human plasma. Calibration curves were constructed in the range of 1-100 microg/ml, using paclitaxel (0.01 mM) as internal standard, and were analyzed using a power fit with equal weighting. Sample pretreatment involved a one-step extraction with acetonitrile-n-butyl chloride (1:4, v/v). The analytes were separated on a Waters X-Terra MS column (50x2.1 mm I.D.) packed with 3.5-microm ODS material, and eluted with methanol-water (9:1, v/v) containing 0.1% formic acid. The column effluent was monitored by tandem mass spectrometry with electrospray ionization. The overall extraction efficiency was 50-60%, with values for precision and accuracy of < or =16% and <15% relative error, respectively. Our current method is approximately 60-100-fold more sensitive than previous assays, and will be used to define Tween 80 disposition in patients receiving Taxotere.  相似文献   

8.
An electrospray ionization liquid chromatographic-mass spectrometric (ESI-LC-MS) method has been developed to study the involvement of the cytochrome P450 isoenzyme CYP2D6 in the in vitro metabolism of the indole containing 5-hydroxytryptamine (5-HT3) receptor antagonists tropisetron, ondansetron and dolasetron in human liver microsomes. Compounds were eluted using linear gradients of acetonitrile-20 mM ammonium acetate, solvent A, (10:90, v/v) (ph 6.0) and solvent B, (60:40, v/v) (pH 6.0) and a Nucleosil C4 column. Microsomal incubations were analysed using selected ion monitoring of the molecular ion of parent drug and the molecular ion of hydroxylated metabolites. The involvement of CYP2D6 in drug metabolism was assessed by inhibition studies using quinidine (5 μM), a specific inhibitor of human CYP2D6, as well as by incubating compounds with microsomes prepared from celss transfected with cDNA encoding human CYP2D6. Results showed that the oxidation of all three compounds involved CYP2D6, but only that of tropisetron was inhibited by over 90% in the presence of quinidine. The present method can be applied to pre-clinical compounds, at an early stage of drug discovery, to assess the involvement of CYP2D6 in their metabolism and to screen for those compounds where CYP2D6 is the only isoenzyme implicated in the formation of major metabolites.  相似文献   

9.
A method is described for the simultaneous determination of l,α-acetylmethadol (LAAM) and five active metabolites — noracetylmethadol, dinoracetylmethadol, methadol, normethadol, and dinormethadol — in biofluids by high-performance liquid chromatography using a normal-phase column and a UV detector at 218 nm. The compounds are recovered from biofluids by a multistep liquid—liquid extraction. The mobile phase is methanol—acetonitrile (70:30, v/v) containing 0.015% ammonium hydroxide as the modifier. Retention times can be varied by adjusting the composition of the mobile phase to maximize peak height for quantitation using l-propranolol as the internal standard or peak separation for the collection of fractions. Using a UV detector the lower limit of sensitivity is 10 ng/ml of biofluid. Using fraction collection of radiolabeled drug and metabolites followed by liquid scintillation counting the lower limit of sensitivity is 1.0 ng/ml. Commonly used or abused narcotics including morphine, heroin, meperidine, methadone and propoxyphene do not interfere with the analysis. The method has been applied to plasma and urine samples from humans, sheep and rats. Extracts of urine from patients receiving maintenance treatment with LAAM contain LAAM and each of the five active metabolites.  相似文献   

10.
A simple, rapid, and accurate column-switching liquid chromatography method was developed and validated for direct and simultaneous analysis of loxoprofen and its metabolites (trans- and cis-alcohol metabolites) in human serum. After direct serum injection into the system, deproteinization and trace enrichment occurred on a Shim-pack MAYI-ODS pretreatment column (10 mm x 4.6 mm i.d.) by an eluent consisting of 20 mM phosphate buffer (pH 6.9)/acetonitrile (95/5, v/v) and 0.1% formic acid. The drug trapped by the pretreatment column was introduced to the Shim-pack VP-ODS analytical column (150 mm x 4.6 mm i.d.) using acetonitrile/water (45/55, v/v) containing 0.1% formic acid when the 6-port valve status was switched. Ketoprofen was used as the internal standard. The analysis was monitored on a UV detector at 225 nm. The chromatograms showed good resolution, sensitivity, and no interference by human serum. Coefficients of variations (CV%) and recoveries for loxoprofen and its metabolites were below 15 and over 95%, respectively, in the concentration range of 0.1-20 microg/ml. With UV detection, the limit of quantitation was 0.1 microg/ml, and good linearity (r = 0.999) was observed for all the compounds with 50 microl serum samples. The mean absolute recoveries of loxoprofen, trans- and cis-alcohol for human serum were 89.6 +/- 3.9, 93.5 +/- 3.2, and 93.7 +/- 4.3%, respectively. Stability studies showed that loxoprofen and its metabolites in human serum were stable during storage and the assay procedure. This analytical method showed excellent sensitivity with small sample volume (50 microl), good precision, accuracy, and speed (total analytical time 18 min), without any loss in chromatographic efficiency. This method was successfully applied to the pharmacokinetic study of loxoprofen in human volunteers following a single oral administration of loxoprofen sodium (60 mg, anhydrate) tablet.  相似文献   

11.
A rapid high-performance liquid chromatography (HPLC) method is described for the quantitation of hydroxytestosterone metabolites. The method combines a Hypersil BDS C18 analytical column (10 cm×0.46 cm) and a linear mobile phase (1.25 ml/min) gradient of tetrahydrofuran–acetonitrile–water (10:10:80, v/v) changing to tetrahydrofuran–acetonitrile–water (14:14:72, v/v) over 10 min then remaining isocratic for 3 min. The total run time for the chromatographic separation of eight metabolites of testosterone is 15 min. Detection by UV is linear between 300 ng/ml and 10 μg/ml with a limit of detection on column of 300 ng/ml. A method for the direct HPLC analysis of liver microsomal incubates of [14C]testosterone is also briefly described and when combined with the HPLC method, offers a distinct advantage over previously reported methods for the rapid screening of testosterone hydroxylase activity in rat and human liver microsomes.  相似文献   

12.
An automated method for simultaneous routine quantification of the antipsychotic drugs clozapine, olanzapine and their demethylated metabolites is described. The method included adsorption on a cyanopropyl (CPS) coated clean-up column (10 μm; 10×2.0 mm I.D.), washing off interfering serum constituents to waste, and separation on C18 ODS Hypersil reversed phase material (5 μm; 250×4.6 mm I.D.) using acetonitrile–water–tetramethylethylenediamine (37:62.6:0.4, v/v/v) adjusted to pH 6.5 with concentrated acetic acid. UV-detection was performed at 254 nm. The limit of quantification was 10–20 ng/ml. Relative day to day standard variations ranged between 4.5 and 13.5%. The method is suitable for routine monitoring of olanzapine and clozapine including their demethylated metabolites.  相似文献   

13.
A sensitive, selective and rapid liquid chromatographic/electrospray ionization tandem mass spectrometric assay was developed and validated for the simultaneous quantification of 16-dehydropregnenolone (DHP) and its five metabolites 4,16-pregnadien-3, 20-dione (M(1)), 5-pregnene-3beta-ol-20-one (M(2)), 5-pregnene-3beta, 20-diol (M(3)), 5-pregnene-3beta-ol-16, 17-epoxi-20-one (M(4)) and 5,16-pregnadien-3beta, 11-diol-20-one (M(5)) in rabbit plasma using dexamethasone as internal standard (IS). The analytes were chromatographed on Spheri-5 RP-18 column (5 microm, 100 mm x 4.6 mm i.d.) coupled with guard column using acetonitrile:ammonium acetate buffer (90:10, v/v) as mobile phase at a flow rate of 0.65 ml/min. The quantitation of the analytes was carried out using API 4000 LC-MS-MS system in the multiple reaction monitoring (MRM) mode. The method was validated in terms of linearity, specificity, sensitivity, recovery, accuracy, precision (intra- and inter-assay variation), freeze-thaw, long-term, auto injector and dry residue stability. Linearity in plasma was observed over a concentration range of 1.56-400 ng/ml with a limit of detection (LOD) of 0.78 ng/ml for all analytes except M(3) and M(5) where linearity was over the 3.13-400 ng/ml with LOD of 1.56 ng/ml. The absolute recoveries from plasma were consistent and reproducible over the linearity range for all analytes. The intra- and inter-day accuracy and precision method were within the acceptable limits and the analytes were stable after three freeze-thaw cycles and their dry residues were stable at -60 degrees C for 15 days. The method was successfully applied to determine concentrations of DHP and its putative metabolites in plasma during a pilot pharmacokinetic study in rabbits.  相似文献   

14.
Clozapine and its two major metabolites, N-desmethylclozapine and clozapine N-oxide were quantified using a high-performance liquid chromatographic method with UV detection in dog plasma following a single dose of clozapine. The analysis was performed on a 5-micrometer Hypersil CN (CPS-1; 250x4.6 mm) column. The mobile phase consisted of acetonitrile-water-1 M ammonium acetate (50:49:1, v/v/v), which was adjusted to pH 5.0 with acetic acid. The detection wavelength was 254 nm. A liquid-liquid extraction technique was used to extract clozapine and its metabolites from dog plasma. The recovery rates for clozapine, N-desmethylclozapine, and the internal standard (I.S.) were close to 100% using this method. The recovery rate for clozapine N-oxide (62-66%) was lower as expected because it is more polar. The quantitation limits for clozapine, clozapine N-oxide, and N-desmethylclozapine were 0.11, 0.05 and 0.05 microM, respectively. Intra-day reproducibility for concentrations of 0.1, 1.0 and 5.0 microM were 10.0, 4.4 and 4.2%, respectively, for N-oxide; 11.2, 4.3 and 4.9%, respectively, for N-desmethylclozapine; and 10.8, 2.2 and 4.9%, respectively, for clozapine. Inter-day reproducibility was <15% for clozapine N-oxide, <8% for N-desmethylclozapine and <19% for clozapine. This simple method was applied to determine the plasma concentration profiles of clozapine, N-desmethylclozapine and clozapine N-oxide in dog following administration of a 10 mg/kg oral dose of clozapine.  相似文献   

15.
An HPLC method has been developed for the separation and the determination of caffeine and its metabolites in urine samples using a one extraction–analysis run and UV detection. The compounds were extracted by liquid–liquid extraction using chloroform–isopropylalcohol (85:15, v/v). Chromatographic separation was accomplished on an ODS analytical column with a mobile phase containing 0.05% acetic acid/methylalcohol (92.5:7.5, v/v). Compounds were monitored at 280 nm. The method was validated for the determination of AFMU, 1X, 1U, 17X and 17U caffeine metabolites required to assess the metabolic activity of the enzymes subject to in vivo caffeine testing. The validated assay was applied to urine samples from ten healthy volunteers. The method was proved to be suitable to assess simultaneously the enzymatic activity of cytochrome P450 CYP1A2 and CYP2A6, as well as N-acetyltransferase and xanthine oxidase.  相似文献   

16.
An analytical method for the determination of artemether (A) and its metabolite dihydroartemisinin (DHA) in human plasma has been developed and validated. The method is based on high-performance liquid chromatography (HPLC) and electrochemical detection in the reductive mode. A, DHA and artemisinin, the internal standard (I.S.), were extracted from plasma (1 ml) with 1-chlorobutane—isooctane (55:45, v/v). The solvent was transferred, evaporated to dryness under nitrogen and the residue dissolved in 600 μl of water-ethyl alcohol (50:50, v/v). Chromatography was performed on a Nova-Pak CN, 4 μm analytical column (150 mm×3.9 mm I.D.) at 35°C. The mobile phase consisted of pH 5 acetate—acetonitrile (85:15, v/v) at a flow-rate of 1 ml/min. The analytes were detected by electrochemical detection in the reductive mode at a potential of −1.0 V Intra-day accuracy and precision were assessed from the relative recoveries (found concentration in % of the nominal value) of spiked samples analysed on the same day (concentration range 10.9 to 202 ng/ml of A and 11.2 to 206 ng/ml of DHA in plasma). The mean recoveries over the entire concentration range were from 96 to 100% for A with C .V. from 6 to 13%, from 92% to 100% for DHA (α-tautomer) with C .V. from 4 to 16%. For A, the mean recovery was 96% at the limit of quantitation (LOQ) of 10.9 ng/ml with a CV of 13%. For DHA, the mean recovery was 100% at the LOQ of 11.2 ng/ml with a CV of 16%.  相似文献   

17.
A sensitive, specific and precise HPLC–UV assay was developed to quantitate cocaine (COC) and its metabolites benzoylecgonine (BE), norcocaine (NC) and cocaethylene (CE) in rat plasma. After adding 50 μl of the internal standard solution (bupivacaine, 8 μg/ml) and 500 μl of Sørensen's buffer (pH 6) to 100 μl of rat plasma sample, the mixture was extracted with 10 ml of chloroform. The organic layer was transferred to a clean test tube and was evaporated under nitrogen. The residue was reconstituted in 100 μl of mobile phase and 35 μl was injected onto the HPLC column. The mobile phase consisted of methanol–acetonitrile–50 mM monobasic ammonium phosphate (5:7:63, v/v/v) and was maintained at a flow-rate of 0.4 ml/min. Separation of COC and its metabolites was achieved using a Supelcosil ABZ+plus deactivated reversed-phase column (250×2.1 mm I.D., 5 μm). Calibration curves were linear over the range of 25–5000 ng/ml for COC and its three metabolites. The absolute extraction efficiencies for BE, COC, NC, CE and bupivacaine were 56.6%, 78.6%, 61.1%, 76.4% and 67.0%, respectively. COC and its metabolites were stable in mobile phase for 24 h at room temperature and in rat plasma for 2 weeks at −20°C. The limits of detection for BE, COC, NC and CE were 20, 24, 15 and 12.9 ng/ml, respectively. These values correspond to 0.70, 0.84, 0.525 and 0.452 ng of the according compound being injected on column. The within-day coefficient of variation for the four compounds ranged from 3.0% to 9.9% while the between-day precision varied from 3.6% to 14%. This method was used to analyze rat plasma samples after administration of COC alone and in combination with alcohol. The pharmacokinetic profiles of COC and its metabolites in these rats are also described.  相似文献   

18.
Table 2 displays a list of the variables, data points with data quality, and reconciled solution for the MFA in figure 1. Row 3, column 4 Data points (quality) should read 15 (60) | 19 (90) rather than 15 (60) | 18 (90).  相似文献   

19.
A continuous-flow configuration based on sequential solid-phase extraction and derivatization is proposed for the screening of urine samples for imipramine and related metabolites. For the first time, a 50/50 (v/v) methanol/nitric acid mixture is used as both eluent and derivatizing reagent. Sample aliquots are injected into the flow manifold and driven by a water stream to an RP-C(18) column where the drugs are quantitatively retained. Following clean-up step with 40/60 (v/v) methanol/water, the eluent/derivatizing reagent is injected and passed through the sorbent column, eluted drugs reacting with nitric acid to form a blue dye that is monitored at 600 nm. The global signal thus obtained for the antidepressants can be used to estimate their total concentration in the samples without the need to individually quantify the analytes. This total index can be used for timely decision-making in case of overdosage. The proposed method is sensitive and selective; thus, typical interferents such as endogenous and diet compounds have no substantial effect on the analytical signal. This allows imipramine and its metabolites to be determined at therapeutic levels in urine samples.  相似文献   

20.
A high-performance liquid chromatographic method has been developed for the determination of pipotiazine in human plasma and urine. After selective extraction, pipotiazine and the internal standard (7-methoxypipotiazine) are chromatographed on a column packed with Spherosil XOA 600 (5 μm) using a 7:3 (v/v) mixture of diisopropyl ether—isooctane (1:1, v/v) + 0.2% triethylamine and diisopropyl ether—methanol (1:1, v/v) + 0.2% triethylamine + 2.6% water. The eluted compounds are measured by fluorescence detection. The sensitivity of the method was established at 0.25 ng/ml pipotiazine in plasma and 2 ng/ml pipotiazine in urine (C.V. < 5%). The method has been successfully applied to a pharmacokinetic study following a single oral administration of 10 mg of pipotiazine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号