首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Apolipoprotein A-IV (apoA-IV) has myriad functions, including roles as a post-prandial satiety factor and lipid antioxidant. ApoA-IV is expressed in mammalian small intestine and is up-regulated in response to lipid absorption. In newborn swine jejunum, a high fat diet acutely induces a 7-fold increase in apoA-IV expression. To determine whether apoA-IV plays a role in the transport of absorbed lipid, swine apoA-IV was overexpressed in a newborn swine enterocyte cell line, IPEC-1, followed by analysis of the expression of genes related to lipoprotein assembly and lipid transport, as well as quantitation of lipid synthesis and secretion. A full-length swine apoA-IV cDNA was cloned, sequenced, and inserted into a Vp and Rep gene-deficient adeno-associated viral vector, containing the cytomegalovirus immediate early promoter/enhancer and neomycin resistance gene, and was used to transfect IPEC-1 cells. Control cells were transfected with the same vector minus the apoA-IV insert. Using neomycin selection, apoA-IV-overexpressing (+AIV) and control (-AIV) clones were isolated for further study. Both undifferentiated (-D) and differentiated (+D) +AIV cells expressed 40- to 50-fold higher levels of apoA-IV mRNA and both intracellular and secreted apoA-IV protein compared with -AIV cells. Expression of other genes was not affected by apoA-IV overexpression in a manner that would contribute to enhanced lipid secretion. +D +AIV cells secreted 4.9-fold more labeled triacylglycerol (TG), 4.6-fold more labeled cholesteryl ester (CE), and 2-fold more labeled phospholipid (PL) as lipoproteins, mostly in the chylomicron/very low density lipoprotein (VLDL) density range. ApoA-IV overexpression in IPEC-1 cells enhances basolateral TG, CE, and PL secretion in chylomicron/VLDL particles. This enhancement is not associated with up-regulation of other genes involved in lipid transport. ApoA-IV may play a role in facilitating enterocyte lipid transport, particularly in the neonate receiving a diet of high fat breast milk.  相似文献   

2.
Apolipoprotein (apo) A-IV overexpression enhances chylomicron (CM) assembly and secretion in newborn swine intestinal epithelial cells by producing larger particles (Lu S, Yao Y, Cheng X, Mitchell S, Leng S, Meng S, Gallagher JW, Shelness GS, Morris GS, Mahan J, Frase S, Mansbach CM, Weinberg RB, Black DD. J Biol Chem 281: 3473-3483, 2006). To determine the impact of apo A-IV on microsomal triglyceride transfer protein (MTTP), IPEC-1 cell lines containing a tetracycline-regulatable expression system were used to overexpress native swine apo A-IV and "piglike" human apo A-IV, a mutant human apo A-IV with deletion of the EQQQ-rich COOH-terminus, previously shown to upregulate basolateral triglyceride (TG) secretion 5-fold and 25-fold, respectively. Cells were incubated 24 h with and without doxycycline and oleic acid (OA, 0.8 mM). Overexpression of the native swine apo A-IV and piglike human apo A-IV increased MTTP lipid transfer activity by 39.7% (P = 0.006) and 53.6% (P = 0.0001), respectively, compared with controls. Changes in mRNA and protein levels generally paralleled changes in activity. Interestingly, native swine apo A-IV overexpression also increased MTTP large subunit mRNA, protein levels, and lipid transfer activity in the absence of OA, suggesting a mechanism not mediated by lipid absorption. Overexpression of piglike human apo A-IV significantly increased partitioning of radiolabeled OA from endoplasmic reticulum (ER) membrane to lumen, suggesting increased net transfer of membrane TG to luminal particles. These results suggest that the increased packaging of TG into nascent CMs in the ER lumen, induced by apo A-IV, is associated with upregulation of MTTP activity at the pretranslational level. Thus MTTP is regulated by apo A-IV in a manner to promote increased packaging of TG into the CM core, which may be important in neonatal fat absorption.  相似文献   

3.
Although the evidence linking apoA-IV expression and triglyceride (TG)-rich lipoprotein assembly and secretion is compelling, the intracellular mechanisms by which apoA-IV could modulate these processes remain poorly understood. We therefore examined the functional impact of apoA-IV expression on endogenous apoB, TG, and VLDL secretion in stably transfected McA-RH7777 rat hepatoma cells. Expression of apoA-IV modified with the endoplasmic reticulum (ER) retention signal KDEL (apoA-IV-KDEL) dramatically decreased both the rate and efficiency of endogenous apoB secretion, suggesting a presecretory interaction between apoA-IV-KDEL and apoB or apoB-containing lipoproteins. Expression of native apoA-IV using either a constitutive or tetracycline-inducible promoter delayed the initial rate of apoB secretion and reduced the final secretion efficiency by ~40%. However, whereas apoA-IV-KDEL reduced TG secretion by 75%, expression of native apoA-IV caused a 20-35% increase in TG secretion, accompanied by a ~55% increase in VLDL-associated apoB, an increase in the TG:phospholipid ratio of secreted d < 1.006 lipoproteins, and a 10.1 nm increase in peak VLDL(1) particle diameter. Native apoA-IV expression had a negligible impact on expression of the MTP gene. These data suggest that by interacting with apoB in the secretory pathway, apoA-IV alters the trafficking kinetics of apoB-containing TG-rich lipoproteins through cellular lipidation compartments, which in turn, enhances particle expansion and increases TG secretion.  相似文献   

4.
Lipoprotein secretion by Caco-2 cells, a human intestinal cell line, was studied in cells grown on inserts containing a Millipore filter (0.45 micron), separating secretory products from the apical and basolateral membranes into separate chambers. Under these conditions, as observed by electron microscopy, the cells formed a monolayer of columnar epithelial cells with microvilli on the apical surface and tight junctions between cells. The electrical resistances of the cell monolayers were 250-500 ohms/cm2. Both 14C-labeled lipids and 35S-labeled proteins were used to assess lipoprotein secretion. After a 24-hr incubation with [14C]oleic acid, 60-80% of the secreted triglyceride (TG) was in the basolateral chamber; 40% of the TG was present in the d less than 1.006 g/ml (chylomicron + VLDL) fraction and 50% in the 1.006 less than d less than 1.063 g/ml (LDL) fraction. After a 4-hr incubation with [35S]methionine, apolipoproteins were found to be major secretory products with 75-100% secreted to the basolateral chamber. Apolipoproteins B-100, B-48, E, A-I, A-IV, and C-III were identified by immunoprecipitation. The d less than 1.006 g/ml fraction was found to contain all of the major apolipoproteins, while the LDL fraction contained primarily apoB-100 and apoE; the HDL (1.063 less than d less than 1.21 g/ml) fraction principally contained apoA-I and apoA-IV. Mn-heparin precipitated all of the [35S]methionine-labeled apoB-100 and B-48 and a majority of the other apolipoproteins, and 80% of the [14C]oleic acid-labeled triglyceride, but only 15% of the phospholipid, demonstrating that Caco-2 cells secrete triglyceride-rich lipoproteins containing apoB. Secretion of lipoproteins was dependent on the lipid content of the medium; prior incubation with lipoprotein-depleted serum specifically reduced the secretion of lipoproteins, while addition of both LDL and oleic acid to the medium maintained the level of apoB-100, B-48, and A-IV secretion to that observed in the control cultures.  相似文献   

5.
Intestinal lipid absorption is associated with marked increases in the synthesis and secretion of apolipoprotein A-IV (apoA-IV) by the small intestine. Whether the increased intestinal apoA-IV synthesis and secretion results from increased fat uptake, increased cellular triglyceride (TG) content, or increased secretion of TG-rich lipoproteins by the enterocytes is unknown. Previous work from this laboratory has shown that a hydrophobic surfactant, Pluronic L-81 (L-81), is a potent inhibitor of intestinal formation of chylomicrons (CM), without reducing fat uptake or re-synthesis to TG. Furthermore, this inhibition can be reversed quickly by the cessation of L-81 infusion. Thus L-81 offers a unique opportunity to study the relationship between lymphatic TG, apoA-I and A-IV secretion. In this study, we studied the lymphatic transport of TG, apoA-I, and apoA-IV during both the inhibitory phase (L-81 infused together with lipid) and the subsequent unblocking phase (saline infusion). Two groups of lymph fistula rats were used, the control and the experimental rats. In the experimental rats, a phosphate-buffered taurocholate-stabilized emulsion containing 40 mumol [3H]triolein, 7.8 mumol of phosphatidylcholine, and 1 mg L-81 per 3 ml was infused at 3 ml/h for 8 h. This was then replaced by glucose-saline infusion for an additional 12 h. The control rats received the same lipid emulsion as the experimental rats, but without L-81 added, for 8 h. Lymph lipid was determined both by radioactivity and by glyceride-glycerol determination, and the apoA-I and apoA-IV concentrations were determined by rocket electroimmunophoresis assay. L-81 inhibited the rise in lymphatic lipid and apoA-IV output in the experimental rats after the beginning of lipid + L-81 infusion. Upon cessation of L-81 infusion, the mucosal lipid accumulated as a result of L-81 treatment was rapidly cleared into lymph as CM. This was associated with a marked increase in apoA-IV output; the maximal output was about 3 times that of the fasting level. There was a time lag of 4-5 h between the peak lymph lipid output and the peak lymph apoA-IV output during the unblocking phase in the experimental rats. There was also a comparable time lag between the maximal lipid and apoA-IV outputs in the control animals. Incorporation studies using [3H]leucine showed that apoA-IV synthesis was not stimulated during lipid + L-81 infusion, perhaps explaining the lack of increase in lymphatic A-IV secretion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Chylomicrons produced by the human gut contain apolipoprotein (apo) B48, whereas very-low-density lipoproteins made by the liver contain apo B100. To study how these molecules function during lipid absorption, we examined the process as it occurs in apobec-1 knockout mice (able to produce only apo B100; KO) and in wild-type mice (of which the normally functioning intestine makes apo B48, WT). Using the lymph fistula model, we studied the process of lipid absorption when animals were intraduodenally infused with a lipid emulsion (4 or 6 micromol/h of triolein). KO mice transported triacylglycerol (TG) as efficiently as WT mice when infused with the lower lipid dose; when infused with 6 micromol/h of triolein, however, KO mice transported significantly less TG to lymph than WT mice, leading to the accumulation of mucosal TG. Interestingly, the size of lipoprotein particles from both KO and WT mice were enlarged to chylomicron-size particles during absorption of the higher dose. These increased-size particles produced by KO mice were not associated with increased apo AIV secretion. However, we found that the gut of the KO mice secreted fewer apo B molecules to lymph (compared with WT), during both fasting and lipid infusion, leading us to conclude that the KO gut produced fewer numbers of TG-rich lipoproteins (including chylomicron) than the wild-type animals. The reduced apo B secretion in KO mice was not related to reduced microsomal triglyceride transfer protein lipid transfer activity. We propose that apo B48 is the preferred protein for the gut to coat chylomicrons to ensure efficient chylomicron formation and lipid absorption.  相似文献   

7.
Apolipoprotein A-IV (apoA-IV) is a 376-amino acid exchangeable apolipoprotein made in the small intestine of humans. Although it has many proposed roles in vascular disease, satiety, and chylomicron metabolism, there is no known structural basis for these functions. The ability to associate with lipids may be a key step in apoA-IV functionality. We recently identified a single amino acid, Phe(334), which seems to inhibit the lipid binding capability of apoA-IV. We also found that an intact N terminus was necessary for increased lipid binding of Phe(334) mutants. Here, we identify Trp(12) and Phe(15) as the N-terminal amino acids required for the fast lipid binding seen with the F334A mutant. Furthermore, we found that individual disruption of putative amphipathic alpha-helices 3-11 had little effect on lipid binding, suggesting that the N terminus of apoA-IV may be the operational site for initial lipid binding. We also provide three independent pieces of experimental evidence supporting a direct intramolecular interaction between sequences near amino acids 12/15 and 334. This interaction could represent a unique "switch" mechanism by which apoA-IV changes lipid avidity in vivo.  相似文献   

8.
9.
The overproduction of intestinal lipoproteins may contribute to the dyslipidemia found in diabetes. We studied the influence of diabetes on the fasting jejunal lipid content and its association with plasma lipids and the expression of genes involved in the synthesis and secretion of these lipoproteins. The study was undertaken in 27 morbidly obese persons, 12 of whom had type 2 diabetes mellitus (T2DM). The morbidly obese persons with diabetes had higher levels of chylomicron (CM) triglycerides (P < 0.001) and apolipoprotein (apo)B48 (P = 0.012). The jejunum samples obtained from the subjects with diabetes had a lower jejunal triglyceride content (P = 0.012) and angiopoietin-like protein 4 (ANGPTL4) mRNA expression (P = 0.043). However, the apoA-IV mRNA expression was significantly greater (P = 0.036). The jejunal triglyceride content correlated negatively with apoA-IV mRNA expression (r = −0.587, P = 0.027). The variables that explained the jejunal triglyceride content in a multiple linear regression model were the insulin resistance state and the apoA-IV mRNA expression. Our results show that the morbidly obese subjects with diabetes had lower jejunal lipid content and that this correlated negatively with apoA-IV mRNA expression. These findings show that the jejunum appears to play an active role in lipid homeostasis in the fasting state.  相似文献   

10.
Lipoprotein lipase (LPL)-mediated hydrolysis of triglycerides (TG) contained in chylomicrons requires the presence of a cofactor, apolipoprotein (apo) C-II. The physiological mechanism by which chylomicrons gain apoC-II necessary for LPL activation in whole plasma is not known. Using a gum arabic stabilized TG emulsion, activation of LPL by lipoprotein apoC-II was studied. Hydrolysis of TG by LPL was greater in the presence of serum than with addition of either high density lipoproteins (HDL) or very low density lipoproteins (VLDL). LPL activation by either VLDL or HDL increased with addition of the lipoprotein-free fraction of plasma. A similar increase in LPL activity by addition of the lipoprotein-free fraction together with HDL or VLDL was observed when another TG emulsion (Intralipid) or TG-rich lipoproteins from an apoC-II deficient subject were used as a substrate. Human apoA-IV, apoA-I, apoE, and cholesteryl ester transfer protein were assessed for their ability to increase LPL activity in the presence of VLDL. At and below physiological concentrations, only apoA-IV increased LPL activity. One hundred percent of LPL activity measured in the presence of serum was achieved using VLDL plus apoA-IV. In the absence of an apoC-II source, apoA-IV had no effect on LPL activity. Removal of greater than 80% of the apoA-IV from the nonlipoprotein-containing fraction of plasma by incubation with Intralipid markedly reduced its ability to activate LPL in the presence of VLDL or HDL. Gel filtration chromatography demonstrated that incubation of the nonlipoprotein-containing fraction of plasma with HDL and the TG emulsion caused increased transfer of apoC-II to the emulsion and association of apoA-IV with HDL. Our studies demonstrate that apoA-IV increases LPL activation in the presence of lipoproteins. We hypothesize that apoA-IV is required for efficient release of apoC-II from either HDL or VLDL, which then allows for LPL-mediated hydrolysis of TG in nascent chylomicrons.  相似文献   

11.
We (Wang H, Berschneider HM, Du J, and Black DD. Am J Physiol Gastrointest Liver Physiol 272: G935-G942, 1997; Wang H, Lu S, Du J, Yao Y, Berschneider HM, and Black DD. Am J Physiol Gastrointest Liver Physiol 280: G1137-G1144, 2001) previously showed that different fatty acids influence synthesis and secretion of triacylglycerol (TG) and phospholipid (PL) in a newborn swine enterocyte cell line (IPEC-1). The most striking effects were produced by stearic acid (SA; 18:0), which modestly affected TG and PL synthesis but reduced TG and PL secretion, and by eicosapentaenoic acid (EPA; 20:5), which reduced TG and PL synthesis and TG secretion relative to oleic acid (OA; 18:1). To define the mechanism of these effects, differentiated IPEC-1 cells were incubated for 24 h with OA, SA, or EPA and [(3)H]glycerol. Endoplasmic reticulum (ER) and Golgi (G) content of labeled lipids and apolipoprotein (apo) B and apoAI protein were measured. Relative to OA, SA did not impair ER TG synthesis, but reduced movement of labeled TG from ER to G. EPA impaired both ER TG synthesis and movement of labeled TG from ER to G. PL followed the same pattern, except ER synthesis of PL was relatively unaffected by EPA. Carbonate treatment demonstrated decreased partitioning of labeled lipid from ER membrane to lumen in EPA-treated cells. Organelle apoB and apoAI content demonstrated opposite patterns after SA and EPA incubation. We conclude that SA and EPA adversely influence immature enterocyte ER to G lipid trafficking, compared with OA. Furthermore, EPA inhibits ER lipid synthesis and transfer of membrane lipid to luminal particles. Regulation of apoAI ER to G trafficking is independent of that of apoB.  相似文献   

12.
Apolipoprotein A-IV (apoA-IV) is synthesized by intestinal enterocytes during lipid absorption and secreted into lymph on the surface of nascent chylomicrons. A compelling body of evidence supports a central role of apoA-IV in facilitating intestinal lipid absorption and in regulating satiety, yet a longstanding conundrum is that no abnormalities in fat absorption, feeding behavior, or weight gain were observed in chow-fed apoA-IV knockout (A4KO) mice. Herein we reevaluated the impact of apoA-IV expression in C57BL6 and A4KO mice fed a high-fat diet. Fat balance and lymph cannulation studies found no effect of intestinal apoA-IV gene expression on the efficiency of fatty acid absorption, but gut sac transport studies revealed that apoA-IV differentially modulates lipid transport and the number and size of secreted triglyceride-rich lipoproteins in different anatomic regions of the small bowel. ApoA-IV gene deletion increased expression of other genes involved in chylomicron assembly, impaired the ability of A4KO mice to gain weight and increase adipose tissue mass, and increased the distal gut hormone response to a high-fat diet. Together these findings suggest that apoA-IV may play a unique role in integrating feeding behavior, intestinal lipid absorption, and energy storage.  相似文献   

13.
The activation of hepatic kinase mechanistic target of rapamycin complex 1 (mTORC1) is implicated in the development of obesity-related metabolic disorders. This study investigated the metabolic sequelae of mTORC1 hyperactivation in human hepatoma cells and the lipid-regulating mechanisms of two short-chain fatty acids: 4-phenylbutyric acid (PBA) and (R)-α-lipoic acid (LA). We created three stable cell lines that exhibit low, normal, or high mTORC1 activity. mTORC1 hyperactivation induced the expression of lipogenic (DGAT1 and DGAT2) and lipoprotein assembly (MTP and APOB) genes, thereby raising cellular triacylglyceride (TG) and exacerbating secretion of apoB-containing TG-rich lipoproteins. LYS6K2, a specific inhibitor of the p70 S6 kinase branch of mTORC1 signaling, reversed these effects. PBA and LA decreased secreted TG through distinct mechanisms. PBA repressed apoB expression (both mRNA and protein) and lowered secreted TG without mitigation of mTORC1 hyperactivity or activation of AMPK. LA decreased cellular and secreted TG by attenuating mTORC1 signaling in an AMPK-independent manner. LA did not regulate apoB expression but led to the secretion of apoB-containing TG-poor lipoproteins by repressing the expression of lipogenic genes, FASN, DGAT1, and DGAT2. Our studies provide new mechanistic insight into the hypolipidemic activity of PBA and LA in the context of mTORC1 hyperactivation and suggest that the short-chain fatty acids may aid in the prevention and treatment of hypertriglyceridemia.  相似文献   

14.
Comparative Gene Identification-58 (CGI-58) is a member of the alpha/beta-hydrolase family of proteins. Mutations in the human CGI-58 gene are associated with Chanarin-Dorfman syndrome, a rare autosomal recessive genetic disease in which excessive triglyceride (TG) accumulation occurs in multiple tissues. In this study, we investigated the role of CGI-58 in cellular lipid metabolism in several cell models and discovered a role for CGI-58 in promoting the packaging of cytoplasmic TG into secreted lipoprotein particles in hepatoma cells. Using both gain-of-function and loss-of-function approaches, we demonstrate that CGI-58 facilitates the depletion of cellular TG stores without altering cellular cholesterol or phospholipid accumulation. This depletion of cellular TG is attributable solely to augmented hydrolysis, whereas TG synthesis was not affected by CGI-58. Furthermore, CGI-58-mediated TG hydrolysis can be completely inhibited by the known lipase inhibitors diethylumbelliferyl phosphate and diethyl-p-nitrophenyl phosphate, but not by p-chloro-mercuribenzoate. Intriguingly, CGI-58-driven TG hydrolysis was coupled to increases in both fatty acid oxidation and secretion of TG. Collectively, this study reveals a role for CGI-58 in coupling lipolytic degradation of cytoplasmic TG to oxidation and packaging into TG-rich lipoproteins for secretion in hepatoma cells.  相似文献   

15.
To develop a cell culture model for chyclomicron (CM) assembly, the apical media of differentiated Caco-2 cells were supplemented with oleic acid (OA) together with either albumin or taurocholate (TC). The basolateral media were subjected to sequential density gradient ultracentrifugations to obtain large CM, small CM, and very low density lipoproteins (VLDL), and the distribution of apoB in these fractions was quantified. In the absence of OA, apoB was secreted as VLDL/LDL size particles. Addition of OA (>/=0.8 mM) with TC, but not with albumin, resulted in the secretion of one-third of apoB as CM. Lipid analysis revealed that half of the secreted phospholipids (PL) and triglycerides (TG) were associated with CM. In CM, TG were 7-11-fold higher than PL indicating that CM were TG-rich particles. Secreted CM contained apoB100, apoB48, and other apolipoproteins. Secretion of large CM was specifically inhibited by Pluronic L81, a detergent known to inhibit CM secretion in animals. These studies demonstrate that differentiated Caco-2 cells assemble and secrete CM in a manner similar to enterocytes in vivo. Next, experiments were performed to identify the sources of lipids used for lipoprotein assembly. Cells were labeled with [3H]glycerol for 12 h, washed, and supplemented with OA, TC, and [14C] glycerol for various times to induce CM assembly and to radiolabel nascent lipids. TG and PL were extracted from cells and media and the association of preformed and nascent lipids with lipoproteins was determined. All the lipoproteins contained higher amounts of preformed PL compared with nascent PL. VLDL contained equal amounts of nascent and preformed TG, whereas CM contained higher amounts of nascent TG even when nascent TG constituted a small fraction of the total cellular pool. These studies indicate that nascent TG and preformed PL are preferentially used for CM assembly and provide a molecular explanation for the in vivo observations that the fatty acid composition of TG, but not PL, of secreted CM reflects the composition of dietary fat. It is proposed that in the intestinal cells the preformed PL from the endoplasmic reticulum bud off with apoB as primordial particles and the assembly of larger lipoproteins is dependent on the synthesis and delivery of nascent TG to these particles.  相似文献   

16.
Intestinal triglyceride-rich lipoproteins (TRL) are synthesized from dietary lipids. This study was designed to evaluate the effects of lipid micelles, mimicking post-digestive duodenal micelles, on the fate of apolipoprotein B (apoB)48-containing lipoproteins by Caco-2 cells. Such micelles, consisting of oleic acid (OA), taurocholate, 2-monooleoylglycerol (2-MO), cholesterol (Chol), and L-alpha-lysophospatidylcholine, were the most efficient inducers of OA uptake and esterification. The efficiency of TG and apoB48 secretion increased specifically as a function of cell differentiation. PAGE analysis of secreted lipoproteins separated by sequential ultracentrifugation after [35S] labeling revealed differences in the secretion of apoB100- and apoB48-containing lipoproteins. In absence of micelles, apoB48 was secreted mostly in "HDL-like" particles, as observed in enterocytes in vivo. Micelle application increased 2.7-fold the secretion of apoB, resulting in 53 times more apoB48 being recovered as TG-enriched lipoproteins at d < 1.006 g/ml. Electron microscopy revealed the presence of lipid droplets in the secretory pathway and the accumulation of newly synthesized TG in cytoplasmic lipid droplets, as in enterocytes in vivo. We showed that these droplets could be used for secretion. However, apoB48 preferentially bound to newly synthesized TG in the presence of micelles, accounting in part for the functional advantage of apoB editing in the intestine. While Caco-2 cells express both apoB isoforms, our results show that the apical supply of complex lipid micelles favors the physiological route of apoB48-containing TG-enriched lipoproteins.  相似文献   

17.
18.
19.
Human apolipoprotein A-IV rapidly dissociates from the surface of lymph chylomicrons following their entry into circulation by an unknown mechanism. We have therefore investigated the binding of human apoA-IV to triglyceride-rich particles and the interaction of these apoA-IV/lipid complexes with human HDL2. Human apoA-IV was purified from lipoprotein depleted serum (J. Lipid Res. 1983. 24:52-59). Triglyceride-rich particles of well-defined properties were isolated from Intralipid, a commercially available phospholipid-triglyceride emulsion. Various concentrations of radiolabeled human apoA-IV were incubated at 24 degrees C with a fixed quantity of lipid particles; the particles were reisolated by centrifugation, and bound and free apoA-IV were quantitated. In 50 mM Tris, pH 7.4, apoA-IV bound to the triglyceride-rich particles in a non-cooperative manner, with a Kd of 2.0 microM. The calculated maximal binding was 4.96 X 10(-4) mol of apoA-IV bound per mol of phospholipid. The addition of increasing amounts of human HDL2 to the incubations caused the progressive dissociation of apoA-IV from the triglyceride-rich particles. Analysis of the reisolated particles by isoelectric focusing demonstrated the presence of C-apoproteins, suggesting their transfer from HDL2. Addition of purified apoC-III-1 to the incubations at concentrations equivalent to those present in HDL2 caused a similar dissociation of apoA-IV. HDL2 was modified to selectively remove C-apoproteins, without alteration of other physical characteristics. This modified HDL2 was four times less effective in causing apoA-IV dissociation. These results demonstrate that the lipid binding properties of human apoA-IV may be quantitatively examined using triglyceride-rich particles as model chylomicrons. This approach reproduces in vitro the dissociation of apoA-IV that occurs in vivo when mesenteric lymph chylomicrons enter the circulation, and suggests that the primary mechanism for this phenomenon is the transfer of C-apoproteins from high density lipoproteins to the triglyceride-rich particle surface. We hypothesize that this mechanism may play an important role in the modulation of chylomicron apoA-IV content in man.  相似文献   

20.
Apolipoprotein B (apoB)-containing lipoproteins play a critical role in whole body lipid homeostasis and the pathogenesis of atherosclerosis. The assembly of hepatic apoB-containing lipoproteins, VLDL, is governed by the availability of lipids, including triacylglycerol (TG). The majority of TG associated with VLDL is derived from the hepatic cytoplasmic lipid stores by a process involving lipolysis followed by reesterification. Microsomal triacylglycerol hydrolase (TGH) has been demonstrated to play a role in the lipolysis/reesterification process. To evaluate the potential regulatory role of TGH in hepatic VLDL assembly, we developed inducible transgenic mice expressing a human TGH minigene under the control of the mouse metallothionein promoter. Induction of human TGH by zinc resulted in liver-specific expression of the enzyme associated with 3- to 4-fold increases in lipolytic activity that could be attenuated with a TGH-specific inhibitor. Augmented TGH activity led to increased secretion of newly synthesized apoB and plasma TG levels. These results suggest that increased hepatic expression of TGH leads to a more proatherogenic plasma lipid and apoB profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号