首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When the extent of plasminogen activation by staphylokinase (SAK) or streptokinase (SK) was measured in human plasma, SAK barely induced plasminogen activation, whereas SK activated plasminogen significantly. When the plasma was clotted with thrombin, the plasminogen activation by SAK was markedly enhanced, but that of SK was little enhanced. Similarly, in a purified system composed of plasminogen, fibrinogen and alpha 2-plasmin inhibitor (alpha 2-PI, alpha 2-antiplasmin), such a fibrin clot increased the activity of SAK significantly. However, when alpha 2-PI was removed from the reaction system, enhancement of the SAK reaction was not observed. In addition, SAK as distinct from SK, showed very little interference with the action of alpha 2-PI. Plasminogen activation by SAK is thus essentially inhibited by alpha 2-PI, but this reaction is not inhibited in fibrin clots. These results suggest that SAK forms a complex with plasminogen, which binds to fibrin and induces fibrinolysis.  相似文献   

2.
The mechanism of action of plasminogen (Pg) activators may affect their therapeutic properties in humans. Streptokinase (SK) is a robust Pg activator in physiologic fluids in the absence of fibrin. Deletion of a "catalytic switch" (SK residues 1-59), alters the conformation of the SK alpha domain and converts SKDelta59 into a fibrin-dependent Pg activator through unknown mechanisms. We show that the SK alpha domain binds avidly to the Pg kringle domains that maintain Glu-Pg in a tightly folded conformation. By virtue of deletion of SK residues 1-59, SKDelta59 loses the ability to unfold Glu-Pg during complex formation and becomes incapable of nonproteolytic active site formation. In this manner, SKDelta59 behaves more like staphylokinase than like SK; it requires plasmin to form a functional activator complex, and in this complex SKDelta59 does not protect plasmin from inhibition by alpha(2)-antiplasmin. At the same time, SKDelta59 is unlike staphylokinase or SK and is more like tissue Pg activator, because it is a poor activator of the tightly folded form of Glu-Pg in physiologic solutions. SKDelta59 can only activate Glu-Pg when it was unfolded by fibrin interactions or by Cl(-)-deficient buffers. Taken together, these studies indicate that an intact alpha domain confers on SK the ability to nonproteolytically activate Glu-Pg, to unfold and process Glu-Pg substrate in physiologic solutions, and to alter the substrate-inhibitor interactions of plasmin in the activator complex. The loss of an intact alpha domain makes SKDelta59 activate Pg through classical "fibrin-dependent mechanisms" (akin to both staphylokinase and tissue Pg activator) that include: 1) a marked preference for a fibrin-bound or unfolded Glu-Pg substrate, 2) a requirement for plasmin in the activator complex, and 3) the creation of an activator complex with plasmin that is readily inhibited by alpha(2)-antiplasmin.  相似文献   

3.
The characteristics of a streptococcal plasminogen activator (PA) displaying specificity for ruminant plasminogen (Plg) were defined using molecular approaches. The 16-kDa secreted protein PadA was found to be prevalent in Streptococcus dysgalactiae subspecies dysgalactiae isolated from cases of bovine mastitis and septic arthritis in lambs. PadA was able to activate bovine, ovine and caprine Plg, but not human Plg. Amino acid sequence analysis identified a limited level of homology to other streptococcal PAs, including streptokinase; however, PadA was found to align well with and match in size the staphylococcal PA, staphylokinase. Recombinant PadA was used to investigate interaction with bovine Plg, leading to formation of an activator complex that was capable of recruiting and converting further substrate Plg into plasmin. Individual non-overlapping peptides of PadA or bovine microplasminogen were found to block the interaction between PadA and bovine Plg, preventing the formation of the activation complex. Homology modelling based upon structures of staphylokinase complexed with human microplasminogen supported these findings by placing critical residues in close proximity to the plasmin component of the activation complex.  相似文献   

4.
Dahiya M  Rajamohan G  Dikshit KL 《FEBS letters》2005,579(7):1565-1572
Presence of isolated beta or betagamma domains of streptokinase (SK) increased the catalytic activity of staphylokinase (SAK)-plasmin (Pm) complex up to 60%. In contrast, fusion of SK beta or betagamma domains with the C-terminal end of SAK drastically reduced the catalytic activity of the activator complex. The enhancement effect mediated by beta or betagamma domain on Pg activator activity of SAK-Pm complex was reduced greatly (45%) in the presence of isolated kringles of Pg, whereas, kringles did not change cofactor activity of SAK fusion proteins (carrying beta or betagamma domains) significantly. When catalytic activity of SAK-microPm (catalytic domain of Pm lacking kringle domains) complex was examined in the presence of isolated beta and betagamma domains, no enhancement effect on Pg activation was observed, whereas, enzyme complex formed between microplasmin and SAK fusion proteins (SAKbeta and SAKbetagamma) displayed 50-70% reduction in their catalytic activity. The present study, thus, suggests that the exogenously present beta and betagamma interact with Pg/Pm via kringle domains and elevate catalytic activity of SAK-Pm activator complex resulting in enhanced substrate Pg activation. Fusion of beta or betagamma domains with SAK might alter these intermolecular interactions resulting in attenuated functional activity of SAK.  相似文献   

5.
Several pathogenic bacteria secrete plasminogen activator proteins. Streptokinase (SKe) produced by Streptococcus equisimilis and staphylokinase secreted from Staphylococcus aureus are human plasminogen activators and streptokinase (SKu), produced by Streptococcus uberis, is a bovine plasminogen activator. Thus, the fusion proteins among these activators can explain the function of each domain of SKe. Replacement of the SKalpha domain with staphylokinase donated the staphylokinase-like activation activity to SKe, and the SKbetagamma domain played a role of nonproteolytic activation of plasminogen. Recombinant SKu also activated human plasminogen by staphylokinase-like activation mode. Because SKu has homology with SKe, the bovine plasminogen activation activities of SKe fragments were checked. SKebetagamma among them had activation activity with bovine plasminogen. This means that the C-terminal domain (gamma-domain) of streptokinase determines plasminogen species necessary for activation and converses the ability of substrate recognition to human species.  相似文献   

6.
Streptokinase (SK) binds to plasminogen (Pg) to form a complex that converts substrate Pg to plasmin. Residues 1-59 of SK regulate its capacity to induce an active site in bound Pg by a nonproteolytic mechanism and to activate substrate Pg in a fibrin-independent manner. We analyzed 24 SK mutants to better define the functional properties of SK-(1-59). Mutations within the alphabeta1 strand (residues 17-26) of SK completely prevented nonproteolytic active site induction in bound Pg and rendered SK incapable of protecting plasmin from inhibition by alpha2-antiplasmin. However, when fibrin-bound, the activities of alphabeta1 strand mutants were similar to that of wild-type (WT) SK and resistant to alpha2-antiplasmin. Mutation of Ile1 of SK also prevented nonproteolytic active site induction in bound Pg. However, unlike alphabeta1 strand mutants, the functional defect of Ile1 mutants was not relieved by fibrin, and complexes of Ile1 mutants and plasmin were resistant to alpha2-antiplasmin. Plasmin enhanced the activities of alphabeta1 strand and Ile1 mutants, suggesting that SK-plasmin complexes activated mutant SK.Pg complexes by hydrolyzing the Pg Arg561-Val562 bond. Mutational analysis of Glu39 of SK suggested that a salt bridge between Glu39 and Arg719 of Pg is important, but not essential, for nonproteolytic active site induction in Pg. Deleting residues 1-59 rendered SK dependent on plasmin and fibrin to generate plasminogen activator (PA) activity. However, the PA activity of SK-(60-414) in the presence of fibrin was markedly reduced compared with WT SK. Despite its reduced PA activity, the fibrinolytic potency of SK-(60-414) was greater than that of WT SK at higher (but not lower) SK concentrations due to its capacity to deplete plasma Pg. These studies define mechanisms by which the SK alpha domain regulates rapid active site induction in bound Pg, contributes to the resistance of the SK-plasmin complex to alpha2-antiplasmin, and controls fibrin-independent Pg activation.  相似文献   

7.
The effects of purified soluble fibrin and of fibrinogen fragments (fibrin mimic) on the activation of Lys-plasminogen (i.e. plasminogen residues 77-790) to plasmin by streptokinase.plasminogen activator complex and by tissue-type plasminogen activator were studied. Dissociation constants of both activators were estimated to lie in the range 90-160 nM (fibrin) and 16-60 nM (CNBr-cleavage fragments of fibrinogen). The kinetic mechanism for both types of activator comprised non-essential enzyme activation via a Rapid Equilibrium Ordered Bireactant sequence. In order to relate the fibrin affinity of plasminogen activators to their fibrinolytic potency, the rate of lysis of supported human plasma clots formed in the presence of unmodified or active-centre-acylated precursors of plasminogen activators was studied as a function of the concentration of enzyme derivative. The concentrations of unmodified enzyme giving 50% lysis/h in this assay were 0.9, 2.0 and 11.0 nM for tissue-type plasminogen activator, streptokinase.plasmin(ogen) and urokinase respectively. However, the potencies of active-centre-acylated derivatives of these enzymes suggested that acylated-tissue plasminogen activator and streptokinase.plasminogen complexes of comparable hydrolytic stability were of comparable potency. Both types of acyl-enzyme were significantly more potent than acyl-urokinases.  相似文献   

8.
Interaction of plasminogen and fibrin in plasminogen activation   总被引:2,自引:0,他引:2  
Glu1-, Lys77-, miniplasminogens, kringle 1-3, kringle 1-5A, and kringle 1-5R were able to bind with fibrin, while microplasminogen and kringle 4 did not bind significantly. Kringle 1-5A, but not kringle 1-3, effectively inhibited the binding of Glu1-, Lys77-, and miniplasminogens with fibrin. Miniplasminogen also inhibited the binding of Glu1-plasminogen with fibrin. The binding of kringle 1-3 with fibrin was blocked by mini- or Glu1-plasminogen. It is therefore evident that there are two fibrin-binding domains in plasminogen and that the one in kringle 5 is of higher affinity than that in kringle 1-3. CNBr cleavage products of fibrinogen effectively enhanced the activation of Glu1-, Lys77-, or miniplasminogens, but not microplasminogen, by tissue-type plasminogen activator. Kringle 1-5, but not kringle 1-3, dose-dependently inhibited the enhancement by fibrinogen degradation products of Glu1-plasminogen activation by the activator. Lysine and epsilon-aminocaproic acid could inhibit the binding of plasminogens and plasminogen derivatives with fibrin and block the enhancement effect of fibrinogen degradation products on plasminogen activation. The data clearly illustrate that the binding of plasminogen with fibrin, mainly determined by kringle 5, is essential for effective activation by tissue-type plasminogen activator. However, the presence of kringle 1-4 in the plasminogen molecule is required for the full enhancing effect since the kcat/Km of miniplasminogen activation in the presence of fibrinogen degradation products was 8.2 microM-1 min-1 which is significantly less than 52.0 microM-1 min-1 of Glu1-plasminogen.  相似文献   

9.
Fibronectin is a dimeric glycoprotein (Mr 440,000) involved in many adhesive processes. During blood coagulation it is bound and cross-linked to fibrin. Fibrin binding is achieved by structures (type I repeats) which are homologous to the "finger" domain of tissue plasminogen activator. Tissue plasminogen activator also binds to fibrin via the finger domain and additionally via the "kringle 2" domain. Fibrin binding of tissue plasminogen activator results in stimulation of its activity and plays a crucial role in fibrinolysis. Since fibronectin might interfere with this binding, we studied the effect of fibronectin on plasmin formation by tissue plasminogen activator. In the absence of fibrin, fibronectin had no effect on plasminogen activation. In the presence of stimulating fibrinogen fragment FCB-2, fibronectin increased the duration of the initial lag phase (= time period until maximally stimulated plasmin formation occurs) and decreased the rate of maximal plasmin formation which occurs after that lag phase mainly by increasing the Michaelis constant (Km). These effects of fibronectin were dose-dependent and were similar with single- and two-chain tissue plasminogen activator. They were also observed with plasmin-pretreated FCB-2. An apparent Ki of 43 micrograms/ml was calculated for the inhibitory effect of fibronectin when plasminogen activation by recombinant single-chain tissue plasminogen activator was studied in the presence of 91 micrograms/ml FCB-2. When a recombinant tissue plasminogen activator mutant lacking the finger domain was used in a system containing FCB-2, no effect of fibronectin was seen, indicating that the inhibitory effect of fibronectin might in fact be due to competition of fibronectin and tissue plasminogen activator for binding to fibrin(ogen) via the finger domain.  相似文献   

10.
TNK-tissue plasminogen activator (TNK-t-PA), a bioengineered variant of tissue-type plasminogen activator (t-PA), has a longer half-life than t-PA because the glycosylation site at amino acid 117 (N117Q, abbreviated N) has been shifted to amino acid 103 (T103N, abbreviated T) and is resistant to inactivation by plasminogen activator inhibitor 1 because of a tetra-alanine substitution in the protease domain (K296A/H297A/R298A/R299A, abbreviated K). TNK-t-PA is more fibrin-specific than t-PA for reasons that are poorly understood. Previously, we demonstrated that the fibrin specificity of t-PA is compromised because t-PA binds to (DD)E, the major degradation product of cross-linked fibrin, with an affinity similar to that for fibrin. To investigate the enhanced fibrin specificity of TNK-t-PA, we compared the kinetics of plasminogen activation for t-PA, TNK-, T-, K-, TK-, and NK-t-PA in the presence of fibrin, (DD)E or fibrinogen. Although the activators have similar catalytic efficiencies in the presence of fibrin, the catalytic efficiency of TNK-t-PA is 15-fold lower than that for t-PA in the presence of (DD)E or fibrinogen. The T and K mutations combine to produce this reduction via distinct mechanisms because T-containing variants have a higher K(M), whereas K-containing variants have a lower k(cat) than t-PA. These results are supported by data indicating that T-containing variants bind (DD)E and fibrinogen with lower affinities than t-PA, whereas the K and N mutations have no effect on binding. Reduced efficiency of plasminogen activation in the presence of (DD)E and fibrinogen but equivalent efficiency in the presence of fibrin explain why TNK-t-PA is more fibrin-specific than t-PA.  相似文献   

11.
The kinetics of the activation of plasminogen by tissue-type plasminogen activator were studied in the presence and the absence of CNBr-digested fibrinogen as a soluble cofactor. Michaelis-Menten kinetics applied and the kinetic parameters obtained were very similar to those previously reported for the activation in the presence of solid phase fibrin (Hoylaerts, M., Rijken, D. C., Lijnen, H. R., and Collen, D. (1982) J. Biol. Chem. 257, 2912-2919). The affinity of the enzyme for plasminogen dramatically increases in the presence of the soluble cofactor while the catalytic rate constant does not change significantly (KM drops from 83 to 0.18 microM and kcat increases from 0.07 to 0.28 s-1 for tissue-type plasminogen activator of melanoma origin). Fragments containing the lysine-binding sites of plasminogen compete with plasminogen for interaction with CNBr-digested fibrinogen. The dissociation constant of this interaction was found to be 4.5 microM for the high affinity lysine-binding site. No difference was found in the kinetic parameters for the activation of plasminogen by either tissue-type plasminogen activator of melanoma origin or by glycosylated forms of tissue-type plasminogen activator obtained by recombinant DNA technology. The present findings obtained in a homogenous liquid milieu support the previously proposed mechanism of the activation of plasminogen by tissue-type plasminogen activator in the presence of fibrin. This mechanism involves binding of both tissue-type plasminogen activator and plasminogen to fibrin.  相似文献   

12.
The interactions between bovine plasminogen and the streptococcal plasminogen activator PauA that culminate in the generation of plasmin are not fully understood. Formation of an equimolar activation complex comprising PauA and plasminogen by non-proteolytic means is a prerequisite to the recruitment of substrate plasminogen; however the determinants that facilitate these interactions have yet to be defined. A mutagenesis strategy comprising nested deletions and random point substitutions indicated roles for both amino and carboxyl-terminal regions of PauA and identified further essential residues within the alpha domain of the plasminogen activator. A critical region within the alpha domain was identified using non-overlapping PauA peptides to block the interaction between PauA and bovine plasminogen, preventing formation of the activation complex. Homology modelling of the activation complex based upon the known structures of streptokinase complexed with human plasmin supported these findings by placing critical residues in close proximity to the plasmin component of the activation complex.  相似文献   

13.
Domain interactions between streptokinase and human plasminogen.   总被引:3,自引:0,他引:3  
J A Loy  X Lin  M Schenone  F J Castellino  X C Zhang  J Tang 《Biochemistry》2001,40(48):14686-14695
Plasmin (Pm), the main fibrinolytic protease in the plasma, is derived from its zymogen plasminogen (Plg) by cleavage of a peptide bond at Arg(561)-Val(562). Streptokinase (SK), a widely used thrombolytic agent, is an efficient activator of human Plg. Both are multiple-domain proteins that form a tight 1:1 complex. The Plg moiety gains catalytic activity, without peptide bond cleavage, allowing the complex to activate other Plg molecules to Pm by conventional proteolysis. We report here studies on the interactions between individual domains of the two proteins and their roles in Plg activation. Individually, all three SK domains activated native Plg. While the SK alpha domain was the most active, its activity was uniquely dependent on the presence of Pm. The SK gamma domain also induced the formation of an active site in Plg(R561A), a mutant that resists proteolytic activation. The alpha and gamma domains together yielded synergistic activity, both in Plg activation and in Plg(R561A) active site formation. However, the synergistic activity of the latter was dependent on the correct N-terminal isoleucine in the alpha domain. Binding studies using surface plasmon resonance indicated that all three domains of SK interact with the Plg catalytic domain and that the beta domain additionally interacts with Plg kringle 5. These results suggest mechanistic steps in SK-mediated Plg activation. In the case of free Plg, complex formation is initiated by the rapid and obligatory interaction between the SK beta domain and Plg kringle 5. After binding of all SK domains to the catalytic domain of Plg, the SK alpha and gamma domains cooperatively induce the formation of an active site within the Plg moiety of the activator complex. Substrate Plg is then recognized by the activator complex through interactions predominately mediated by the SK alpha domain.  相似文献   

14.
Fibrinogen, fibrin, and related fragments have varying stimulatory effects on the initial rate of the activation of human plasminogen ([Glu1]Pg) by recombinant tissue plasminogen activator (rt-PA). A detailed analysis of this enhancement was undertaken using various purified and complexed forms of the known domains of fibrin(ogen) with a view to gaining additional knowledge regarding the substructures of fibrinogen and fibrin that are important for their stimulatory capacities. Both arvin-mediated fibrin, as well as fibrinogen fragments generated as a result of its cleavage with CNBr, stimulate the activation in a biphasic manner, most likely as a result of changes in the promoter molecule accompanying the denaturation processes that are normally employed to either solubilize or generate these particular promoters. Using purified fibrinogen and fibrin fragments, it was found that fragment E, which binds to [Glu1]Pg, does not enhance the activation reaction, while fragment D1 has a potentiating effect. This suggests that the binding of [Glu1]Pg to fibrin(ogen) alone is not, in itself, sufficient for stimulation of activation to occur, but that the rt-PA-fibrin(ogen) interaction is fundamental to this same process. All purified and mixtures of fragments containing the fragment D domain (e.g., D2E, X-oligomer, fragment X) stimulate the reaction to a greater degree than fibrinogen and fragment D1. It is concluded that the fibrinogen D domain is asine qua non for the enhancement reaction, while structures containing the E domain had a symbiotic effect on enhancement.On study leave from the National Institute for Biological Standards and Control, South Mimms, HERTS EN6 3QG, England.  相似文献   

15.
Vampire bat saliva contains a plasminogen activator that presumably assists these hematophagous animals during feeding. Here, we report that the vampire bat salivary plasminogen activator, Bat-PA, is homologous to tissue-type plasminogen activator (t-PA) but contains neither a kringle 2 domain nor a plasmin-sensitive processing site. Three Bat-PA species corresponding to full-length, finger-, and finger- epidermal growth factor homology domain- forms of t-PA have been isolated. Bat-PA(H), the full-length form, was purified and its activity has been characterized. Bat-PA(H) and t-PA are of similar efficacy when monitored for their abilities to catalyze plasminogen activation in the presence of a fibrin cofactor. Interestingly, Bat-PA activity toward plasminogen is stimulated 45,000-fold in the presence of fibrin I; the corresponding value for t-PA is only 205-fold. Bat-PA(H) is the only Bat-PA species which binds tightly to fibrin, although each of the three species exhibit remarkable stimulation by a fibrin cofactor.  相似文献   

16.
The NH(2) terminus (residues 1-59) of streptokinase (SK) is a molecular switch that permits fibrin-independent plasminogen activation. Targeted mutations were made in recombinant (r) SK1-59 to identify structural interactions required for this process. Mutagenesis established the functional roles of Phe-37and Glu-39, which were projected to interact with microplasmin in the activator complex. Mutation of Leu-42 (rSK1-59(L42A)), a conserved residue in the SK fibronectin motif that lacks interactions with microplasmin, strongly reduced plasminogen activation (k(cat) decreased 50-fold) but not amidolysis (k(cat) decreased 1.5-fold). Otherwise rSK1-59(L42A) and native rSK1-59 were indistinguishable in several parameters. Both displayed saturable and specific binding to Glu-plasminogen or the remaining SK fragment (rSKDelta59). Similarly rSK1-59 and rSK1-59(L42A) bound simultaneously to two different plasminogen molecules, indicating that both plasminogen binding sites were intact. However, when bound to SKDelta59, rSK1-59(L42A) was less effective than rSK1-59 in restructuring the native conformation of the SK A domain, as detected by conformation-dependent monoclonal antibodies. In the light of previous studies, these data provide evidence that SK1-59 contributes to fibrin-independent plasminogen activation through 1) intermolecular interactions with the plasmin in the activator complex, 2) binding interactions with the plasminogen substrate, and 3) intramolecular interactions that structure the A domain of SK for Pg substrate processing.  相似文献   

17.
The rate of activation of plasminogen by tissue-type plasminogen activator is greatly increased by fibrin, but not by fibrinogen. A possible explanation for this phenomenon could be that conformational changes take place during the transformation of fibrinogen to fibrin which lead to exposure of sites involved in the accelerated plasmin formation. This is also supported by our recent observation that some enzymatically prepared fragments of fibrinogen and fibrin (D EGTA, D-dimer, Y) and also CNBr fragment 2 from fibrinogen have this property. CNBr fragment 2 consists of amino acid residues A alpha (148-207), B beta (191-224) + (225-242) + (243-305) and gamma 95-265, kept together by disulphide bonds. In order to study the localization of a stimulating site within this structure we purified the chain remnants of CNBr fragment 2 after reduction and carboxymethylation, and found that only A alpha 148-207 was stimulating. This was further confirmed by digesting pure A alpha-chains with CNBr and purifying the resulting A alpha-chain fragments. CNBr digests of B beta- and gamma-chains were not stimulatory. The A alpha-chain remnant (residues 111-197) in D EGTA and D-dimer also comprise the major part (residues A alpha 148-197) of the CNBr A alpha-chain fragment. We conclude that a site capable of accelerating the plasminogen activation by tissue-type plasminogen activator preexists in fibrinogen, that this site becomes exposed upon fibrin formation or disruption of fibrinogen by plasmin or CNBr and that this site is within the stretch A alpha 148-197, which is retained in the A alpha-chain remnants of fibrinogen degradation products.  相似文献   

18.
Streptokinase may be less effective at saving lives in patients with heart attacks because it explosively generates plasmin in the bloodstream at sites distant from fibrin clots. We hypothesized that this rapid plasmin generation is due to SK's singular capacity to nonproteolytically generate the active protease SK x Pg*, and we examined whether the kringle domains regulate this process. An SK mutant lacking Ile-1 (deltaIle1-SK) does not form SK x Pg*, although it will form complexes with plasmin that can activate plasminogen. When compared to SK, deltaIle1-SK diminished the generation of plasmin in plasma by more than 30-fold, demonstrating that the formation of SK x Pg* plays an important role in SK activity in the blood. The rate of SK x Pg* formation (measured by an active site titrant) was much slower in Glu-Pg, which contains five kringle domains, than in Pg forms containing one kringle (mini-Pg) or no kringles (micro-Pg). In a similar manner, Streptococcus uberis Pg activator (SUPA), an SK-like molecule, generated SUPA x Pg* much slower with bovine Pg than bovine micro-Pg. The velocity of SK x Pg* formation was regulated by agents that influence the conformation of Pg through interactions with the kringle domains. Chloride ions, which maintain the compact Pg conformation, hindered SK x Pg* formation. In contrast, epsilon-aminocaproic acid, fibrin, and fibrinogen, which induce an extended Pg conformation, accelerated the formation of SK x Pg*. In summary, the explosive generation of plasmin in blood or plasma, which diminishes SK's therapeutic effects, is attributable to the formation of SK x Pg*, and this process is governed by kringle domains.  相似文献   

19.
Transformation of fibrinogen into fibrin with consequent formation of the fibrin clot trimeric structure is one of the final steps in the blood coagulation system. The plasminogen activation by the tissue plasminogen activator (t-PA) is one of the fibrinolysis system key reactions. The effect of different factors on transformation of plasminogen into plasmin is capable to change essentially the equilibrium between coagulation and fibrinolytic sections of haemostasis system. We have studied the plasminogen activation by tissue plasminogen activator on fibrin clots surface formed on the interface between two phases and in presence of one phase. The t-PA plasminogen activation rate on fibrin clots both with film and without it the latter has been analyzed. These data allow to assume that the changes of fibrin clot structure depend on its formations, as well as are capable to influence essentially on plasminogen activation process by means of its tissue activating agent.  相似文献   

20.
The vampire bat salivary plasminogen activator (BatPA) is virtually inactive toward Glu-plasminogen in the absence of a fibrin-like cofactor, unlike human tissue-type plasminogen activator (tPA) (the kcat/Km values were 4 and 470 M-1 s-1, respectively). In the presence of fibrin II, tPA and BatPA activated Glu-plasminogen with comparable catalytic efficiencies (158,000 and 174,000 M-1 s-1, respectively). BatPA's cofactor requirement was partially satisfied by polymeric fibrin I (54,000 M-1 s-1), but monomeric fibrin I was virtually ineffective (970 M-1 s-1). By comparison, a variety of monomeric and polymeric fibrin-like species markedly enhanced tPA-mediated activation of Glu-plasminogen. Fragment X polymer was 2-fold better but 9-fold worse as cofactor for tPA and BatPA, respectively, relative to fibrin II. Fibrinogen, devoid of plasminogen, was a 10-fold better cofactor for tPA than fibrinogen rigorously depleted of plasminogen, Factor XIII, and fibronectin; the enhanced stimulatory effect of the less-purified fibrinogen was apparently due to the presence of Factor XIII. By contrast, the two fibrinogen preparations were equally poor cofactors of BatPA-mediated activation of Glu-plasminogen. BatPA possessed only 23 and 4% of the catalytic efficiencies of tPA and two-chain tPA, respectively, in hydrolyzing the chromogenic substrate Spectrozyme tPA. However in the presence of fibrin II, BatPA and tPA exhibited similar kcat/Km values for the hydrolysis of Spectrozyme tPA. Our data revealed that BatPA, unlike tPA, displayed a strict and fastidious requirement for polymeric fibrin I or II. Consequently, BatPA may preferentially promote plasmin generation during a narrow temporal window of fibrin formation and dissolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号