首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Structural analysis of multi-domain protein complexes is a key challenge in current biology and a prerequisite for understanding the molecular basis of essential cellular processes. The use of solution techniques is important for characterizing the quaternary arrangements and dynamics of domains and subunits of these complexes. In this respect solution NMR is the only technique that allows atomic- or residue-resolution structure determination and investigation of dynamic properties of multi-domain proteins and their complexes. As experimental NMR data for large protein complexes are sparse, it is advantageous to combine these data with additional information from other solution techniques. Here, the utility and computational approaches of combining solution state NMR with small-angle X-ray and Neutron scattering (SAXS/SANS) experiments for structural analysis of large protein complexes is reviewed. Recent progress in experimental and computational approaches of combining NMR and SAS are discussed and illustrated with recent examples from the literature. The complementary aspects of combining NMR and SAS data for studying multi-domain proteins, i.e. where weakly interacting domains are connected by flexible linkers, are illustrated with the structural analysis of the tandem RNA recognition motif (RRM) domains (RRM1-RRM2) of the human splicing factor U2AF65 bound to a nine-uridine (U9) RNA oligonucleotide.  相似文献   

2.
Small angle solution X‐ray and neutron scattering recently resurfaced as powerful tools to address an array of biological problems including folding, intrinsic disorder, conformational transitions, macromolecular crowding, and self or hetero‐assembling of biomacromolecules. In addition, small angle solution scattering complements crystallography, nuclear magnetic resonance spectroscopy, and other structural methods to aid in the structure determinations of multidomain or multicomponent proteins or nucleoprotein assemblies. Neutron scattering with hydrogen/deuterium contrast variation, or X‐ray scattering with sucrose contrast variation to a certain extent, is a convenient tool for characterizing the organizations of two‐component systems such as a nucleoprotein or a lipid‐protein assembly. Time‐resolved small and wide‐angle solution scattering to study biological processes in real time, and the use of localized heavy‐atom labeling and anomalous solution scattering for applications as FRET‐like molecular rulers, are amongst promising newer developments. Despite the challenges in data analysis and interpretation, these X‐ray/neutron solution scattering based approaches hold great promise for understanding a wide variety of complex processes prevalent in the biological milieu.  相似文献   

3.
NMR spectroscopy and X-ray crystallography are two premium methods for determining the atomic structures of macro-biomolecular complexes. Each method has unique strengths and weaknesses. While the two techniques are highly complementary, they have generally been used separately to address the structure and functions of biomolecular complexes. In this review, we emphasize that the combination of NMR spectroscopy and X-ray crystallography offers unique power for elucidating the structures of complicated protein assemblies. We demonstrate, using several recent examples from our own laboratory, that the exquisite sensitivity of NMR spectroscopy in detecting the conformational properties of individual atoms in proteins and their complexes, without any prior knowledge of conformation, is highly valuable for obtaining the high quality crystals necessary for structure determination by X-ray crystallography. Thus NMR spectroscopy, in addition to answering many unique structural biology questions that can be addressed specifically by that technique, can be exceedingly powerful in modern structural biology when combined with other techniques including X-ray crystallography and cryo-electron microscopy.  相似文献   

4.
5.
Analytical ultracentrifugation and solution scattering provide different multi-parameter structural and compositional information on proteins. The joint application of the two methods supplements high resolution structural studies by crystallography and NMR. We summarise the procedures required to obtain equivalent ultracentrifugation and X-ray and neutron scattering data. The constrained modelling of ultracentrifugation and scattering data is important to confirm the experimental data analysis and yields families of best-fit molecular models for comparison with crystallography and NMR structures. This modelling of ultracentrifugation and scattering data is described in terms of starting models, their conformational randomisation in trial-and-error fits, and the identification of the final best-fit models. Seven applications of these methods are described to illustrate the current state-of-the-art. These include the determination of antibody solution structures (the human IgG4 subclass, and oligomeric forms of human IgA and its secretory component), the solution structures of the complement proteins of innate immunity (Factor H and C3/C3u) and their interactions with macromolecular ligands (C-reactive protein), and anionic polysaccharides (heparin). Complementary features of joint ultracentrifugation and scattering experiments facilitate an improved understanding of crystal structures (illustrated for C3/C3u, C-reactive protein and heparin). If a large protein or its complex cannot be crystallised, the joint ultracentrifugation-scattering approach provides a means to obtain an overall macromolecular structure.  相似文献   

6.
7.
Small-angle scattering of X-rays (SAXS) is an established method to study the overall structure and structural transitions of biological macromolecules in solution. For folded proteins, the technique provides three-dimensional low resolution structures ab initio or it can be used to drive rigid-body modeling. SAXS is also a powerful tool for the quantitative analysis of flexible systems, including intrinsically disordered proteins (IDPs), and is highly complementary to the high resolution methods of X-ray crystallography and NMR. Here we present the basic principles of SAXS and review the main approaches to the characterization of IDPs and flexible multidomain proteins using SAXS. Together with the standard approaches based on the analysis of overall parameters, a recently developed Ensemble Optimization Method (EOM) is now available. The latter method allows for the co-existence of multiple protein conformations in solution compatible with the scattering data. Analysis of the selected ensembles provides quantitative information about flexibility and also offers insights into structural features. Examples of the use of SAXS and combined approaches with NMR, X-ray crystallography, and computational methods to characterize completely or partially disordered proteins are presented.  相似文献   

8.
Crystallography supplies unparalleled detail on structural information critical for mechanistic analyses; however, it is restricted to describing low energy conformations of macromolecules within crystal lattices. Small angle X-ray scattering (SAXS) offers complementary information about macromolecular folding, unfolding, aggregation, extended conformations, flexibly linked domains, shape, conformation, and assembly state in solution, albeit at the lower resolution range of about 50 A to 10 A resolution, but without the size limitations inherent in NMR and electron microscopy studies. Together these techniques can allow multi-scale modeling to create complete and accurate images of macromolecules for modeling allosteric mechanisms, supramolecular complexes, and dynamic molecular machines acting in diverse processes ranging from eukaryotic DNA replication, recombination and repair to microbial membrane secretion and assembly systems. This review addresses both theoretical and practical concepts, concerns and considerations for using these techniques in conjunction with computational methods to productively combine solution scattering data with high-resolution structures. Detailed aspects of SAXS experimental results are considered with a focus on data interpretation tools suitable to model protein and nucleic acid macromolecular structures, including membrane protein, RNA, DNA, and protein-nucleic acid complexes. The methods discussed provide the basis to examine molecular interactions in solution and to study macromolecular flexibility and conformational changes that have become increasingly relevant for accurate understanding, simulation, and prediction of mechanisms in structural cell biology and nanotechnology.  相似文献   

9.
随着同步辐射装置的建设与发展及各种建模方法的产生与完善,小角X-射线散射(small angle X-ray scattering,SAXS)法已经逐渐成为结构生物学中的一种重要的工具。SAXS可以用于研究溶液中生物大分子的结构及构象变化,蛋白质的组装、折叠等动态过程。本文对SAXS的基本原理、常用的研究技术和建模方法及其应用进行了综述。  相似文献   

10.
The influenza M2 protein forms an acid‐activated and drug‐sensitive proton channel in the virus envelope that is important for the virus lifecycle. The functional properties and high‐resolution structures of this proton channel have been extensively studied to understand the mechanisms of proton conduction and drug inhibition. We review biochemical and electrophysiological studies of M2 and discuss how high‐resolution structures have transformed our understanding of this proton channel. Comparison of structures obtained in different membrane‐mimetic solvents and under different pH using X‐ray crystallography, solution NMR, and solid‐state NMR spectroscopy revealed how the M2 structure depends on the environment and showed that the pharmacologically relevant drug‐binding site lies in the transmembrane (TM) pore. Competing models of proton conduction have been evaluated using biochemical experiments, high‐resolution structural methods, and computational modeling. These results are converging to a model in which a histidine residue in the TM domain mediates proton relay with water, aided by microsecond conformational dynamics of the imidazole ring. These mechanistic insights are guiding the design of new inhibitors that target drug‐resistant M2 variants and may be relevant for other proton channels.  相似文献   

11.
Proteins are inherently dynamic macromolecules that exist in equilibrium among multiple conformational states, and motions of protein backbone and side chains are fundamental to biological function. The ability to characterize the conformational landscape is particularly important for intrinsically disordered proteins, multidomain proteins, and weakly bound complexes, where single-structure representations are inadequate. As the focus of structural biology shifts from relatively rigid macromolecules toward larger and more complex systems and molecular assemblies, there is a need for structural approaches that can paint a more realistic picture of such conformationally heterogeneous systems. Here, we review reweighting methods for elucidation of structural ensembles based on experimental data, with the focus on applications to multidomain proteins.  相似文献   

12.
Structural biology offers a versatile arsenal of techniques and methods to investigate the structure and conformational dynamics of proteins and their assemblies. The growing field of targeted protein degradation centres on the premise of developing small molecules, termed degraders, to induce proximity between an E3 ligase and a protein of interest to be signalled for degradation. This new drug modality brings with it new opportunities and challenges to structural biologists. Here we discuss how several structural biology techniques, including nuclear magnetic resonance, cryo-electron microscopy, structural mass spectrometry and small angle scattering, have been explored to complement X-ray crystallography in studying degraders and their ternary complexes. Together the studies covered in this review make a case for the invaluable perspectives that integrative structural biology techniques in solution can bring to understanding ternary complexes and designing degraders.  相似文献   

13.
Errata     
Abstract

Mass spectrometry (MS)-based proteomics is an unrivaled tool for studying complex biological systems and diseases in the post-genomic era. In recent years, MS has emerged as a powerful structural biological tool to characterize protein conformation and conformational dynamics. The advantages of MS in structural studies are most evident for membrane proteins such as GPCRs (G protein-coupled receptors), where other well-established structural methods such as X-ray crystallography and NMR remain challenging. For proteins with available high-resolution structures, MS-based structural strategies can provide valuable, previously inaccessible information on protein conformational changes and dynamics, protein motion/flexibility, ligand–protein binding, and protein–protein interfaces. In the past several years, we have developed and adapted a number of MS-based structural approaches, such as CDSiL-MS (Conformational changes and Dynamics using Stable-isotope Labeling and MS), CXMS (Crosslinking/MS) and HDXMS (Hydrogen-Deuterium Exchange MS), to study protein structures and conformational dynamics in human β2-adrenegic receptor (β2AR) signaling. In this mini-review, we will highlight several examples demonstrating the power of MS in structural analysis to better elucidate the structural basis of GPCR signaling, particularly through the β-arrestin-mediated GPCR signaling pathway.  相似文献   

14.
After gradually moving away from preparation methods prone to artefacts such as plastic embedding and negative staining for cell sections and single particles, the field of cryo electron microscopy (cryo‐EM) is now heading off at unprecedented speed towards high‐resolution analysis of biological objects of various sizes. This ‘revolution in resolution’ is happening largely thanks to new developments of new‐generation cameras used for recording the images in the cryo electron microscope which have much increased sensitivity being based on complementary metal oxide semiconductor devices. Combined with advanced image processing and 3D reconstruction, the cryo‐EM analysis of nucleoprotein complexes can provide unprecedented insights at molecular and atomic levels and address regulatory mechanisms in the cell. These advances reinforce the integrative role of cryo‐EM in synergy with other methods such as X‐ray crystallography, fluorescence imaging or focussed‐ion beam milling as exemplified here by some recent studies from our laboratory on ribosomes, viruses, chromatin and nuclear receptors. Such multi‐scale and multi‐resolution approaches allow integrating molecular and cellular levels when applied to purified or in situ macromolecular complexes, thus illustrating the trend of the field towards cellular structural biology.  相似文献   

15.
The ribosome as a complex molecular machine undergoes significant conformational changes while synthesizing a protein molecule. Molecular dynamics simulations have been used as complementary approaches to X-ray crystallography and cryoelectron microscopy, as well as biochemical methods, to answer many questions that modern structural methods leave unsolved. In this review, we demonstrate that all-atom modeling of ribosome molecular dynamics is particularly useful in describing the process of tRNA translocation, atomic details of behavior of nascent peptides, antibiotics, and other small molecules in the ribosomal tunnel, and the putative mechanism of allosteric signal transmission to functional sites of the ribosome.  相似文献   

16.
X-ray solution scattering in both the small-angle (SAXS) and wide-angle (WAXS) regimes is making an increasing impact on our understanding of biomolecular complexes. The accurate calculation of WAXS patterns from atomic coordinates has positioned the approach for rapid growth and integration with existing Structural Genomics efforts. WAXS data are sensitive to small structural changes in proteins; useful for calculation of the pair-distribution function at relatively high resolution; provides a means to characterize the breadth of the structural ensemble in solution; and can be used to identify proteins with similar folds. WAXS data are often used to test structural models, identify structural similarities and characterize structural changes. WAXS is highly complementary to crystallography and NMR. It holds great potential for the testing of structural models of proteins; identification of proteins that may exhibit novel folds; characterization of unfolded or natively disordered proteins; and detection of structural changes associated with protein function.  相似文献   

17.
The field of membrane structural biology represents a fast-moving field with exciting developments including native nanodiscs that allow preparation of complexes of post-translationally modified proteins bound to biological lipids. This has led to conceptual advances including biological membrane:protein assemblies or “memteins” as the fundamental functional units of biological membranes. Tools including cryo-electron microscopy and X-ray crystallography are maturing such that it is becoming increasingly feasible to solve structures of large, multicomponent complexes, while complementary methods including nuclear magnetic resonance spectroscopy yield unique insights into interactions and dynamics. Challenges remain, including elucidating exactly how lipids and ligands are recognized at atomic resolution and transduce signals across asymmetric bilayers. In this special volume some of the latest thinking and methods are gathered through the analysis of a range of transmembrane targets. Ongoing work on areas including polymer design, protein labelling and microfluidic technologies will ensure continued progress on improving resolution and throughput, providing deeper understanding of this most important group of targets.  相似文献   

18.
Oligomeric proteins are important targets for structure determination in solution. While in most cases the fold of individual subunits can be determined experimentally, or predicted by homology‐based methods, protein–protein interfaces are challenging to determine de novo using conventional NMR structure determination protocols. Here we focus on a member of the bet‐V1 superfamily, Aha1 from Colwellia psychrerythraea. This family displays a broad range of crystallographic interfaces none of which can be reconciled with the NMR and SAXS data collected for Aha1. Unlike conventional methods relying on a dense network of experimental restraints, the sparse data are used to limit conformational search during optimization of a physically realistic energy function. This work highlights a new approach for studying minor conformational changes due to structural plasticity within a single dimeric interface in solution. Proteins 2015; 83:309–317. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
Osmolytes are small molecules that play a central role in cellular homeostasis and the stress response by maintaining protein thermodynamic stability at controlled levels. The underlying physical chemistry that describes how different osmolytes impact folding free energy is well understood, however little is known about their influence on other crucial aspects of protein behavior, such as native‐state conformational changes. Here we investigate this issue with the Hsp90 molecular chaperone, a large dimeric protein that populates a complex conformational equilibrium. Using small angle X‐ray scattering we observe dramatic osmolyte‐dependent structural changes within the native ensemble. The degree to which different osmolytes affect the Hsp90 conformation strongly correlates with thermodynamic metrics of their influence on stability. This observation suggests that the well‐established osmolyte principles that govern stability also apply to large‐scale conformational changes, a proposition that is corroborated by structure‐based fitting of the scattering data, surface area comparisons and m‐value analysis. This approach shows how osmolytes affect a highly cooperative open/closed structural transition between two conformations that differ by a domain‐domain interaction. Hsp90 adopts an additional ligand‐specific conformation in the presence of ATP and we find that osmolytes do not significantly affect this conformational change. Together, these results extend the scope of osmolytes by suggesting that they can maintain protein conformational heterogeneity at controlled levels using similar underlying principles that allow them to maintain protein stability; however the relative impact of osmolytes on different structural states can vary significantly.  相似文献   

20.
Determining the atomic resolution structures of membrane proteins is of particular interest in contemporary structural biology. Helical membrane proteins constitute one-third of the expressed proteins encoded in a genome, many drugs have membrane-bound proteins as their receptors, and mutations in membrane proteins result in human diseases. Although integral membrane proteins provide daunting technical challenges for all methods of protein structure determination, nuclear magnetic resonance (NMR) spectroscopy can be an extremely versatile and powerful method for determining their structures and characterizing their dynamics, in lipid environments that closely mimic the cell membranes. Once milligram amounts of isotopically labeled protein are expressed and purified, micelle samples can be prepared for solution NMR analysis, and lipid bilayer samples can be prepared for solid-state NMR analysis. The two approaches are complementary and can provide detailed structural and dynamic information. This paper describes the steps for membrane protein structure determination using solution and solid-state NMR. The methods for protein expression and purification, sample preparation and NMR experiments are described and illustrated with examples from the FXYD proteins, a family of regulatory subunits of the Na,K-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号