首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We used solid-state deuterium NMR spectroscopy and an approach involving geometric analysis of labeled alanines (GALA method) to examine the structure and orientation of a designed synthetic hydrophobic, membrane-spanning alpha-helical peptide in phosphatidylcholine (PC) bilayers. The 19-amino-acid peptide consists of an alternating leucine and alanine core, flanked by tryptophans that serve as interfacial anchors: acetyl-GWW(LA)(6)LWWA-ethanolamine (WALP19). A single deuterium-labeled alanine was introduced at different positions within the peptide. Peptides were incorporated in oriented bilayers of dilauroyl- (di-C12:0-), dimyristoyl- (di-C14:0-), or dioleoyl- (di-C18:1(c)-) phosphatidylcholine. The NMR data fit well to a WALP19 orientation characterized by a distinctly nonzero tilt, approximately 4 degrees from the membrane normal, and rapid reorientation about the membrane normal in all three lipids. Although the orientation of WALP19 varies slightly in the different lipids, hydrophobic mismatch does not seem to be the dominant factor causing the tilt. We suggest rather that the peptide itself has an inherently preferred tilted orientation, possibly related to peptide surface characteristics or the disposition of tryptophan indole anchors relative to the lipids, the peptide backbone, and the membrane/water interface. Additionally, the data allow us to define more precisely the local alanine geometry in this membrane-spanning alpha-helix.  相似文献   

2.
Synthetic model peptides have proven useful for examining fundamental peptide-lipid interactions. A frequently employed peptide design consists of a hydrophobic core of Leu-Ala residues with polar or aromatic amino acids flanking each side at the interfacial positions, which serve to "anchor" a specific transmembrane orientation. For example, WALP family peptides (acetyl-GWW(LA)(n)LWWA-[ethanol]amide), anchored by four Trp residues, have received particular attention in both experimental and theoretical studies. A recent modification proved successful in reducing the number of Trp anchors to only one near each end of the peptide. The resulting GWALP23 (acetyl-GGALW(5)(LA)(6)LW(19)LAGA-[ethanol]amide) displays reduced dynamics and greater sensitivity to lipid-peptide hydrophobic mismatch than traditional WALP peptides. We have further modified GWALP23 to incorporate a single tyrosine, replacing W(5) with Y(5). The resulting peptide, Y(5)GWALP23 (acetyl-GGALY(5)(LA)(6)LW(19)LAGA-amide), has a single Trp residue that is sensitive to fluorescence experiments. By incorporating specific (2)H and (15)N labels in the core sequence of Y(5)GWALP23, we were able to use solid-state NMR spectroscopy to examine the peptide orientation in hydrated lipid bilayer membranes. The peptide orients well in membranes and gives well-defined (2)H quadrupolar splittings and (15)N/(1)H dipolar couplings throughout the core helical sequence between the aromatic residues. The substitution of Y(5) for W(5) has remarkably little influence on the tilt or dynamics of GWALP23 in bilayer membranes of the phospholipids DOPC, DMPC, or DLPC. A second analogue of the peptide with one Trp and two Tyr anchors, Y(4,5)GWALP23, is generally less responsive to the bilayer thickness and exhibits lower apparent tilt angles with evidence of more extensive dynamics. In general, the peptide behavior with multiple Tyr anchors appears to be quite similar to the situation when multiple Trp anchors are present, as in the original WALP series of model peptides.  相似文献   

3.
To gain insight into the parameters that determine the arrangement of proteins in membranes, (2)H NMR experiments were performed to analyze tilt and rotation angles of membrane-spanning alpha-helical model peptides upon incorporation in diacylphosphatidylcholine bilayers with varying thickness. The peptides consisted of the sequence acetyl-GW(2)(LA)(8)LW(2)A-NH(2) (WALP23) and analogues thereof, in which the interfacial Trp residues were replaced by Lys (KALP23) and/or the hydrophobic sequence was replaced by Leu (WLP23 and KLP23). The peptides were synthesized with a single deuterium-labeled alanine at four different positions along the hydrophobic segment. For all peptides a small but systematic increase in tilt angle was observed upon decreasing the bilayer thickness. However, significantly larger tilt angles were obtained for the Lys-flanked KALP23 than for the Trp-flanked WALP23, suggesting that interfacial anchoring interactions of Trp may inhibit tilting. Increasing the hydrophobicity resulted in an increase in tilt angle for the Trp-flanked analogue only. For all peptides the maximum tilt angle obtained was remarkably small (less than 12 degrees ), suggesting that further tilting is inhibited, most likely due to unfavorable packing of lipids around a tilted helix. The results furthermore showed that the direction of tilt is determined almost exclusively by the flanking residues: Trp- and Lys-flanked peptides were found to have very different rotation angles, which were influenced significantly neither by hydrophobicity of the peptides nor by the extent of hydrophobic mismatch. Finally, very small changes in the side chain angles of the deuterated alanine probes were observed in Trp-flanked peptides, suggesting that these peptides may decrease their hydrophobic length to help them to adapt to thin membranes.  相似文献   

4.
We used atomic force microscopy (AFM) to study the lateral organization of transmembrane TmAW(2)(LA)(n)W(2)Etn peptides (WALP peptides) incorporated in phospholipid bilayers. These well-studied model peptides consist of a hydrophobic alanine-leucine stretch of variable length, flanked on each side by two tryptophans. They were incorporated in saturated phosphatidylcholine (PC) vesicles, which were deposited on a solid substrate via the vesicle fusion method, yielding hydrated gel-state supported bilayers. At low concentrations (1 mol %) WALP peptides induced primarily line-type depressions in the bilayer. In addition, striated lateral domains were observed, which increased in amount and size (from 25 nm up to 10 microm) upon increasing peptide concentration. At high peptide concentration (10 mol %), the bilayer consisted mainly of striated domains. The striated domains consist of line-type depressions and elevations with a repeat distance of 8 nm, which form an extremely ordered, predominantly hexagonal pattern. Overall, this pattern was independent of the length of the peptides (19-27 amino acids) and the length of the lipid acyl chains (16-18 carbon atoms). The striated domains could be pushed down reversibly by the AFM tip and are thermodynamically stable. This is the first direct visualization of alpha-helical transmembrane peptide-lipid domains in a bilayer. We propose that these striated domains consist of arrays of WALP peptides and fluidlike PC molecules, which appear as low lines. The presence of the peptides perturbs the bilayer organization, resulting in a decrease in the tilt of the lipids between the peptide arrays. These lipids therefore appear as high lines.  相似文献   

5.
The orientation and motion of a model lysine-terminated transmembrane polypeptide were investigated by molecular dynamics simulation. Recent 2H NMR studies of synthetic polypeptides with deuterated alanine side chains suggest that such transmembrane polypeptides undergo fast, axially symmetric reorientation about the bilayer normal but have a preferred average azimuthal orientation about the helix axis. In this work, interactions that might contribute to this behavior were investigated in a simulated system consisting of 64 molecules of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and one alpha-helical polypeptide with the sequence acetyl-KK-(LA)11-KK-amide. In one simulation, initiated with the peptide oriented along the bilayer normal, the system was allowed to evolve for 8.5 ns at 1 atm of pressure and a temperature of 55 degrees C. A second simulation was initiated with the peptide orientation chosen to match a set of experimentally observed alanine methyl deuteron quadrupole splittings and allowed to proceed for 10 ns. Simulated alanine methyl group orientations were found to be inequivalent, a result that is consistent with 2H NMR observations of specifically labeled polypeptides in POPC bilayers. Helix tilt varied substantially over the durations of both simulations. In the first simulation, the peptide tended toward an orientation about the helix axis similar to that suggested by experiment. In the second simulation, orientation about the helix axis tended to return to this value after an excursion. These results provide some insight into how interactions at the bilayer surface can constrain reorientation about the helix axis while accommodating large changes in helix tilt.  相似文献   

6.
Cell-signaling peptides have been extensively used to transport functional molecules across the plasma membrane into living cells. These peptides consist of a hydrophobic sequence and a cationic nuclear localization sequence (NLS). It has been assumed that the hydrophobic region penetrates the hydrophobic lipid bilayer and delivers the NLS inside the cell. To better understand the transport mechanism of these peptides, in this study, we investigated the structure, orientation, tilt of the peptide relative to the bilayer normal, and the membrane interaction of two cell-signaling peptides, SA and SKP. Results from CD and solid-state NMR experiments combined with molecular dynamics simulations suggest that the hydrophobic region is helical and has a transmembrane orientation with the helical axis tilted away from the bilayer normal. The influence of the hydrophobic mismatch, between the hydrophobic length of the peptide and the hydrophobic thickness of the bilayer, on the tilt angle of the peptides was investigated using thicker POPC and thinner DMPC bilayers. NMR experiments showed that the hydrophobic domain of each peptide has a tilt angle of 15 +/- 3 degrees in POPC, whereas in DMPC, 25 +/- 3 degree and 30 +/- 3 degree tilts were observed for SA and SKP peptides, respectively. These results are in good agreement with molecular dynamics simulations, which predict a tilt angle of 13.3 degrees (SA in POPC), 16.4 degrees (SKP in POPC), 22.3 degrees (SA in DMPC), and 31.7 degrees (SKP in DMPC). These results and simulations on the hydrophobic fragment of SA or SKP suggest that the tilt of helices increases with a decrease in bilayer thickness without changing the phase, order, and structure of the lipid bilayers.  相似文献   

7.
In this study the membrane orientation of a tryptophan-flanked model peptide, WALP23, was determined by using peptides that were labeled at different positions along the sequence with the environmentally sensitive fluorescent label BADAN. The fluorescence properties, reflecting the local polarity, were used to determine the tilt and rotation angles of the peptide based on an ideal α-helix model. For WALP23 inserted in dioleoylphosphatidylcholine (DOPC), an estimated tilt angle of the helix with respect to the bilayer normal of 24° ± 5° was obtained. When the peptides were inserted into bilayers with different acyl chain lengths or containing different concentrations of cholesterol, small changes in tilt angle were observed as response to hydrophobic mismatch, whereas the rotation angle appeared to be independent of lipid composition. In all cases, the tilt angles were significantly larger than those previously determined from 2H NMR experiments, supporting recent suggestions that the relatively long timescale of 2H NMR measurements may result in an underestimation of tilt angles due to partial motional averaging. It is concluded that although the fluorescence technique has a rather low resolution and limited accuracy, it can be used to resolve the discrepancies observed between previous 2H NMR experiments and molecular-dynamics simulations.  相似文献   

8.
In this review we discuss recent insights obtained from well-characterized model systems into the factors that determine the orientation and tilt angles of transmembrane peptides in lipid bilayers. We will compare tilt angles of synthetic peptides with those of natural peptides and proteins, and we will discuss how tilt can be modulated by hydrophobic mismatch between the thickness of the bilayer and the length of the membrane spanning part of the peptide or protein. In particular, we will focus on results obtained on tryptophan-flanked model peptides (WALP peptides) as a case study to illustrate possible consequences of hydrophobic mismatch in molecular detail and to highlight the importance of peptide dynamics for the experimental determination of tilt angles. We will conclude with discussing some future prospects and challenges concerning the use of simple peptide/lipid model systems as a tool to understand membrane structure and function.  相似文献   

9.
Kim T  Jo S  Im W 《Biophysical journal》2011,(12):2922-2928
Solid-state NMR (SSNMR) is a powerful technique to describe the orientations of membrane proteins and peptides in their native membrane bilayer environments. The deuterium (2H) quadrupolar splitting (DQS), one of the SSNMR observables, has been used to characterize the orientations of various single-pass transmembrane (TM) helices using a semistatic rigid-body model such as the geometric analysis of labeled alanine (GALA) method. However, dynamic information of these TM helices, which could be related to important biological function, can be missing or misinterpreted with the semistatic model. We have investigated the orientation of WALP23 in an implicit membrane of dimyristoylglycerophosphocholine by determining an ensemble of structures using multiple conformer models with a DQS restraint potential. When a single conformer is used, the resulting helix orientation (tilt angle (τ) of 5.6 ± 3.2° and rotation angle (ρ) of 141.8 ± 40.6°) is similar to that determined by the GALA method. However, as the number of conformers is increased, the tilt angles of WALP23 ensemble structures become larger (26.9 ± 6.7°), which agrees well with previous molecular dynamics simulation results. In addition, the ensemble structure distribution shows excellent agreement with the two-dimensional free energy surface as a function of WALP23's τ and ρ. These results demonstrate that SSNMR ensemble dynamics provides a means to extract orientational and dynamic information of TM helices from their SSNMR observables and to explain the discrepancy between molecular dynamics simulation and GALA-based interpretation of DQS data.  相似文献   

10.
A new solid-state NMR-based strategy is established for the precise and efficient analysis of orientation and dynamics of transmembrane peptides in fluid bilayers. For this purpose, several dynamically averaged anisotropic constraints, including 13C and 15N chemical shift anisotropies and 13C-15N dipolar couplings, were determined from two different triple-isotope-labeled WALP23 peptides (2H, 13C, and 15N) and combined with previously published quadrupolar splittings of the same peptide. Chemical shift anisotropy tensor orientations were determined with quantum chemistry. The complete set of experimental constraints was analyzed using a generalized, four-parameter dynamic model of the peptide motion, including tilt and rotation angle and two associated order parameters. A tilt angle of 21° was determined for WALP23 in dimyristoylphosphatidylcholine, which is much larger than the tilt angle of 5.5° previously determined from 2H NMR experiments. This approach provided a realistic value for the tilt angle of WALP23 peptide in the presence of hydrophobic mismatch, and can be applied to any transmembrane helical peptide. The influence of the experimental data set on the solution space is discussed, as are potential sources of error.  相似文献   

11.
To better understand the mutual interactions between lipids and membrane-spanning peptides, we investigated the effects of tryptophan-anchored hydrophobic peptides of various lengths on the phase behavior of 1,2-dielaidoylphosphatidylethanolamine (DEPE) dispersions, using (31)P nuclear magnetic resonance and small-angle X-ray diffraction. Designed alpha-helical transmembrane peptides (WALPn peptides, with n being the total number of amino acids) with a hydrophobic sequence of leucine and alanine of varying length, bordered at both ends by two tryptophan membrane anchors, were used as model peptides and were effective at low concentrations in DEPE. Incorporation of 2 mol % of relatively short peptides (WALP14-17) lowered the inverted hexagonal phase transition temperature (T(H)) of DEPE, with an efficiency that seemed to be independent of the extent of hydrophobic mismatch. However, the tube diameter of the H(II) phase induced by the peptides was clearly dependent on mismatch and decreased with shorter peptide length. Longer peptides (WALP19-27) induced a cubic phase, both below and above T(H). Incorporation of WALP27, which is significantly longer than the DEPE bilayer thickness, did not stabilize the bilayer. The longest peptide used, WALP31, hardly affected the lipid's phase behavior, and appeared not to incorporate into the bilayer. The consequences of hydrophobic mismatch between peptides and lipids are therefore more dramatic with shorter peptides. The data allow us to suggest a detailed molecular model of the mechanism by which these transmembrane peptides can affect lipid phase behavior.  相似文献   

12.
The orientation of a beta-sheet membrane peptide in lipid bilayers is determined, for the first time, using two-dimensional (2D) (15)N solid-state NMR. Retrocyclin-2 is a disulfide-stabilized cyclic beta-hairpin peptide with antibacterial and antiviral activities. We used 2D separated local field spectroscopy correlating (15)N-(1)H dipolar coupling with (15)N chemical shift to determine the orientation of multiply (15)N-labeled retrocyclin-2 in uniaxially aligned phosphocholine bilayers. Calculated 2D spectra exhibit characteristic resonance patterns that are sensitive to both the tilt of the beta-strand axis and the rotation of the beta-sheet plane from the bilayer normal and that yield resonance assignment without the need for singly labeled samples. Retrocyclin-2 adopts a transmembrane orientation in dilauroylphosphatidylcholine bilayers, with the strand axis tilted at 20 degrees +/- 10 degrees from the bilayer normal, but changes to a more in-plane orientation in thicker 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyl-choline (POPC) bilayers with a tilt angle of 65 degrees +/- 15 degrees . These indicate that hydrophobic mismatch regulates the peptide orientation. The 2D spectra are sensitive not only to the peptide orientation but also to its backbone (phi, psi) angles. Neither a bent hairpin conformation, which is populated in solution, nor an ideal beta-hairpin with uniform (phi, psi) angles and coplanar strands, agrees with the experimental spectrum. Thus, membrane binding orders the retrocyclin conformation by reducing the beta-sheet curvature but does not make it ideal. (31)P NMR spectra of lipid bilayers with different compositions indicate that retrocyclin-2 selectively disrupts the orientational order of anionic membranes while leaving zwitteronic membranes intact. These structural results provide insights into the mechanism of action of this beta-hairpin antimicrobial peptide.  相似文献   

13.
Protein-lipid interaction and bilayer regulation of membrane protein functions are largely controlled by the hydrophobic match between the transmembrane (TM) domain of membrane proteins and the surrounding lipid bilayer. To systematically characterize responses of a TM helix and lipid adaptations to a hydrophobic mismatch, we have performed a total of 5.8-μs umbrella sampling simulations and calculated the potentials of mean force (PMFs) as a function of TM helix tilt angle under various mismatch conditions. Single-pass TM peptides called WALPn (n = 16, 19, 23, and 27) were used in two lipid bilayers with different hydrophobic thicknesses to consider hydrophobic mismatch caused by either the TM length or the bilayer thickness. In addition, different flanking residues, such as alanine, lysine, and arginine, instead of tryptophan in WALP23 were used to examine their influence. The PMFs, their decomposition, and trajectory analysis demonstrate that 1), tilting of a single-pass TM helix is the major response to a hydrophobic mismatch; 2), TM helix tilting up to ∼10° is inherent due to the intrinsic entropic contribution arising from helix precession around the membrane normal even under a negative mismatch; 3), the favorable helix-lipid interaction provides additional driving forces for TM helix tilting under a positive mismatch; 4), the minimum-PMF tilt angle is generally located where there is the hydrophobic match and little lipid perturbation; 5), TM helix rotation is dependent on the specific helix-lipid interaction; and 6), anchoring residues at the hydrophilic/hydrophobic interface can be an important determinant of TM helix orientation.  相似文献   

14.
Recently, several indications have been found that suggest a preferential interaction between cholesterol and tryptophan residues located near the membrane-water interface. The aim of this study was to investigate by direct methods how tryptophan and cholesterol interact with each other and what the possible consequences are for membrane organization. For this purpose, we used cholesterol-containing model membranes of dimyristoylphosphatidylcholine (DMPC) in which a transmembrane model peptide with flanking tryptophans [acetyl-GWW(LA)8LWWA-amide], called WALP23, was incorporated to mimic interfacial tryptophans of membrane proteins. These model systems were studied with two complementary methods. (1) Steady-state and time-resolved F?rster resonance energy transfer (FRET) experiments employing the fluorescent cholesterol analogue dehydroergosterol (DHE) in combination with a competition experiment with cholesterol were used to obtain information about the distribution of cholesterol in the bilayer in the presence of WALP23. The results were consistent with a random distribution of cholesterol which indicates that cholesterol and interfacial tryptophans are not preferentially located next to each other in these bilayer systems. (2) Solid-state 2H NMR experiments employing either deuterated cholesterol or indole ring-deuterated WALP23 peptides were performed to study the orientation and dynamics of both molecules. The results showed that the quadrupolar splittings of labeled cholesterol were not affected by an interaction with tryptophan-flanked peptides and, vice versa, that the quadrupolar splittings of labeled indole rings in WALP23 are not significantly influenced by addition of cholesterol to the bilayer. Therefore, both NMR and fluorescence spectroscopy results independently show that, at least in the model systems studied here, there is no evidence for a preferential interaction between cholesterol and tryptophans located at the bilayer interface.  相似文献   

15.
A novel mechanism for membrane modulation of transmembrane protein structure, and consequently function, is suggested in which mismatch between the hydrophobic surface of the protein and the hydrophobic interior of the lipid bilayer induces a flexing or bending of a transmembrane segment of the protein. Studies on model hydrophobic transmembrane peptides predict that helices tilt to submerge the hydrophobic surface within the lipid bilayer to satisfy the hydrophobic effect if the helix length exceeds the bilayer width. The hydrophobic surface of transmembrane helix 1 (TM1) of lactose permease, LacY, is accessible to the bilayer, and too long to be accommodated in the hydrophobic portion of a typical lipid bilayer if oriented perpendicular to the membrane surface. Hence, nuclear magnetic resonance (NMR) data and molecular dynamics simulations show that TM1 from LacY may flex as well as tilt to satisfy the hydrophobic mismatch with the bilayer. In an analogous study of the hydrophobic mismatch of TM7 of bovine rhodopsin, similar flexing of the transmembrane segment near the conserved NPxxY sequence is observed. As a control, NMR data on TM5 of lacY, which is much shorter than TM1, show that TM5 is likely to tilt, but not flex, consistent with the close match between the extent of hydrophobic surface of the peptide and the hydrophobic thickness of the bilayer. These data suggest mechanisms by which the lipid bilayer in which the protein is embedded modulates conformation, and thus function, of integral membrane proteins through interactions with the hydrophobic transmembrane helices.  相似文献   

16.
A novel mechanism for membrane modulation of transmembrane protein structure, and consequently function, is suggested in which mismatch between the hydrophobic surface of the protein and the hydrophobic interior of the lipid bilayer induces a flexing or bending of a transmembrane segment of the protein. Studies on model hydrophobic transmembrane peptides predict that helices tilt to submerge the hydrophobic surface within the lipid bilayer to satisfy the hydrophobic effect if the helix length exceeds the bilayer width. The hydrophobic surface of transmembrane helix 1 (TM1) of lactose permease, LacY, is accessible to the bilayer, and too long to be accommodated in the hydrophobic portion of a typical lipid bilayer if oriented perpendicular to the membrane surface. Hence, nuclear magnetic resonance (NMR) data and molecular dynamics simulations show that TM1 from LacY may flex as well as tilt to satisfy the hydrophobic mismatch with the bilayer. In an analogous study of the hydrophobic mismatch of TM7 of bovine rhodopsin, similar flexing of the transmembrane segment near the conserved NPxxY sequence is observed. As a control, NMR data on TM5 of lacY, which is much shorter than TM1, show that TM5 is likely to tilt, but not flex, consistent with the close match between the extent of hydrophobic surface of the peptide and the hydrophobic thickness of the bilayer. These data suggest mechanisms by which the lipid bilayer in which the protein is embedded modulates conformation, and thus function, of integral membrane proteins through interactions with the hydrophobic transmembrane helices.  相似文献   

17.
By using selected (2)H and (15)N labels, we have examined the influence of a central proline residue on the properties of a defined peptide that spans lipid bilayer membranes by solid-state nuclear magnetic resonance (NMR) spectroscopy. For this purpose, GWALP23 (acetyl-GGALW(5)LALALALALALALW(19)LAGA-ethanolamide) is a suitable model peptide that employs, for the purpose of interfacial anchoring, only one tryptophan residue on either end of a central α-helical core sequence. Because of its systematic behavior in lipid bilayer membranes of differing thicknesses [Vostrikov, V. V., et al. (2010) J. Biol. Chem. 285, 31723-31730], we utilize GWALP23 as a well-characterized framework for introducing guest residues within a transmembrane sequence; for example, a central proline yields acetyl-GGALW(5)LALALAP(12)ALALALW(19)LAGA-ethanolamide. We synthesized GWALP23-P12 with specifically placed (2)H and (15)N labels for solid-state NMR spectroscopy and examined the peptide orientation and segmental tilt in oriented DMPC lipid bilayer membranes using combined (2)H GALA and (15)N-(1)H high-resolution separated local field methods. In DMPC bilayer membranes, the peptide segments N-terminal and C-terminal to the proline are both tilted substantially with respect to the bilayer normal, by ~34 ± 5° and 29 ± 5°, respectively. While the tilt increases for both segments when proline is present, the range and extent of the individual segment motions are comparable to or smaller than those of the entire GWALP23 peptide in bilayer membranes. In DMPC, the proline induces a kink of ~30 ± 5°, with an apparent helix unwinding or "swivel" angle of ~70°. In DLPC and DOPC, on the basis of (2)H NMR data only, the kink angle and swivel angle probability distributions overlap those of DMPC, yet the most probable kink angle appears to be somewhat smaller than in DMPC. As has been described for GWALP23 itself, the C-terminal helix ends before Ala(21) in the phospholipids DMPC and DLPC yet remains intact through Ala(21) in DOPC. The dynamics of bilayer-incorporated, membrane-spanning GWALP23 and GWALP23-P12 are less extensive than those observed for WALP family peptides that have more than two interfacial Trp residues.  相似文献   

18.
The aim of this study was to gain insight into how interactions between proteins and lipids in membranes are sensed at the protein-lipid interface. As a probe to analyze this interface, we used deuterium-labeled acyl chains that were covalently linked to a model transmembrane peptide. First, a perdeuterated palmitoyl chain was coupled to the Trp-flanked peptide WALP23 (Ac-CGWW(LA)8LWWA-NH2), and the deuterium NMR spectrum was analyzed in di-C18:1-phosphatidylcholine (PC) bilayers. We found that the chain order of this peptide-linked chain is rather similar to that of a noncovalently coupled perdeuterated palmitoyl chain, except that it exhibits a slightly lower order. Similar results were obtained when site-specific deuterium labels were used and when the palmitoyl chain was attached to the more-hydrophobic model peptide WLP23 (Ac-CGWWL17WWA-NH2) or to the Lys-flanked peptide KALP23 (Ac-CGKK(LA)8LKKA-NH2). The experiments showed that the order of both the peptide-linked chains and the noncovalently coupled palmitoyl chains in the phospholipid bilayer increases in the order KALP23 < WALP23 < WLP23. Furthermore, changes in the bulk lipid bilayer thickness caused by varying the lipid composition from di-C14:1-PC to di-C18:1-PC or by including cholesterol were sensed rather similarly by the covalently coupled chain and the noncovalently coupled palmitoyl chains. The results indicate that the properties of lipids adjacent to transmembrane peptides mostly reflect the properties of the surrounding lipid bilayer, and hence that (at least for the single-span model peptides used in this study) annular lipids do not play a highly specific role in protein-lipid interactions.  相似文献   

19.
Solid-state 2H-NMR is routinely used to determine the alignment of membrane-bound peptides. Here we demonstrate that it can also provide a quantitative measure of the fluctuations around the distinct molecular axes. Using several dynamic models with increasing complexity, we reanalyzed published 2H-NMR data on two representative α-helical peptides: 1), the amphiphilic antimicrobial peptide PGLa, which permeabilizes membranes by going from a monomeric surface-bound to a dimeric tilted state and finally inserting as an oligomeric pore; and 2), the hydrophobic WALP23, which is a typical transmembrane segment, although previous analysis had yielded helix tilt angles much smaller than expected from hydrophobic mismatch and molecular dynamics simulations. Their 2H-NMR data were deconvoluted in terms of the two main helix orientation angles (representing the time-averaged peptide tilt and azimuthal rotation), as well as the amplitudes of fluctuation about the corresponding molecular axes (providing the dynamic picture). The mobility of PGLa is found to be moderate and to correlate well with the respective oligomeric states. WALP23 fluctuates more vigorously, now in better agreement with the molecular dynamics simulations and mismatch predictions. The analysis demonstrates that when 2H-NMR data are fitted to extract peptide orientation angles, an explicit representation of the peptide rigid-body angular fluctuations should be included.  相似文献   

20.
The transmembrane portion of the M2 protein from the Influenza A virus has been studied in hydrated dimyristroylphosphotidylcholine lipid bilayers with solid-state NMR. Orientational constraints were obtained from isotopically labeled peptide samples mechanically aligned between thin glass plates. 15N chemical shifts from single site labeled samples constrain the molecular frame with respect to the magnetic field. When these constraints are applied to the peptide, modeled as a uniform alpha-helix, the tilt of the helix with respect to the bilayer normal was determined to be 33 degrees +/- 3 degrees. Furthermore, the orientation about the helix axis was also determined within an error of +/- 30 degrees. These results imply that the packing of this tetrameric protein is in a left-handed four-helix bundle. Only with such a large tilt angle are the hydrophilic residues aligned to the channel axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号