首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activated suppressor cell dysfunction in progressive multiple sclerosis   总被引:5,自引:0,他引:5  
Concanavalin A (Con A)-induced suppressor activity has previously been shown to be reduced in multiple sclerosis (MS) patients with active clinical disease. In this study, we demonstrate that OKT3, as well as Con A induced suppressor activity mediated by unfractionated peripheral blood mononuclear cells is reduced in patients with the progressive form of MS. By performing reconstitution experiments involving E+, T4+, or T8+ cells derived from either MS patients or controls, and normal allogeneic macrophages or E- cells, we sought to define the cellular basis for this suppressor defect. In both MS and control groups, E+ cells were required to obtain measurable levels of suppression. Suppressor levels induced by Con A-activated cultures containing E+ cells from MS patients were lower than those induced by those containing control donor E+ cells. Suppression mediated by T8+ cells from MS patients was also lower than for controls. In the control group, suppression mediated by T8+ cells exceeded that mediated by T4+ cells; such differences were not apparent in the MS group. These results suggest that although Con A-induced suppression can be mediated by a number of T and non-T cell subsets, the functional suppressor defect measured in the MS population does involve the T8+ cell subset.  相似文献   

2.
The autologous mixed lymphocyte reaction (MLR) is thought to be part of a regulatory role of T cells on B cell function. OKT4+, but not OKT8+, cells can proliferate in response to autologous non-T cells. Moreover, the OKT4+ cell population activated early in the course of autologous MLR functioned as inducer cells for the differentiation of B cells, whereas later in the response, the activated OKT4+ cells were particularly enriched in suppressor cells. A part of the autologous MLR appears to be an important pathway for the activation of feedback suppression mechanisms among cells contained within the OKT4+ populations. Patients with systemic lupus erythematosus (SLE) were studied with regard to the following OKT4+ cell functions in vitro after activation in the autologous MLR: a) proliferative response, and b) helper and suppressor activities for differentiation of B cells. A marked reduction in the proliferative response of OKT4+ cells was observed in SLE patients. SLE OKT4+ cells activated in the autologous MLR could function as helper cells but could not exert any suppressor activity. This OKT4+ cell abnormality was present regardless of the disease activity, and occurred in the absence of autoantibodies including anti-T cell antibodies. Instead, SLE anti-T cell antibodies could preferentially eliminate cells bearing the OKT8+ phenotype characteristic of suppressor cells in populations of normal T cells. These results suggest that the defect in the suppressor circuits among OKT4+ cell populations is intrinsic to SLE lymphocytes and that the OKT8+ suppressor T cell defect is caused by antibodies produced by the B cells of SLE patients.  相似文献   

3.
Human peripheral blood lymphocytes were stimulated by concanavalin A (Con A) and then evaluated by their suppressive activity for thymus-derived (T) cell- and bone marrow-derived (B) cell-proliferative responses to mitogen and allogeneic cells. Con A-activated T cells markedly suppressed these responses, but Con A-activated B cells failed to demonstrate suppressor activity. Discontinuous bovine serum albumin (BSA) density gradient separation of T cells which had been activated by Con A demonstrated that a fraction containing blast cells as well as fractions containing unproliferated cells manifest the same degree of suppressor capabilities. However, when density gradient separation of T cells followed by subsequent incubation with Con A was performed, fractions of proliferating cells of low density exhibited no suppression; a fraction containing high density T cells produced marked suppression, but this fraction incorporated only little thymidine in response to Con A. Thus, these studies indicate that Con A-induced suppressor T cells belong to a distinctive subpopulation which has already been programmed to express this function before exposure to Con A and that cell proliferation may not be a prerequisite for the development of such suppressor T cells.  相似文献   

4.
The molecular basis for the suppression generated in a concanavalin A (Con A)-activated T cell culture remains unknown. In this study, we have attempted to determine whether the 2H4 and 4B4 molecules on Con A-activated T cells play some role in the generation of suppression by such cells. We have shown that Con A-activated suppressor cells belong to the 2H4+ subset of T cells but not the 4B4+ (2H4-) subset. Con A-activated T cells exerted their optimal suppressor function on day 2 in culture, a time at which the expression of 2H4 on such cells was maximal and 4B4 was minimal. Furthermore, the stimulation of T cells with the higher concentration of Con A generated the stronger suppressor function. At the same time, both 2H4 expression and density were increased and 4B4 expression and density were decreased on such Con A-activated T cells. More importantly, the treatment of Con A-activated T cells with anti-2H4 antibody but not with anti-4B4, anti-TQ1, or anti-T4 antibodies can block the suppressor function of such cells. Taken together, the above results strongly suggest that the 2H4 molecule itself may be involved in the generation of suppressor function in Con A-activated T cells. The 2H4 antigen on such cells was shown to be comprised of 220,000 and 200,000 m.w. glycoproteins. Thus this study indicates that the 220,000 and 200,000 m.w. structure of the 2H4 molecule may itself play a crucial role in the generation of suppressor signals of Con A-activated cells.  相似文献   

5.
Alteration of T cell suppression function has been recognized in patients with systemic lupus erythematosus (SLE). Recently, CD8(+) T suppressor lymphocytes (CD8(+) Ts) have been generated in vitro by incubating purified CD8(+) T cells with IL-2 and GM-CSF. Using this method, we generated CD8(+) Ts from patients affected by SLE. No major differences were found in the CD8(+) Ts phenotype between SLE patients and healthy subjects. CD8(+) Ts from SLE patients with active disease did not inhibit the anti-CD3 mAb-induced proliferation of autologous PBMC, whereas CD8(+) Ts from SLE patients in remission exerted an inhibitory activity comparable to normal subjects. The inhibitory effect of CD8(+) Ts cells was neither mediated by cytotoxic activity nor by apoptosis induction. Two cytokines, IFN-gamma and IL-6, were found to be responsible for the function of CD8(+) TS: In fact, counteraction of CD8(+) Ts suppression activity was obtained by blocking IFN-gamma with a specific Ab or by inhibiting CD8(+) Ts-mediated IL-6 secretion by an antisense oligonucleotide. Interestingly, CD8(+) Ts from SLE patients showed a peculiar cytokine pattern characterized by an impaired secretion of IL-6 and an increased secretion of IL-12. Thus, it appears that an altered balance between inhibitory (IL-6) and stimulatory (IL-12) cytokines might be responsible for the functional impairment of CD8(+) Ts in SLE patients.  相似文献   

6.
To determine IL-2 requirement for activation of suppressor cells, PBMC were primed in one-way MLR in the presence of 10 micrograms/ml anti-IL-2R beta-chain antibody 2A3 (CD25) or control antibody, then irradiated and added as regulators in a fresh MLR. Cells primed in the presence of antibody 2A3 suppressed the proliferative response to fresh autologous lymphocytes to specific alloantigen but had no effect on the response to cells from third party donors. Priming in the presence of an antibody of irrelevant specificity induced only limited suppressor activity. Activated suppressor cells did not show cytolytic activity specific for the stimulators when tested at the time of the suppressor cell assay. To identify the subset(s) responsible for suppression, cells primed in the presence of antibody 2A3 were separated into CD4+/CD45RA+, CD4+/CD45RA-, and CD8+ subsets, which were irradiated and then tested. The suppressive activity was found predominantly in the CD4+/CD45RA+ subset, whereas CD8+ cells had some activity and CD4+/CD45RA- cells had none. No subset suppressed the response of autologous cells to third-party cells. When primed CD4+/CD45RA+ cells were cocultured with fresh autologous lymphocytes depleted of CD8+ cells, no suppression was observed, indicating that, although the CD4+/CD45RA+ cells can function as inducers of suppressors, they cannot function as suppressor-effectors. Conversely, CD8+ cells activated in MLR in the presence of 2A3 caused suppression, regardless of whether the fresh autologous responder population contained CD8+ cells. CD4+/CD45RA+ and CD8+ subsets isolated after priming in the presence of 2A3 also demonstrated Ag-specific suppression in the generation of cytotoxic T lymphocytes whereas CD4+/CD45RA- cells had no activity. Our data are consistent with the model that suppression of alloreactivity requires the cooperation of two types of cells, a CD4+/CD45RA+ suppressor-inducer and a CD8+ suppressor-effector population. Activated Tsi and fresh Tse or activated Tse alone can suppress lymphocyte proliferation and generation of CTL in response to specific Ag. Activation of Ag-specific T suppressor-inducer and T suppressor-effector cells appears to be relatively IL-2 independent and presumably require one or more other growth factors.  相似文献   

7.
Cell-free culture supernatants (Con A-activated supernatants) were obtained by incubating peripheral blood lymphocytes (PBL) from cord blood, healthy children of various ages, and healthy adults with mitogenic doses of concanavalin A (Con A) for 48 hr. It is well known that human T lymphocytes are activated by Con A to manifest suppressor function in vitro. One mechanism whereby these suppressor cells act has been shown to be by the secretion of a soluble suppressor factor. The present study has investigated the Con A-inducible suppressor cell function in cord blood, children of various ages, and adults by comparing the ability of each Con A-activated supernatant to inhibit the generation of immunoglobulin-producing cells (Ig-PC) in pokeweed mitogen- (PWM) stimulated cultures of adult PBL. Con A-activated supernatants from adults could markedly suppress the generation of Ig-PC by allogeneic as well as autologous PBL in response to PWM. Such suppression appeared to be equally effective on the generation of IG-PC of 3 major classes, IgG, IgM, and IgA. On the contrary, Con A-activated supernatants from cord blood and newborn infants showed only a negligible suppression on PWM-induced adult B cell differentiation. But the suppressor activity found in Con A-activated supernatants gradually increased with advancing age, and reached approximately to the adult level at 4 yr of age or later. The results suggest that human T lymphocytes may be relatively deficient in their Con A-induced suppressor cell function in the early period of life.  相似文献   

8.
The isolation and characterization of the human suppressor inducer T cell subset   总被引:100,自引:0,他引:100  
Immunization of mice with lower primate lymphoid cells has provided a useful strategy for raising monoclonal antibodies against functionally important surface determinants on human T lymphocytes. We have developed a monoclonal antibody, anti-2H4, which defines functionally unique human T cell subsets. This anti-2H4 antibody was reactive with approximately 42% of unfractionated T cells, 41% of T4+ inducer cells, and was reactive with approximately 54% of T8+ cytotoxic/suppressor population. Anti-2H4 was not reactive with human thymocytes, but reacted with subsets of peripheral blood B cells and null cells. This antibody subdivided peripheral blood T4+ cells into two functionally distinct populations. The T4+2H4+ subset proliferate well to concanavalin A (Con A) stimulation, but poorly to soluble antigen stimulation, and provides poor help to B cells for PWM-induced Ig synthesis. The T4+2H4- subset, in contrast, proliferates poorly upon stimulation with Con A, but well on exposure to soluble antigen, and provides a good helper signal for PWM-induced Ig synthesis. What is, perhaps, most important, the T4+2H4+ subset functions as the inducer of the T8+ suppressor cells. Previous attempts to define the latter subset of cells has relied heavily on the use of specific autoantibodies present in the sera of patients with juvenile rheumatoid arthritis (JRA) and systemic lupus erythematosus (SLE). The present results suggest that anti-2H4 antibody defines the human suppressor induced subset of lymphocyte previously described as T4+JRA+. Last, the results reemphasize the previously documented remarkable structural conservation of certain T cell-specific determinants on lymphocytes of phylogenetically distant primates.  相似文献   

9.
Hepatitis B core antigen (HBcAg)-specific T cell lines were established from hepatic lymphomononuclear cells derived from five patients with chronic active hepatitis B. No hepatitis B virus envelope antigen-specific cell lines were established. Proliferation in response to recombinant and native HBcAg, but not to native hepatitis B surface antigen containing the pre-S(2) region, confirmed the specificity of the five T cell lines. All cell lines represented mixed populations of CD4+ and CD8+ T cells. The CD4+ subset provided antigen-specific help to autologous B cells with respect to anti-HBc production and to CD8+ cells with regard to HBcAg-induced proliferation and suppressor activity. The CD8+ subset contained suppressor cells that selectively inhibited the proliferative response of autologous HBcAg-specific CD4+ cells without inhibiting CD4+ cells of unrelated specificity (tetanus toxoid). Moreover, the CD8+ cells were also capable of suppressing HBcAg-stimulated antibody to HBcAg production without showing inhibition of total immunoglobulin production stimulated by pokeweed mitogen. The cytotoxic potential of the T cell lines was established in a lectin-dependent cytotoxicity system; natural killer cytotoxicity was completely absent. Our data suggest that the lesional T cells present at the site of hepatocellular injury in chronic active hepatitis B are primarily HBcAg-specific lymphocytes of the helper and suppressor/cytotoxic phenotypes and that both are functionally competent.  相似文献   

10.
In pulmonary sarcoidosis, the marked expansion of CD4+ (helper/inducer) T cells in the alveolar structures of the lung is maintained by local IL-2 release by activated CD4+ HLA-DR+ T cells without concomitant expansion and activation of CD8+ (suppressor/cytotoxic) T cells, suggesting that sarcoid may be associated with a generalized abnormality of CD8+ T cells. Consistent with this concept, evaluation of the expression of the IL-2R on fresh lung T cells from individuals with active sarcoidosis demonstrated that 7 +/- 1% of sarcoid lung CD4+ T cells are spontaneously expressing the IL-2R compared with only 1 +/- 1% lung CD8+ T cells (p less than 0.01). However, stimulation of purified sarcoid blood CD8+ T cells with the anti-T3/TCR complex mAb OKT3 was followed by the normal expression of IL-2R (p greater than 0.1) and proliferation (p greater than 0.1). In addition, lung sarcoid CD8+ T cells responded to OKT3 similarly to normal lung CD8+ T cells and to autologous blood CD8+ T cells as regards expression of IL-2R (p greater than 0.1) and proliferation (p greater than 0.1). Finally, using CD4+ cells activated with allogenic Ag to induce, in coculture, fresh autologous CD8+ cells to suppress proliferation of fresh autologous CD4+ cells to the same Ag, sarcoid CD8+ T cells suppressed CD4+ cell proliferation in a normal fashion (p greater than 0.1). These results demonstrate that sarcoid CD8+ (suppressor/cytotoxic) T cells are competent to respond to a proliferation signal normally and can be induced to normally suppress CD4+ T cell proliferation to Ag, suggesting that the expansion of activated CD4+ T cells in pulmonary sarcoidosis is not due to a generalized abnormality of CD8+ T cells or of their suppressor T cell function.  相似文献   

11.
In vivo UV exposure of human epidermis abrogates the function of CD1+DR+ Langerhans cells and induces the appearance of CD1-DR+ Ag-presenting macrophages. Epidermal cells from UV-exposed skin, in contrast to epidermal cells from normal skin, potently activate autologous CD4+ T cells, and, in particular, the CD45RA+ (2H4+) (suppressor-inducer) subset. We therefore determined whether UV-exposure in humans leads to a T cell response in which suppression dominates. Autologous blood T cells were incubated with epidermal cell suspensions from in vivo UV-irradiated skin. After activation, repurified T cells were transferred in graded numbers to autologous mononuclear cells (MNC) stimulated with PWM and the resultant IgG production analyzed by ELISA. Relative to T cells activated by unirradiated control epidermal cells, T cells activated by UV-exposed epidermal cells demonstrated enhanced capacity to suppress IgG production (n = 6; p less than or equal to 0.03). Within the T cell population, CD8+ cells stimulated by UV-exposed epidermal cells could be directly activated to suppress PWM-stimulated MNC Ig production if IL-2 was provided in the reaction mixture. The suppressive activity was also transferable with purified CD4+ T cells stimulated by UV-exposed epidermal cells (n = 10; p less than or equal to 0.01), and was radiosensitive. Suppression was decreased when PWM-stimulated MNC were depleted of CD8+ T cells before mixing with CD4+ T cells activated by UV-exposed epidermal cells, suggesting indirect induction of CD8+ Ts cells contained within the responding MNC populations. Indeed, physical depletion of CD45RA+ cells resulted in total abrogation of the suppressor function contained in the CD4+ T cells. Activation of suppressor function was critically dependent on DR+ APC contained in UV-exposed epidermis. The data suggest that UV-exposure modulates cutaneous APC activity in humans, as in mice, such that the dominant immune response is tilted toward suppression. These mechanisms in normal individuals may function to dampen responses to UV-induced endogenous Ag that are pathogenic in autoimmune disorders. However, these mechanisms might also facilitate the growth of UV-induced skin cancers.  相似文献   

12.
Thymus-derived lymphocytes (T cells) from mouse spleen, activated in vitro or in vivo with concanavalin A (Con A), suppress proliferative responses of syngenic lymphocytes in mixed lymphocyte reactions (MLR). Replication in vitro was not required for expression of suppressor activity by Con A-activated cells and was blocked in MLR by treating suppressor cells with mitomycin C or irradiation. Kinetics of MLR responses and viability of cultures were not altered by addition of activated suppressor cells. The data are consistent with a direct inhibitory effect of suppressor T cells on antigen-induced DNA replication. These observations extend a model previously described for regulation of antibody synthesis by Con A-activated T cells to control of cell-mediated immune responses. This model should be particularly useful in further definition of regulatory T cell subpopulations, and in investigation of interactions and relationships between such populations.  相似文献   

13.
It is generally accepted that human Th cells express the surface glycoproteins CD4 and alpha/beta-chain heterodimer of the TCR whereas cytotoxic/suppressor cells are usually CD8+ and alpha/beta TCR+. Another minor set of T cells found in the periphery are CD4-/CD8- (double negative) and express the gamma/delta TCR; these cells can manifest MHC-restricted or nonrestricted cytotoxicity but no helper function. Herein we describe the existence of an unusual Th population in the peripheral blood of humans that are CD4-/CD8- and alpha/beta TCR+. These double-negative Th were markedly expanded in patients with the autoimmune disease SLE and along with CD4+ Th, they induced production of the pathogenic variety of anti-DNA autoantibodies that are IgG in class and cationic in charge. The cationic anti-DNA antibodies induced by the Th were markedly restricted in spectrotype indicating that an oligoclonal population of B cells were committed to produce the pathogenic autoantibodies in active lupus. IL-2-dependent T cell lines were also derived from the patients with active lupus nephritis but the majority of those T cell lines lacked pathogenic autoantibody-inducing capability. Only 4 out of 42 T cell lines from a lupus patient could induce the production of cationic IgG class anti-DNA autoantibodies. The phenotypes of the pathogenic autoantibody-inducing Th lines were similar to the Th subsets: CD4+, alpha/beta TCR+ or CD4-/CD8-, alpha/beta TCR+. These studies suggest that production of pathogenic autoantibodies in human lupus is mediated by mechanisms that are distinct from the generalized, nonspecific polyclonal B cell hyperactivity that leads to excessive production of natural autoantibodies.  相似文献   

14.
The ability to grow normal T lymphocytes in long term culture has advanced our understanding of T cell biology. The growth of CD4+ cell lines allowed a further evaluation and appreciation of functional subtypes within this group. Cytotoxic CD8+ T cells have been characterized as well. The routine and continuous culture of Ag-nonspecific CD8+ Ts cells has been difficult to achieve. We have found that CD8+ T cells that suppress T cell proliferation and lack cytotoxic activity against T cells can be routinely obtained from PWM or PHA-stimulated PBMC. Continuous culture of T cell blasts from PWM or PHA-stimulated PBMC resulted in the growth of CD4+ and CD8+ T cells. These lines developed suppressor cell activity within 7 days after stimulation with PWM and 3 to 4 wk after stimulation with PHA. Concomitant with the development of suppressor activity was the loss of CD4+ T cells resulting in homogeneous lines of CD8+ suppressor cells. These cell lines have been maintained in continuous culture for greater than 6 mo by addition of rIL-2 twice weekly and restimulation with feeder cells and PHA every 2 wk. Activity of these cell lines was relatively resistant to irradiation or treatment with mitomycin C. Both cell lines suppressed proliferation of autologous or heterologous CD4+ T cells stimulated with PWM, OKT3, or tetanus toxoid but failed to suppress proliferation of CD4+ T cells in a mixed lymphocyte reaction. CD4+ T cells stimulated with PWM produced equivalent amounts of IL-2 in the presence or absence of Ts cells but failed to express the IL-2R (TAC) on their surface in the presence of Ts cells. By contrast, CD4+ T cell lines or cytotoxic CD8+ T cell lines failed to suppress proliferation of CD4+ T cells. With these results we describe methods for the generation and continuous culture of Ag-nonspecific CD8+ Ts cells and define some of their properties. These cells lines should be helpful in further elucidating the functional and phenotypic repertoire of CD8+ Ts cells.  相似文献   

15.
The kinetics and mechanisms of suppression of the PWM-induced PFC response of human PB lymphocytes by Con A-activated suppressor cells were investigated. It was necessary that Con A suppressor cells be present early in the process of activation of human B cells toward antibody syntheses, but maximal suppression of the PFC response occurred later in the culture period. In addition, Con A-activated cells, although suppressing the PFC response to PWM greater that 90% of control, did not significantly suppress the blastogenic response to PWM after 3 or 5 days in culture. On the contrary, after 3 days in culture, background tritiated thymidine incorporation as well as tritiated thymidine incorporation to PWM stimulation was increased when Con A suppressor cells are added to fresh autologous peripheral blood lymphocytes. This increased blastogenic response after three days most likely represented an autologous mixed lymphocyte reaction (MLR) or Con A suppressor cells against fresh autologous non-T cells. The induction of autoreactive cells may be one of several modes of suppression of PFC responses by Con A activated suppressor cells.  相似文献   

16.
Normal immunoregulation depends on a complex set of cellular interactions in which interleukin 2 (IL 2) appears to play an important role. We have examined the IL 2 activity in patients with systemic lupus erythematosus (SLE). IL 2 production by phytohemagglutinin (PHA)-stimulated T cells for 48 hr was measured by the ability of their culture fluid to induce proliferation of normal human T cells that had been activated for more than 20 days by PHA plus IL 2. To measure IL 2 responsiveness, T cells were blasted by preincubation with concanavalin A for 96 hr and stimulated for another 72 hr with lectin-free standard IL 2. SLE T cells failed to produce normal levels of IL 2 in vitro compared with normal control T cells. This failure resided in both OKT4+ and OKT8+ cells. Furthermore, the abnormality was due neither to soluble inhibitory factors produced by SLE T cells nor to active suppressor cells that might be induced by PHA-stimulation. Responsiveness to IL 2 of T cells from some, but not all, SLE patients was decreased significantly from that of normal controls. Absorption studies as well as studies with anti-Tac antibody demonstrated that the impaired responsiveness of T cells in the specific patients with SLE was due to inadequate expression of IL 2 receptors on the T cells upon activation. This defect was exclusively ascribed to the dysfunction of OKT4+, but not OKT8+, cells. The above defects in production of and responsiveness to IL 2 observed in patients with SLE were present at all times regardless of the disease activity or of corticosteroid therapy. Thus, the deficient IL 2 activity may be intrinsic to SLE lymphocytes and may contribute to impaired immunoregulation and to the development of SLE.  相似文献   

17.
Activated human monocytes and concanavalin A (Con A)-activated T lymphocytes are known to suppress T and B lymphocyte proliferation and B cell maturation into immunoglobulin-producing cells. We have now shown that monocyte suppressive activity is predominantly mediated through release of prostaglandin E2 (PGE2), which is active only in the presence of a "short-lived," radiosensitive T lymphocyte subset. PGE2, at high concentration, can activate T suppressor lymphocytes (TS), which display the same characteristics as Con A-activated TS lymphocytes. Moreover, Con A activation of TS lymphocytes was obtained only in the presence of PGE2, as specific anti-PGE2 antiserum or indomethacin prevented TS activation; this suggested a double signal as a prerequisite for activation of the nonspecific TS cell subset. We propose that TS lymphocytes modified by Con A become sensitive to small amounts of PGE2 produced by monocytes that must be present during the Con A-stimulated activation phase of suppressive cells.  相似文献   

18.
Suppressor T cell function in the spontaneously hypertensive rat (SHR) and normotensive Wistar Kyoto (WKY) rats was analyzed using syngeneic mixed lymphocyte reaction (SMLR) and concanavalin A (Con A) activation. A depressed SMLR was found in adult SHR but not in adult WKY. IL-2 synthesized by SHR was 40-fold lower than that of WKY, and the suppressor T cells generated in the SMLR were incapable of suppressing IgG synthesis. Precursors of cells that can be activated by Con A to become functional suppressor cells are reduced in adult SHR. Supernatant fluids derived from Con A-activated spleen cells from adult SHR failed to significantly inhibit IgG synthesis by cultures of syngeneic spleen cells compared to supernatant fluids from young SHR or WKY Con A-activated spleen cells. However, spleen cells from both adult SHR and WKY proliferated strongly and released equivalent amounts of IL-2 in response to Con A. Addition of exogenous IL-2 to the SMLR cultures in vitro restored the ability of SHR T cells to respond in the SMLR, with generation of cells capable of suppressing IgG synthesis. Administration of SHR with IL-2 in vivo also restored the suppressor T cell function in the SMLR. These results suggest a defective suppressor T cell activation and loss of suppressor T cell activity as the SHR age.  相似文献   

19.
de Silva  N.R.  Huegel  Heino  Huegel  D.N.  Arseculeratne  S.N.  Kumarasiri  R.  Gunawardena  S.  Balasooriya  P.  Fernando  R. 《Mycopathologia》2001,152(2):59-68
Cell mediated immune responses (CMIR) to Rhinosporidium seeberi in human patients with rhinosporidiosis have been studied. With immuno-histochemistry, the cell infiltration patterns in rhinosporidial tissues from 7 patients were similar. The mixed cell infiltrate consisted of many plasma cells, fewer CD68+ macrophages,a population of CD3+ T lymphocytes, and CD56/57+ NK lymphocytes which were positive for CD3 as well. CD4+ T helper cells were scarce. CD8+suppressor/cytotoxic-cytolytic cells were numerous. Most of the CD8+ cells were TIA-l+ and therefore of the cytotoxic subtype. CD8+ T cells were not sub-typed according to their cytokine profile; 1L2, IFN-γ (Tcl); IL4, ILS (Tc2).In lympho-proliferative response (LPR) assays in vitro, lymphocytes from rhinosporidial patients showed stimulatory responses to Con A but lymphocytes from some patients showed significantly diminished responses to rhinosporidial extracts as compared with unstimulated cells or cells stimulated by Con A, indicating suppressor immune responses in rhinosporidiosis. The overall stimulatory responses with Con A suggested that the rhinosporidial lymphocytes were not non-specifically anergic although comparisons of depressed LPR of rhinosporidial lymphocytes from individual patients, to rhinosporidial antigen with those to Con A, did not reveal a clear indication as to whether the depression was antigen specific or non-specific. The intensity of depression of the LPR in rhinosporidial patients bore no relation to the site, duration, or the number of lesions or whether the disease was localized or disseminated. Rhinosporidial extracts showed stimulatory activity on normal control lymphocytes, perhaps indicating mitogenic activity. These results indicate that CMIR develops in human rhinosporidiosis, while suppressed responses are also induced. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Platelet-activating factor (PAF) is a powerful mediator of inflammation. We have recently described a potential role for PAF in immune reactions, as it inhibits T cell proliferation and IL-2 production in response to mitogens. To further define the mechanism through which this inhibition is exerted, we used a coculture system in which PBML are preincubated with increasing concentrations of PAF for 24 h, followed by washing, treatment with mitomycin C and addition to fresh autologous PBML stimulated with PHA. In this context, a significant (40 to 60%) inhibition of proliferation was observed. In parallel, PAF-pre-treated cells induced a reduction (30 to 50%) of IL-2 production by PHA-stimulated lymphocytes. The PAF receptor antagonist BN52021 could partially block the PAF-induced suppressor cell activity, but also showed some suppressor cell-inducing properties of its own (20 to 30%). The expression of suppressor cell function during the co-culture could be partially abrogated by the inclusion of indomethacin, suggesting that cycloxygenase metabolites of arachidonic acid were involved in this phase of suppression. When PBML were fractionated into monocytes, lymphocytes, or T cell subsets before pre-incubation with PAF, indomethacin-sensitive suppressor cell function was generated in the monocyte population. Monocyte-depleted lymphocytes showed slight helper effect, whereas CD8+ T cells were induced to become indomethacin-resistant suppressor cells. CD4+ T cells, in contrast, were activated to exert very marked helper effect. When incubated with PAF for 24 h, monocyte-depleted lymphocytes showed a 30% decrease in CD4+ T cell numbers and a 50% increase in CD8+ T cell numbers. Our data suggest a novel immunoregulatory role for PAF and potentially important interactions of this lipid mediator of inflammation with lymphocyte and monocyte functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号