首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Following vessel wall injury, platelets adhere to the exposed subendothelium, become activated and release mediators such as TXA2 and nucleotides stored at very high concentration in the so-called dense granules. Released nucleotides and other soluble agents act in a positive feedback mechanism to cause further platelet activation and amplify platelet responses induced by agents such as thrombin or collagen. Adenine nucleotides act on platelets through three distinct P2 receptors: two are G protein-coupled ADP receptors, namely the P2Y1 and P2Y12 receptor subtypes, while the P2X1 receptor ligand-gated cation channel is activated by ATP. The P2Y1 receptor initiates platelet aggregation but is not sufficient for a full platelet aggregation in response to ADP, while the P2Y12 receptor is responsible for completion of the aggregation to ADP. The latter receptor, the molecular target of the antithrombotic drugs clopidogrel, prasugrel and ticagrelor, is responsible for most of the potentiating effects of ADP when platelets are stimulated by agents such as thrombin, collagen or immune complexes. The P2X1 receptor is involved in platelet shape change and in activation by collagen under shear conditions. Each of these receptors is coupled to specific signal transduction pathways in response to ADP or ATP and is differentially involved in all the sequential events involved in platelet function and haemostasis. As such, they represent potential targets for antithrombotic drugs.  相似文献   

2.
The pancreas is a complex gland performing both endocrine and exocrine functions. In recent years there has been increasing evidence that both endocrine and exocrine cells possess purinergic receptors, which influence processes such as insulin secretion and epithelial ion transport. Most commonly, these processes have been viewed separately. In beta cells, stimulation of P2Y(1) receptors amplifies secretion of insulin in the presence of glucose. Nucleotides released from secretory granules could also contribute to autocrine/paracrine regulation in pancreatic islets. In addition to P2Y(1) receptors, there is also evidence for other P2 and adenosine receptors in beta cells (P2Y(2), P2Y(4), P2Y(6), P2X subtypes and A(1) receptors) and in glucagon-secreting alpha cells (P2X(7), A(2) receptors). In the exocrine pancreas, acini release ATP and ATP-hydrolysing and ATP-generating enzymes. P2 receptors are prominent in pancreatic ducts, and several studies indicate that P2Y(2), P2Y(4), P2Y(11), P2X(4) and P2X(7) receptors could regulate secretion, primarily by affecting Cl(-) and K(+) channels and intracellular Ca(2+) signalling. In order to understand the physiology of the whole organ, it is necessary to consider the full complement of purinergic receptors on different cells as well as the structural and functional relation between various cells within the whole organ. In addition to the possible physiological function of purinergic receptors, this review analyses whether the receptors could be potential therapeutic targets for drug design aimed at treatment of pancreatic diseases.  相似文献   

3.
To study changes in the cytoplasmic Ca2+ concentration ([Ca2+]i) and the total amount of calcium in cells, we used, respectively, the fluorescent dye fura 2/AM and the metallochrome dye arsenazo III. The total amount of calcium in acinar cells after their incubation in calcium-free ATP-containing extracellular solution decreased. The action of ATP induced a dose-dependent increase in the [Ca2+]i; the EC50 was, on average, 130 ± ± 36 μM. Calcium transients induced by ATP demonstrated no desensitization. Against the background of a blocker of ionotropic P2X receptors, pyridoxal phosphate-6-azophenyl-2′,4′-disulfonic acid, we observed a decrease in the ATP-induced calcium transients by 72%. In addition, these transients were reduced by 65% in the calcium-free milieu, while after thapsigargin-induced exhaustion of the endoplasmic reticulum store they disappeared. This is indicative of the involvement of metabotropic P2Y receptors in the formation of the above calcium transients. Therefore, P2X and P2Y receptors participate in ATP-induced calcium signalling in acinar cells of the submandibular salivary gland; activation of these channels results in a rise in the [Ca2+]i. The P2X receptors to a higher extent contribute to the formation of calcium signals; the P2Y-determined increase in the [Ca2+]i is smaller (equal to about 35%). Therefore, the functionally active ligand-operated ionotropic P2Y receptors and metabotropic G protein-related P2Y receptors do exist in acinar cells of the submandibular salivary gland and play an important role in the control of functioning of this gland. Neirofiziologiya/Neurophysiology, Vol. 37, Nos. 5/6, pp. 395–402, September–December, 2005.  相似文献   

4.

The synaptic event called the inhibitory junction potential (IJP) was arguably one of the more important discoveries made by Burnstock and arguably one of his finer legacies. The discovery of the IJP fundamentally changed how electromechanical coupling was visualised in gastrointestinal smooth muscle. Its discovery also set in motion the search for novel inhibitory neurotransmitters in the enteric nervous system, eventually leading to proposal that ATP or a related nucleotide was a major inhibitory transmitter. The subsequent development of purinergic signalling gave impetus to expanding the classification of surface receptors for extracellular ATP, not only in the GI tract but beyond, and then led to successive phases of medicinal chemistry as the P2 receptor field developed. Ultimately, the discovery of the IJP led to the successful cloning of the first P2Y receptor (chick P2Y1) and expansion of mammalian ATP receptors into two classes: metabotropic P2Y receptors (encompassing P2Y1, P2Y2, P2Y4, P2Y6, P2Y11–14 receptors) and ionotropic P2X receptors (encompassing homomeric P2X1–P2X7 receptors). Here, the causal relationship between the IJP and P2Y1 is explored, setting out the milestones reached and achievements made by Burnstock and his colleagues.

  相似文献   

5.
We have used selective inhibitors to determine whether the molecular chaperone heat shock protein 90 (HSP90) has an effect on both recombinant and native human P2X1 receptors. P2X1 receptor currents in HEK293 cells were reduced by ∼70–85% by the selective HSP90 inhibitor geldanamycin (2 μm, 20 min). This was associated with a speeding in the time course of desensitization as well as a reduction in cell surface expression. Imaging in real time of photoactivatable GFP-tagged P2X receptors showed that they are highly mobile. Geldanamycin almost abolished this movement for P2X1 receptors but had no effect on P2X2 receptor trafficking. P2X1/2 receptor chimeras showed that the intracellular N and C termini were involved in geldanamycin sensitivity. Geldanamycin also inhibited native P2X1 receptor-mediated responses. Platelet P2X1 receptors play an important role in hemostasis, contribute to amplification of signaling to a range of stimuli including collagen, and are novel targets for antithrombotic therapies. Platelet P2X1 receptor-, but not P2Y1 receptor-, mediated increases in intracellular calcium were reduced by 40–45% following HSP90 inhibition with geldanamycin or radicicol. Collagen stimulation leads to ATP release from platelets, and calcium increases to low doses of collagen were also reduced by ∼40% by the HSP90 inhibitors consistent with an effect on P2X1 receptors. These studies suggest that HSP90 inhibitors may be as effective as selective antagonists in regulating platelet P2X1 receptors, and their potential effects on hemostasis should be considered in clinical studies.  相似文献   

6.
Felix  R. A.  Martin  S.  Pinion  S.  Crawford  D. J. 《Purinergic signalling》2011,8(1):101-112

Pharmacological manipulation of P2X and P2Y receptors has been critical to the elucidation of the biological roles of these receptors within a multitude of physiological and pathological processes. Initial purinergic signalling research made use of compounds based on pyridoxal phosphate, suramin and nucleotide analogues; recently developed compounds are often derivatives of these early tools. Tocris Bioscience first entered the field of purinergic signalling reagents with the commercial release of the pyridoxal phosphate derivative, iso-PPADS. During the past two decades, Tocris has assembled a collection of over 50 compounds for P2 receptor modulation, including research tools commercialised from both academic and industrial laboratories. Recently, a number of P2X subtype-selective compounds have been generated by pharmaceutical company medicinal chemistry programmes, supplementing our range of P2Y-selective compounds. Here, we detail the current, commercially available agonists and antagonists of P2X1,2/3,3,4,7 and P2Y1,6,11,12 receptors; considered together, they form the foundations of a comprehensive P2 receptor pharmacological ‘toolkit’.

  相似文献   

7.
ATP-stimulated P2X1 and ADP-stimulated P2Y1 receptors play important roles in platelet activation. An increase in intracellular Ca2+ represents a key signalling event coupled to both of these receptors, mediated via direct gating of Ca2+-permeable channels in the case of P2X1 and phospholipase-C-dependent Ca2+ mobilisation for P2Y1. We show that disruption of cholesterol-rich membrane lipid rafts reduces P2X1 receptor-mediated calcium increases by approximately 80%, while P2Y1 receptor-dependent Ca2+ release is unaffected. In contrast to artery, vas deferens, bladder smooth muscle, and recombinant expression in cell lines, where P2X1 receptors show almost exclusive association with lipid rafts, only approximately 20% of platelet P2X1 receptors are co-expressed with the lipid raft marker flotillin-2. We conclude that lipid rafts play a significant role in the regulation of P2X1 but not P2Y1 receptors in human platelets and that a reserve of non-functional P2X1 receptors may exist.  相似文献   

8.
Pharmacological manipulation of P2X and P2Y receptors has been critical to the elucidation of the biological roles of these receptors within a multitude of physiological and pathological processes. Initial purinergic signalling research made use of compounds based on pyridoxal phosphate, suramin and nucleotide analogues; recently developed compounds are often derivatives of these early tools. Tocris Bioscience first entered the field of purinergic signalling reagents with the commercial release of the pyridoxal phosphate derivative, iso-PPADS. During the past two decades, Tocris has assembled a collection of over 50 compounds for P2 receptor modulation, including research tools commercialised from both academic and industrial laboratories. Recently, a number of P2X subtype-selective compounds have been generated by pharmaceutical company medicinal chemistry programmes, supplementing our range of P2Y-selective compounds. Here, we detail the current, commercially available agonists and antagonists of P2X1,2/3,3,4,7 and P2Y1,6,11,12 receptors; considered together, they form the foundations of a comprehensive P2 receptor pharmacological ‘toolkit’.  相似文献   

9.
Activation of ADP-sensitive P2Y(1) receptors has been proposed as an integral step in the putative "nucleotide axis" regulating coronary blood flow. However, the specific mechanism(s) and overall contribution of P2Y(1) receptors to the control of coronary blood flow have not been clearly defined. Using vertically integrative studies in isolated coronary arterioles and open-chest anesthetized dogs, we examined the hypothesis that P2Y(1) receptors induce coronary vasodilation via an endothelium-dependent mechanism and contribute to coronary pressure-flow autoregulation and/or ischemic coronary vasodilation. Immunohistochemistry revealed P2Y(1) receptor expression in coronary arteriolar endothelial and vascular smooth muscle cells. The ADP analog 2-methylthio-ADP induced arteriolar dilation in vitro and in vivo that was abolished by the selective P2Y(1) antagonist MRS-2179 and the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester. MRS-2179 did not alter baseline coronary flow in vivo but significantly attenuated coronary vasodilation to ATP in vitro and in vivo and the nonhydrolyzable ATP analog ATPγS in vitro. Coronary blood flow responses to alterations in coronary perfusion pressure (40-100 mmHg) or to a brief 15-s coronary artery occlusion were unaffected by MRS-2179. Our data reveal that P2Y(1) receptors are functionally expressed in the coronary circulation and that activation produces coronary vasodilation via an endothelium/nitric oxide-dependent mechanism. Although these receptors represent a critical component of purinergic coronary vasodilation, our findings indicate that P2Y(1) receptor activation is not required for coronary pressure-flow autoregulation or reactive hyperemia.  相似文献   

10.
Extracellular nucleotides interact with purinergic receptors, which regulate ion transport in a variety of epithelia. With the use of two different human epithelial carcinoma cell lines (HCT8 and Caco-2), we have shown by RT-PCR that the cells express mRNA for P2X1, P2X3, P2X4, P2X5, P2X6, P2X7, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, and P2Y12 receptors. Protein expression for P2Y1 and P2Y2 receptors was also demonstrated immunohistochemically, and P2X receptor subtype protein was present in the following decreasing order: P2X4 > P2X7 > P2X1 > P2X3 > P2X6 > P2X5 > P2X2. The functional presence of P2X7, P2Y1, P2Y2, and P2Y4 receptors was shown based on the effect of extracellular nucleotides on apoptosis or cell proliferation, and measurement of nucleotide-dependent calcium fluxes using a fluorometric imaging plate reader in the presence of different selective agonists and antagonists. ATP, at high concentrations, induced apoptosis through ligation of P2X7 and P2Y1 receptors; conversely, ATP, at lower concentrations, and UTP stimulated proliferation, probably acting via P2Y2 receptors. We therefore propose that stimulation or dysfunction of purinergic receptors may contribute at least partially to modulation of epithelial carcinoma cell proliferation and apoptosis.  相似文献   

11.
Most cells express more than one receptor plus degrading enzymes for adenine nucleotides or nucleosides, and cellular responses to purines are rarely compatible with the actions of single receptors. Therefore, these receptors are viewed as components of a combinatorial receptor web rather than self-dependent entities, but it remained unclear to what extent they can associate with each other to form signalling units. P2Y(1), P2Y(2), P2Y(12), P2Y(13), P2X(2), A(1), A(2A) receptors and NTPDase1 and -2 were expressed as fluorescent fusion proteins which were targeted to membranes and signalled like the unlabelled counterparts. When tested by FRET microscopy, all the G protein-coupled receptors proved able to form heterooligomers with each other, and P2Y(1), P2Y(12), P2Y(13), A(1), A(2A), and P2X(2) receptors also formed homooligomers. P2Y receptors did not associate with P2X, but G protein-coupled receptors formed heterooligomers with NTPDase1, but not NTPDase2. The specificity of prototypic interactions (P2Y(1)/P2Y(1), A(2A)/P2Y(1), A(2A)/P2Y(12)) was corroborated by FRET competition or co-immunoprecipitation. These results demonstrate that G protein-coupled purine receptors associate with each other and with NTPDase1 in a highly promiscuous manner. Thus, purinergic signalling is not only determined by the expression of receptors and enzymes but also by their direct interaction within a previously unrecognized multifarious membrane network.  相似文献   

12.
Primary cilium has emerged as mechanosensor to subtle flow variations in epithelial cells, but its role in shear stress detection remains controversial. To probe the function of this non-motile organelle in shear stress detection by cells, we compared calcium signalling responses induced by shear stress in ciliated and unciliated MDCK cells. Cytosolic free Ca2+ ([Ca2+]i) was measured using Fura-PE3 video imaging fluorescence microscopy in response to shear stress due to laminar flow (385 μl s?1). Our results show that both unciliated and ciliated MDCK cells are shear stress sensitive via ATP release and autocrine feedback through purinergic receptors. However, purinergic calcium signals differed in response intensity and receptor subtypes. In unciliated cells, shear stress-induced elevation in [Ca2+]i was predominantly mediated through P2X receptors (P2XR). In contrast, calcium mobilization in ciliated MDCK cells resulted from P2YRs and store-operated Ca2+-permeable channels besides P2XRs. These findings lend support to the hypothesis that ATP release in response to shear stress is independent of the primary cilium and that transduction of mechanical strain into a specific biochemical responses stems on the mobilization of different sets of purinergic receptors.  相似文献   

13.
Purinergic receptors are present in most tissues and thought to be involved in various signalling pathways, including neural signalling, cell metabolism and local regulation of the microcirculation in skeletal muscles. The present study aims to determine the distribution and intracellular content of purinergic receptors in skeletal muscle fibres in patients with type 2 diabetes and age-matched controls. Muscle biopsies from vastus lateralis were obtained from six type 2 diabetic patients and seven age-matched controls. Purinergic receptors were analysed using light and confocal microscopy in immunolabelled transverse sections of muscle biopsies. The receptors P2Y(4), P2Y(11) and likely P2X(1) were present intracellularly or in the plasma membrane of muscle fibres and were thus selected for further detailed morphological analysis. P2X(1) receptors were expressed in intracellular vesicles and sarcolemma. P2Y(4) receptors were present in sarcolemma. P2Y(11) receptors were abundantly and diffusely expressed intracellularly and were more explicitly expressed in type I than in type II fibres, whereas P2X(1) and P2Y(4) showed no fibre-type specificity. Both diabetic patients and healthy controls showed similar distribution of receptors. The current study demonstrates that purinergic receptors are located intracellularly in human skeletal muscle fibres. The similar cellular localization of receptors in healthy and diabetic subjects suggests that diabetes is not associated with an altered distribution of purinergic receptors in skeletal muscle fibres. We speculate that the intracellular localization of purinergic receptors may reflect a role in regulation of muscle metabolism; further studies are nevertheless needed to determine the function of the purinergic system in skeletal muscle cells.  相似文献   

14.
Over the past decade, many lines of investigation have shown that receptor-mediated signaling exhibits greater diversity than previously appreciated. Signal diversity arises from numerous factors, which include the formation of receptor dimers and interplay between different receptors. Using adenosine A1 receptors as a paradigm of G protein-coupled receptors, this review focuses on how receptor-receptor interactions may contribute to regulation of the synaptic transmission within the central nervous system. The interactions with metabotropic dopamine, adenosine A2A, A3, neuropeptide Y, and purinergic P2Y1 receptors will be described in the first part. The second part deals with interactions between A1Rs and ionotropic receptors, especially GABAA, NMDA, and P2X receptors as well as ATP-sensitive K+ channels. Finally, the review will discuss new approaches towards treating neurological disorders.  相似文献   

15.
HKC‐8 cells are a human‐derived renal proximal tubular cell line and provide a useful model system for the study of human renal cell function. In this study, we aimed to determine [Ca2+]i signalling mediated by P2 receptor in HKC‐8. Fura‐2 and a ratio imaging method were employed to measure [Ca2+]i in HKC‐8 cells. Our results showed that activation of P2Y receptors by ATP induced a rise in [Ca2+]i that was dependent on an intracellular source of Ca2+, while prolonged activation of P2Y receptors induced a rise in [Ca2+]i that was dependent on intra‐ and extracellular sources of Ca2+. Pharmacological and molecular data in this study suggests that TRPC4 channels mediate Ca2+ entry in coupling to activation of P2Y in HKC‐8 cells. U73221, an inhibitor of PI‐PLC, did not inhibit the initial ATP‐induced response; whereas D609, an inhibitor of PC‐PLC, caused a significant decrease in the initial ATP‐induced response, suggesting that P2Y receptors are coupled to PC‐PLC. Although P2X were present in HKC‐8, The P2X agonist, α,β me‐ATP, failed to cause a rise in [Ca2+]i. However, PPADS at a concentration of 100 µM inhibits the ATP‐induced rise in [Ca2+]i. Our results indicate the presence of functional P2Y receptors in HKC‐8 cells. ATP‐induced [Ca2+]i elevation via P2Y is tightly associated with PC‐PLC and TRP channel. J. Cell. Biochem. 109: 132–139, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Mast cells are widely recognized as effector cells of allergic inflammatory reactions. They contribute to the pathogenesis of different chronic inflammatory diseases, wound healing, fibrosis, thrombosis/fibrinolysis, and anti-tumor immune responses. In this paper, we summarized the role of P2X and P2Y receptors in mast cell activation and effector functions. Mast cells are an abundant source of ATP which is stored in their granules and secreted upon activation. We discuss the contribution of mast cells to the extracellular ATP release and to the maintenance of extracellular nucleotides pool. Recent publications highlight the importance of purinergic signaling for the pathogenesis of chronic airway inflammation. Therefore, the role of ATP and P2 receptors in allergic inflammation with focus on mast cells was analyzed. Finally, ATP functions as mast cell autocrine/paracrine factor and as messenger in intercellular communication between mast cells, nerves, and glia in the central nervous system.  相似文献   

17.
A key component of the response to DNA damage caused by ionizing radiation is DNA repair. Release of extracellular nucleotides, such as ATP, from cells plays a role in signaling via P2 receptors. We show here that release of ATP, followed by activation of P2Y receptors, is involved in the response to γ-irradiation-induced DNA damage. Formation of phosphorylated histone variant H2AX (γH2AX) foci, which are induced in nuclei by DNA damage and contribute to accumulation of DNA-repair factors, was increased at 1-3h after γ-ray irradiation (2.0Gy) of human lung cancer A549 cells. Focus formation was suppressed by pre-treatment with the ecto-nucleotidase apyrase. Pre-treatment with ecto-nucleotidase inhibitor ARL67156 or post-treatment with ATP or UTP facilitated induction of γH2AX, indicating that extracellular nucleotides play a role in induction of γH2AX foci. Next, we examined the effect of P2 receptor inhibitors on activation of ataxia telangiectasia mutated (ATM; a protein kinase) and accumulation of 53BP1 (a DNA repair factor), both of which are important for DNA repair, at DNA damage sites. P2Y6 receptor antagonist MRS2578, P2Y12 receptor antagonist clopidogrel, and P2X7 receptor antagonists A438079 and oxATP significantly inhibited these processes. Release of ATP was detected within 2.5min after irradiation, but was blocked by A438079. Activation of ATM and accumulation of 53BP1 were decreased in P2Y6 or P2Y12 receptor-knockdown cells. We conclude that autocrine/paracrine signaling through P2X7-dependent ATP release and activation of P2Y6 and P2Y12 receptors serves to amplify the cellular response to DNA damage caused by γ-irradiation.  相似文献   

18.

Background

In most models of experimental thrombosis, healthy blood vessels are damaged. This results in the formation of a platelet thrombus that is stabilized by ADP signaling via P2Y12 receptors. However, such models do not predict involvement of P2Y12 in the clinically relevant situation of thrombosis upon rupture of atherosclerotic plaques. We investigated the role of P2Y12 in thrombus formation on (collagen-containing) atherosclerotic plaques in vitro and in vivo, by using a novel mouse model of atherothrombosis.

Methodology

Plaques in the carotid arteries from Apoe −/− mice were acutely ruptured by ultrasound treatment, and the thrombotic process was monitored via intravital fluorescence microscopy. Thrombus formation in vitro was assessed in mouse and human blood perfused over collagen or plaque material under variable conditions of shear rate and coagulation. Effects of two reversible P2Y12 blockers, ticagrelor (AZD6140) and cangrelor (AR-C69931MX), were investigated.

Principal Findings

Acute plaque rupture by ultrasound treatment provoked rapid formation of non-occlusive thrombi, which were smaller in size and unstable in the presence of P2Y12 blockers. In vitro, when mouse or human blood was perfused over collagen or atherosclerotic plaque material, blockage or deficiency of P2Y12 reduced the thrombi and increased embolization events. These P2Y12 effects were present at shear rates >500 s−1, and they persisted in the presence of coagulation. P2Y12-dependent thrombus stabilization was accompanied by increased fibrin(ogen) binding.

Conclusions/Significance

Platelet P2Y12 receptors play a crucial role in the stabilization of thrombi formed on atherosclerotic plaques. This P2Y12 function is restricted to high shear flow conditions, and is preserved in the presence of coagulation.  相似文献   

19.
P2X3 and P2X2+3 receptors are present on sensory neurons, where they contribute not only to transient nociceptive responses, but also to hypersensitivity underlying pathological pain states elicited by nerve injuries. Increased signalling through P2X3 and P2X2+3 receptors may arise from an increased routing to the plasma membrane and/or gain of function of pre-existing receptors. An obvious effector mechanism for functional modulation is protein kinase C (PKC)-mediated phosphorylation, since all P2X family members share a conserved consensus sequence for PKC, TXR/K, within the intracellularly located N-terminal domain. Contradictory reports have been published regarding the exact role of this motif. In the present study, we confirm that site-directed elimination of the potential phosphor-acceptor threonine or the basic residue in the P+2 position of the TXR/K sequence accelerates desensitization of P2X2 receptors and abolishes P2X3 receptor function. Moreover, the PKC activator phorbol 12-myristate 13-acetate increased P2X3 (but not P2X2) receptor-mediated currents. Biochemically, however, we were unable to demonstrate by various experimental approaches a direct phosphorylation of wild-type P2X2 and P2X3 receptors expressed in both Xenopus laevis oocytes and HEK293 cells. In conclusion, our data support the view that the TXR/K motif plays an important role in P2X function and that phorbol 12-myristate 13-acetate is capable of modulating some P2X receptor subtypes. The underlying mechanism, however, is unlikely to involve direct PKC-mediated P2X receptor phosphorylation.  相似文献   

20.
Microglial cells are the primary immune effector cells in the brain. Extracellular ATP, e.g., released after brain injury, may initiate microglial activation via stimulation of purinergic receptors. In the rat nucleus accumbens (NAc), the involvement of P2X and P2Y receptors in the generation of microglial reaction in vivo was investigated. A stab wound in the NAc increased immunoreactivity (IR) for P2X1,2,4,7 and P2Y1,2,4,6,12 receptors on microglial cells when visualized with confocal laser scanning microscopy. A prominent immunolabeling of P2X7 receptors with antibodies directed against the ecto- or endodomain was found on Griffonia simplicifolia isolectin-B4-positive cells. Additionally, the P2X7 receptor was colocalized with active caspase 3 but not with the anti-apoptotic marker pAkt. Four days after local application of the agonists α,βmeATP, ADPβS, 2MeSATP, and BzATP, an increase in OX 42- and G. simplicifolia isolectin-IR was observed around the stab wound, quantified both densitometrically and by counting the number of ramified and activated microglial cells, whereas UTPγS appeared to be ineffective. The P2 receptor antagonists PPADS and BBG decreased the injury-induced increase of these IRs when given alone and in addition inhibited the agonist effects. Further, the intra-accumbally applied P2X7 receptor agonist BzATP induced an increase in the number of caspase-3-positive cells. These results indicate that ATP, acting via different P2X and P2Y receptors, is a signaling molecule in microglial cell activation after injury in vivo. The up-regulation of P2X7-IR after injury suggests that this receptor is involved in apoptotic rather than proliferative effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号