首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to determine the relationship between the three-equation diffusing capacity for carbon monoxide (DLcoSB-3EQ) and lung volume and to determine how this relationship was altered when maneuvers were immediately preceded by a deep breath. DLcoSB-3EQ maneuvers were performed in nine healthy subjects either immediately after a deep breath or after tidal breathing for 10 min. The maneuvers consisted of slow inhalation of test gas from functional residual capacity to 25, 50, 75, or 100% of the inspiratory capacity and, without breath holding, slow exhalation to residual volume. After either a deep breath or tidal breathing, we found that DLcoSB-3EQ decreased nonlinearly with decreasing lung volume. At all lung volumes, DLcoSB-3EQ was significantly greater when measured after a deep breath than after tidal breathing. This effect increased as lung volume decreased, so that the greatest difference between DLcoSB-3EQ after a deep breath and that after tidal breathing occurred at the lowest lung volume. We conclude that a deep breath or spontaneous sigh has a role in reestablishing the pathway for gas exchange during tidal breathing.  相似文献   

2.
Cardiac performance in humans during breath holding   总被引:3,自引:0,他引:3  
The effects on cardiac performance of high and low intrathoracic pressures induced by breath holding at large and small lung volumes have been investigated. Cardiac index and systolic time intervals were recorded from six resting subjects with impedance cardiography in both the nonimmersed and immersed condition. A thermoneutral environment (air 28 degrees C, water 35 degrees C) was used to eliminate the cold-induced circulatory component of the diving response. Cardiac performance was enhanced during immersion compared with nonimmersion, whereas it was depressed by breath holding at large lung volume. The depressed performance was apparent from the decrease in cardiac index (24.1% in the immersed and 20.9% in the nonimmersed condition) and from changes in systolic time intervals, e.g., shortening of left ventricular ejection time coupled with lengthening of preejection period. In the absence of the cold water component of the diving response, breath holding at the large lung volume used by breath-hold divers tends to reduce cardiac performance presumably by impeding venous return.  相似文献   

3.
Seven normal awake males were studied to define the mechanisms and impact of lung volume on the hypoxemia occurring during apnea. During repeated 30-s voluntary breath holding, these subjects were studied at different lung volumes, during various respiratory maneuvers, and in the sitting and supine body positions. Analysis of expired gases and arterial O2 saturation during these repeated breath holdings yielded the following conclusions. Apnea of 30-s duration at low lung volumes is accompanied by severe arterial O2 desaturation in normal awake subjects. Initial lung volume is the most important determinant of hypoxemia during apnea. The hypoxemia of apnea at most lung volumes can be explained by simple alveolar hypoventilation in a uniform lung. The lung does not behave as a single-compartment model at lung volumes at which dependent airways are susceptible to closure.  相似文献   

4.
Effect of airway closure on ventilation distribution   总被引:1,自引:0,他引:1  
We examined the effect of airway closure on ventilation distribution during tidal breathing in six normal subjects. Each subject performed multiple-breath N2 washouts (MBNW) at tidal volumes of 1 liter over a range of preinspiratory lung volumes (PILV) from functional residual capacity (FRC) to just above residual volume. All subjects performed washouts at PILV below their measured closing capacity. In addition five of the subjects performed MBNW at PILV below closing capacity with end-inspiratory breath holds of 2 or 5 s. We measured the following two independent indexes of ventilation maldistribution: 1) the normalized phase III slope of the final breaths of the washout (Snf) and 2) the alveolar mixing efficiency of those breaths of the washout where 80-90% of the initial N2 had been cleared. Between a mean PILV of 0.28 liter above closing capacity and that 0.31 liter below closing capacity, mean Snf increased by 132% (P less than 0.005). Over the same volume range, mean alveolar mixing efficiency decreased by 3.3% (P less than 0.05). Breath holding at PILV below closing capacity resulted in marked and consistent decreases in Snf and increases in alveolar mixing efficiency. Whereas inhomogeneity of ventilation decreases with lung volume when all airways are patent (J. Appl. Physiol. 66: 2502-2510, 1989), airway closure increases ventilation inequality, and this is substantially reduced by short end-inspiratory breath holds. These findings suggest that the predominant determinant of ventilation distribution below closing capacity is the inhomogeneous closure of airways subtending regions in the lung periphery that are close together.  相似文献   

5.
The influence of breath holding and voluntary hyperventilation on the traditional stabilometric parameters and the frequency characteristics of stabilographic signal was studied. We measured the stabilometric parameters on a force platform (“Ritm”, Russia) in the 107 healthy volunteers during quiet breath, voluntary hyperventilation (20 seconds) and maximal inspiratory breath holding (20 seconds). Respiratory frequency, respiratory amplitude and ventilation were estimated with the strain gauge. We found that antero-posterior and medio-lateral sway amplitude and velocity as well as sway surface during breath holding and during quiet breathing were the same, so breath holding didn’t influence the postural stability. However, the spectral parameters in the antero-posterior direction shifted to the high frequency range due to an alteration of the respiratory muscles’ contractions during breath holding versus quiet breath. Voluntary hyperventilation caused a significant increase of all stabilographic indices that implied an impairment of the postural stability. We also found that the spectral indices shifted toward the high-frequency range, and this shift was much greater compared to that during breath holding. Besides, amplitudes of the spectral peaks also increased. Perhaps, such change of the spectral indices was due to distortion of the proprioceptive information because of increased excitability of the nerve fibers during hyperventilation. Maximal inspiratory breath holding caused an activation of the postural control mechanisms. It was manifested as an elevation of the sway oscillations’ frequency with no postural stability changes. Hyperventilation led to the greatest strain of the postural control and to a decrease of the postural stability, which was manifested as an increase of center of pressure oscillations’ amplitude and frequency.  相似文献   

6.
Control of ventilation in elite synchronized swimmers   总被引:1,自引:0,他引:1  
Synchronized swimmers perform strenuous underwater exercise during prolonged breath holds. To investigate the role of the control of ventilation and lung volumes in these athletes, we studied the 10 members of the National Synchronized Swim Team including an olympic gold medalist and 10 age-matched controls. We evaluated static pulmonary function, hypoxic and hypercapnic ventilatory drives, and normoxic and hyperoxic breath holding. Synchronized swimmers had an increased total lung capacity and vital capacity compared with controls (P less than 0.005). The hypoxic ventilatory response (expressed as the hyperbolic shape parameter A) was lower in the synchronized swimmers than controls with a mean value of 29.2 +/- 2.6 (SE) and 65.6 +/- 7.1, respectively (P less than 0.001). The hypercapnic ventilatory response [expressed as S, minute ventilation (1/min)/alveolar CO2 partial pressure (Torr)] was no different between synchronized swimmers and controls. Breath-hold duration during normoxia was greater in the synchronized swimmers, with a mean value of 108.6 +/- 4.8 (SE) vs. 68.03 +/- 8.1 s in the controls (P less than 0.001). No difference was seen in hyperoxic breath-hold times between groups. During breath holding synchronized swimmers demonstrated marked apneic bradycardia expressed as either absolute or heart rate change from basal heart rate as opposed to the controls, in whom heart rate increased during breath holds. Therefore the results show that elite synchronized swimmers have increased lung volumes, blunted hypoxic ventilatory responses, and a marked apneic bradycardia that may provide physiological characteristics that offer a competitive advantage for championship performance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Thixotropy conditioning of inspiratory muscles consisting of maximal inspiratory effort performed at an inflated lung volume is followed by an increase in end-expiratory position of the rib cage in normal human subjects. When performed at a deflated lung volume, conditioning is followed by a reduction in end-expiratory position. The present study was performed to determine whether changes in end-expiratory chest wall and lung volumes occur after thixotropy conditioning. We first examined the acute effects of conditioning on chest wall volume during subsequent five-breath cycles using respiratory inductive plethysmography (n = 8). End-expiratory chest wall volume increased after conditioning at an inflated lung volume (P < 0.05), which was attained mainly by rib cage movements. Conditioning at a deflated lung volume was followed by reductions in end-expiratory chest wall volume, which was explained by rib cage and abdominal volume changes (P < 0.05). End-expiratory esophageal pressure decreased and increased after conditioning at inflated and deflated lung volumes, respectively (n = 3). These changes in end-expiratory volumes and esophageal pressure were greatest for the first breath after conditioning. We also found that an increase in spirometrically determined inspiratory capacity (n = 13) was maintained for 3 min after conditioning at a deflated lung volume, and a decrease for 1 min after conditioning at an inflated lung volume. Helium-dilution end-expiratory lung volume increased and decreased after conditioning at inflated and deflated lung volumes, respectively (both P < 0.05; n = 11). These results suggest that thixotropy conditioning changes end-expiratory volume of the chest wall and lung in normal human subjects.  相似文献   

8.
Changes in cardiovascular parameters elicited during a maximal breath hold are well described. However, the impact of consecutive maximal breath holds on central hemodynamics in the postapneic period is unknown. Eight trained apnea divers and eight control subjects performed five successive maximal apneas, separated by a 2-min resting interval, with face immersion in cold water. Ultrasound examinations of inferior vena cava (IVC) and the heart were carried out at times 0, 10, 20, 40, and 60 min after the last apnea. The arterial oxygen saturation level and blood pressure, heart rate, and transcutaneous partial pressures of CO(2) and O(2) were monitored continuously. At 20 min after breath holds, IVC diameter increased (27.6 and 16.8% for apnea divers and controls, respectively). Subsequently, pulmonary vascular resistance increased and cardiac output decreased both in apnea divers (62.8 and 21.4%, respectively) and the control group (74.6 and 17.8%, respectively). Cardiac output decrements were due to reductions in stroke volumes in the presence of reduced end-diastolic ventricular volumes. Transcutaneous partial pressure of CO(2) increased in all participants during breath holding, returned to baseline between apneas, but remained slightly elevated during the postdive observation period (approximately 4.5%). Thus increased right ventricular afterload and decreased cardiac output were associated with CO(2) retention and signs of peripheralization of blood volume. These results indicate that repeated apneas may cause prolonged hemodynamic changes after resumption of normal breathing, which may suggest what happens in sleep apnea syndrome.  相似文献   

9.
Simulated breath-hold diving to 20 meters: cardiac performance in humans   总被引:1,自引:0,他引:1  
Cardiac performance was assessed in six subjects breath-hold diving to 20 m in a hyperbaric chamber, while nonsubmersed or submersed in a thermoneutral environment. Cardiac index and systolic time intervals were obtained with impedance cardiography and intrathoracic pressure with an esophageal balloon. Breath holding at large lung volume (80% vital capacity) decreased cardiac index, probably by increasing intrathoracic pressure and thereby impeding venous return. During diving, cardiac index increased (compared with breath holding at the surface) by 35.1% in the nonsubmersed and by 29.5% in the submersed condition. This increase was attributed to a fall in intrathoracic pressure. Combination of the opposite effects of breath holding and diving to 20 m left cardiac performance unchanged during the dives (relative to the surface control). A larger intrathoracic blood redistribution probably explains a smaller reduction in intrathoracic pressure observed during submersed compared with nonsubmersed diving. Submersed breath-hold diving may entail a smaller risk of thoracic squeeze (lesser intrathoracic pressure drop) but a greater risk of overloading the central circulation (larger intrathoracic blood pooling) than simulated nonsubmersed diving.  相似文献   

10.
We investigated the spleen volume changes as related to the cardiovascular responses during short-duration apneas at rest. We used dynamic ultrasound splenic imaging and noninvasive photoplethysmographic cardiovascular measurements before, during, and after 15-20 s apneas in seven trained divers. The role of baroreflex was studied by intravenous bolus of vasodilating drug trinitrosan during tidal breathing. The role of lung volume was studied by comparing the apneas at near-maximal lung volume with apneas after inhaling tidal volume, with and without cold forehead stimulation. In apneas at near maximal lung volume, a 20% reduction in splenic volume (P = 0.03) was observed as early as 3 s after the onset of breath holding. Around that time the heart rate increased, the mean arterial pressure abruptly decreased from 89.6 to 66.7 mmHg (P = 0.02), and cardiac output decreased, on account of reduction in stroke volume. Intravenous application of trinitrosan resulted in approximately 6-mmHg decrement in mean arterial pressure, while the splenic volume decreased for approximately 13%. In apneas at low lung volume, the early splenic contraction was also observed, 10% without and 12% with cold forehead stimulation, although the mean arterial pressure did not change or even increased, respectively. In conclusion, the spleen contraction is present at the beginning of apnea, accentuated by cold forehead stimulation. At large, but not small, lung volume, this initial contraction is probably facilitated by downloaded baroreflex in conditions of decreased blood pressure and cardiac output.  相似文献   

11.
We examined the combined effect of an increase in inspiratory flow rate and frequency on the O2 cost of inspiratory resistive breathing (VO2 resp). In each of three to six pairs of runs we measured VO2 resp in six normal subjects breathing through an inspiratory resistance with a constant tidal volume (VT). One of each pair of runs was performed at an inspiratory muscle contraction frequency of approximately 10/min and the other at approximately 30/min. Inspiratory mouth pressure was 45 +/- 2% (SE) of maximum at the lower contraction frequency and 43 +/- 2% at the higher frequency. Duty cycle (the ratio of contraction time to total cycle time) was constant at 0.51 +/- 0.01. However, during the higher frequency runs, two of every three contractions were against an occluded airway. Because VT and duty cycle were kept constant, mean inspiratory flow rate increased with frequency. Careful selection of appropriate parameters allowed the pairs of runs to be matched both for work rate and pressure-time product. The VO2 resp did not increase, despite approximately threefold increases in both inspiratory flow rate and contraction frequency. On the contrary, there was a trend toward lower values for VO2 resp during the higher frequency runs. Because these were performed at a slightly lower mean lung volume, a second study was designed to measure the VO2 resp of generating the same inspiratory pressure (45% maximum static inspiratory mouth pressure at functional residual capacity) at the same frequency but at two different lung volumes. This was achieved with a negligibly small work rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We monitored the steady-state ventilatory responses of anesthetized cats to increases in lung volume produced by expiratory threshold loads (ETL) to study the roles of peripheral and central neural mechanisms in controlling respiration at elevated lung volumes. Application of an ETL of 5 cmH2O produced a significant decrease in respiratory frequency (-18%) but no change in minute ventilation (VE) due to a significant increase in tidal volume (VT) (19.3%). The drop in frequency was due solely to an increase in expiratory duration. ETL of 10 cmH2O significantly reduced VE (-17.5%) for the same reason. VT was maintained or increased at elevated lung volumes due to both an increase in the rate of rise of phrenic activity and a maintenance of inspiratory duration (TI) despite increases in both chemical drive and pulmonary stretch receptor (PSR) activity. No PSR adapted completely to the maintained change in lung volume. The sensitivity of the inspiratory off-switch mechanism to increases in lung volume, given by the reciprocal of the VT-TI relationship, decreased significantly during breathing on ETL. The results are consistent with the hypothesis that central habituation, not just peripheral adaptation of PSR, determines breathing pattern at elevated lung volumes.  相似文献   

13.
Using magnetic resonance imaging (MRI) in conjunction with synchronized spirometry we analyzed and compared diaphragm movement during tidal breathing and voluntary movement of the diaphragm while breath holding. Breathing cycles of 16 healthy subjects were examined using a dynamic sequence (77 slices in sagittal plane during 20 s, 1NSA, 240x256, TR4.48, TE2.24, FA90, TSE1, FOV 328). The amplitude of movement of the apex and dorsal costophrenic angle of the diaphragm were measured for two test conditions: tidal breathing and voluntary breath holding. The maximal inferior and superior positions of the diaphragm were subtracted from the corresponding positions during voluntary movements while breath holding. The average amplitude of inferio-superior movement of the diaphragm apex during tidal breathing was 27.3+/-10.2 mm (mean +/- SD), and during voluntary movement while breath holding was 32.5+/-16.2 mm. Movement of the costophrenic angle was 39+/-17.6 mm during tidal breathing and 45.5+/-21.2 mm during voluntary movement while breath holding. The inferior position of the diaphragm was lower in 11 of 16 subjects (68.75 %) and identical in 2 of 16 (12.5 %) subjects during voluntary movement compared to the breath holding. Pearson's correlation coefficient was used to demonstrate that movement of the costophrenic angle and apex of the diaphragm had a linear relationship in both examined situations (r=0.876). A correlation was found between the amplitude of diaphragm movement during tidal breathing and lung volume (r=0.876). The amplitude of movement of the diaphragm with or without breathing showed no correlation to each other (r=0.074). The movement during tidal breathing shows a correlation with the changes in lung volumes. Dynamic MRI demonstrated that individuals are capable of moving their diaphragm voluntarily, but the amplitude of movement differs from person to person. In this study, the movements of the diaphragm apex and the costophrenic angle were synchronous during voluntary movement of the diaphragm while breath holding. Although the sample is small, this study confirms that the function of the diaphragm is not only respiratory but also postural and can be voluntarily controlled.  相似文献   

14.
The effects of involuntary respiratory contractions on the cerebral blood flow response to maximal apnoea is presently unclear. We hypothesised that while respiratory contractions may augment left ventricular stroke volume, cardiac output and ultimately cerebral blood flow during the struggle phase, these contractions would simultaneously cause marked ‘respiratory’ variability in blood flow to the brain. Respiratory, cardiovascular and cerebrovascular parameters were measured in ten trained, male apnoea divers during maximal ‘dry’ breath holding. Intrathoracic pressure was estimated via oesophageal pressure. Left ventricular stroke volume, cardiac output and mean arterial pressure were monitored using finger photoplethysmography, and cerebral blood flow velocity was obtained using transcranial ultrasound. The increasingly negative inspiratory intrathoracic pressure swings of the struggle phase significantly influenced the rise in left ventricular stroke volume (R 2 = 0.63, P<0.05), thereby contributing to the increase in cerebral blood flow velocity throughout this phase of apnoea. However, these contractions also caused marked respiratory variability in left ventricular stroke volume, cardiac output, mean arterial pressure and cerebral blood flow velocity during the struggle phase (R 2 = 0.99, P<0.05). Interestingly, the magnitude of respiratory variability in cerebral blood flow velocity was inversely correlated with struggle phase duration (R 2 = 0.71, P<0.05). This study confirms the hypothesis that, on the one hand, involuntary respiratory contractions facilitate cerebral haemodynamics during the struggle phase while, on the other, these contractions produce marked respiratory variability in blood flow to the brain. In addition, our findings indicate that such variability in cerebral blood flow negatively impacts on struggle phase duration, and thus impairs breath holding performance.  相似文献   

15.
Variability of parenchymal expansion measured by computed tomography   总被引:1,自引:0,他引:1  
Computed tomography scans of isolated dog lung lobes at different lobe volumes were used to determine the variability of parenchymal tissue density and the variability of parenchymal volume changes on the scale of a voxel, a cube 1.5 mm on a side. The variability of tissue density increased with decreasing lobe volume. The variability of tissue density of neighboring voxels was positively correlated; the spatial correlation decreased exponentially with distance with an exponential scale of 0.3 cm. The ratio of the volume of the parenchyma within a voxel to its volume at total lobe capacity was calculated from the tissue density data at two lobe volumes. At a lobe volume of 40% total lobe capacity, the local fractional volumes were 0.42 +/- 0.12. The variability of ventilation that corresponds to this variability of fractional volume is large enough to explain the inefficiency of mixing in the isolated lobe and the slope of the alveolar plateau of nitrogen concentration in the expirate after a breath of oxygen. These results are consistent with data reported earlier on the variability of parenchymal volumes at a scale of 1-10 cm3.  相似文献   

16.
We previously showed that when pulmonary capillaries in anesthetized rabbits are exposed to a transmural pressure (Ptm) of approximately 40 mmHg, stress failure of the walls occurs with disruption of the capillary endothelium, alveolar epithelium, or sometimes all layers. The present study was designed to test whether stress failure occurred more frequently at high than at low lung volumes for the same Ptm. Lungs of anesthetized rabbits were inflated to a transpulmonary pressure of 20 cmH2O, perfused with autologous blood at 32.5 or 2.5 cmH2O Ptm, and fixed by intravascular perfusion. Samples were examined by both transmission and scanning electron microscopy. The results were compared with those of a previous study in which the lung was inflated to a transpulmonary pressure of 5 cmH2O. There was a large increase in the frequency of stress failure of the capillary walls at the higher lung volume. For example, at 32.5 cmH2O Ptm, the number of endothelial breaks per millimeter cell lining was 7.1 +/- 2.2 at the high lung volume compared with 0.7 +/- 0.4 at the low lung volume. The corresponding values for epithelium were 8.5 +/- 1.6 and 0.9 +/- 0.6. Both differences were significant (P less than 0.05). At 52.5 cmH2O Ptm, the results for endothelium were 20.7 +/- 7.6 (high volume) and 7.1 +/- 2.1 (low volume), and the corresponding results for epithelium were 32.8 +/- 11.9 and 11.4 +/- 3.7. At 32.5 cmH2O Ptm, the thickness of the blood-gas barrier was greater at the higher lung volume, consistent with the development of more interstitial edema. Ballooning of the epithelium caused by accumulation of edema fluid between the epithelial cell and its basement membrane was seen at 32.5 and 52.5 cmH2O Ptm. At high lung volume, the breaks tended to be narrower and fewer were oriented perpendicular to the axis of the pulmonary capillaries than at low lung volumes. Transmission and scanning electron microscopy measurements agreed well. Our findings provide a physiological mechanism for other studies showing increased capillary permeability at high states of lung inflation.  相似文献   

17.
The pressure-volume (P-V) characteristics of the lung microcirculation are important determinants of the pattern of pulmonary perfusion and of red and white cell transit times. Using diffuse light scattering, we measured capillary P-V loops in seven excised perfused dog lobes at four lung volumes, from functional residual capacity (FRC) to total lung capacity (TLC), over a wide range of vascular transmural pressures (Ptm). At Ptm 5 cmH(2)O, specific compliance of the microvasculature was 8.6%/cmH(2)O near FRC, decreasing to 2.7%/cmH(2)O as lung volume increased to TLC. At low lung volumes, the vasculature showed signs of strain stiffening (specific compliance fell as Ptm rose), but stiffening decreased as lung volume increased and was essentially absent at TLC. The P-V loops were smooth without sharp transitions, consistent with vascular distension as the primary mode of changes in vascular volume with changes in Ptm. Hysteresis was small (0.013) at all lung volumes, suggesting that, although surface tension may set basal capillary shape, it does not strongly affect capillary compliance.  相似文献   

18.
The effect of stimulus frequency on thein vivo pressure generating capacity of the human diaphragm is unknownat lung volumes other than functional residual capacity. Thetransdiaphragmatic pressure (Pdi) produced by a pair of phrenic nervestimuli may be viewed as the sum of the Pdi elicited by the first (T1Pdi) and second (T2 Pdi) stimuli. We used bilateral anteriorsupramaximal magnetic phrenic nerve stimulation and a digitalsubtraction technique to obtain the T2 Pdi at interstimulus intervalsof 999, 100, 50, 33, and 10 ms in eight normal subjects at lung volumesbetween residual volume and total lung capacity. The reduction in T2Pdi that we observed as lung volume increased was greatest at long interstimulus intervals, whereas the T2 Pdi obtained with short interstimulus intervals remained relatively stable over the 50% ofvital capacity around functional residual capacity. For all interstimulus intervals, the total pressure produced by the pair decreased as a function of increasing lung volume. These data demonstrate that, in the human diaphragm, hyperinflation has a disproportionately severe effect on the summation of pressure responseselicited by low-frequency stimulations; this effect isdistinct from and additional to the known length-tension relationship.

  相似文献   

19.
Lung volumes during low-intensity steady-state cycling   总被引:2,自引:0,他引:2  
The use of inspiratory capacity (IC) to estimate end-expiratory lung volume (EELV) during exercise has been questioned because of the assumption of constant total lung capacity (TLC). To investigate lung volumes during low-intensity steady-state cycling, we measured EELV by the open-circuit N2 washout method (MR-1, currently Sensormedics 2100) in eight healthy men while at rest and during unloaded and 60-W cycling. TLC was calculated by adding EELV and IC. Measurement variation of TLC was 142 ml at rest, 121 ml during unloaded cycling, and 158 ml during 60-W cycling. TLC did not differ significantly among the three conditions studied. EELV decreased during unloaded (P less than 0.002) and 60-W cycling (P less than 0.001) compared with rest. End-inspiratory lung volume increased only during 60-W cycling (P = 0.03). The decrease in EELV accounted for 100% of the increase in tidal volume during unloaded cycling. Although minute ventilation was similar in the subjects during unloaded cycling, we noted that breathing patterns varied among the subjects. The increase in respiratory frequency was negatively correlated to the change in tidal volume (R2 = 0.54, P = 0.038) and to the change in end-inspiratory lung volume (R2 = 0.68, P = 0.012). We conclude that TLC does not differ significantly during low-intensity steady-state cycling and that use of IC to estimate changes in EELV is appropriate.  相似文献   

20.
Ventilator management decisions in acute lung injury could be better informed with knowledge of the patient's transpulmonary pressure, which can be estimated using measurements of esophageal pressure. Esophageal manometry is seldom used for this, however, in part because of a presumed postural artifact in the supine position. Here, we characterize the magnitude and variability of postural effects on esophageal pressure in healthy subjects to better assess its significance in patients with acute lung injury. We measured the posture-related changes in relaxation volume and total lung capacity in 10 healthy subjects in four postures: upright, supine, prone, and left lateral decubitus. Then, in the same subjects, we measured static pressure-volume characteristics of the lung over a wide range of lung volumes in each posture by using an esophageal balloon catheter. Transpulmonary pressure during relaxation (PLrel) averaged 3.7 (SD 2.0) cmH2O upright and -3.3 (SD 3.2) cmH2O supine. Approximately 58% of the decrease in PLrel between the upright and supine postures was due to a corresponding decrease in relaxation volume. The remaining 2.9-cmH2O difference is consistent with reported values of a presumed postural artifact. Relaxation volumes and pressures in prone and lateral postures were intermediate. To correct estimated transpulmonary pressure for the effect of lying supine, we suggest adding 3 cmH2O (95% confidence interval: -1 to +7 cmH2O). We conclude that postural differences in estimated transpulmonary pressure at a given lung volume are small compared with the substantial range of PLrel in patients with acute lung injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号