首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Endogenous DNA damage induced by hydrolysis, reactive oxygen species and alkylation modifies DNA bases and the structure of the DNA duplex. Numerous mechanisms have evolved to protect cells from these deleterious effects. Base excision repair is the major pathway for removing base lesions. However, several mechanisms of direct base damage reversal, involving enzymes such as transferases, photolyases and oxidative demethylases, are specialized to remove certain types of photoproducts and alkylated bases. Mismatch excision repair corrects for misincorporation of bases by replicative DNA polymerases. The determination of the 3D structure and visualization of DNA repair proteins and their interactions with damaged DNA have considerably aided our understanding of the molecular basis for DNA base lesion repair and genome stability. Here, we review the structural biochemistry of base lesion recognition and initiation of one-step direct reversal (DR) of damage as well as the multistep pathways of base excision repair (BER), nucleotide incision repair (NIR) and mismatch repair (MMR).  相似文献   

2.
DNA mismatch repair (MMR) maintains genomic integrity by correction of mispaired bases and insertion-deletion loops. The MMR pathway can also trigger a DNA damage response upon binding of MutSα to specific DNA lesions such as O(6)methylguanine (O(6)meG). Limited information is available regarding cellular regulation of these two different pathways. Within this report, we demonstrate that phosphorylated hMSH6 increases in concentration in the presence of a G:T mismatch, as compared to an O(6)meG:T lesion. TPA, a kinase activator, enhances the phosphorylation of hMSH6 and binding of hMutSα to a G:T mismatch, though not to O(6)meG:T. UCN-01, a kinase inhibitor, decreases both phosphorylation of hMSH6 and binding of hMutSα to G:T and O(6)meG:T. HeLa MR cells, pretreated with UCN-01 and exposed to MNNG, undergo activation of Cdk1 and mitosis despite phosphorylation of Chk1 and inactivating phosphorylation of Cdc25c. These results indicate that UCN-01 may inhibit an alternative cell cycle arrest pathway associated with the MMR pathway that does not involve Cdc25c. In addition, recombinant hMutSα containing hMSH6 mutated at an N-terminal cluster of four phosphoserines exhibits decreased phosphorylation and decreased binding of hMutSα to G:T and O(6)meG:T. Taken together, these results suggest a model in which the amount of phosphorylated hMSH6 bound to DNA is dependent on the presence of either a DNA mismatch or DNA alkylation damage. We hypothesize that both phosphorylation of hMSH6 and total concentration of bound hMutSα are involved in cellular signaling of either DNA mismatch repair or MMR-dependent damage recognition activities.  相似文献   

3.
Genetic information is frequently disturbed by introduction of modified or mismatch bases into duplex DNA, and hence all organisms contain DNA repair systems to restore normal genetic information by removing such damaged bases or nucleotides and replacing them by correct ones. The understanding of this repair mechanism is a central subject in cell biology. This review focuses on the three-dimensional structural views of damaged DNA recognition by three proteins. The first protein is T4 endonuclease V (T4 endo V), which catalyzes the first reaction step of the excision repair pathway to remove pyrimidine-dimers (PD) produced within duplex DNA by UV irradiation. The crystal structure of this enzyme complexed with DNA containing a thymidine-dimer provided the first direct view of DNA lesion recognition by a repair enzyme, indicating that the DNA kink coupled with base flipping-out is important for damaged DNA recognition. The second is very short patch repair (Vsr) endonuclease, which recognizes a TG mismatch within the five base pair consensus sequence. The crystal structure of this enzyme in complex with duplex DNA containing a TG mismatch revealed a novel mismatch base pair recognition scheme, where three aromatic residues intercalate from the major groove into the DNA to strikingly deform the base pair stacking but the base flipping-out does not occur. The third is human nucleotide excision repair (NER) factor XPA, which is a major component of a large protein complex. This protein has been shown to bind preferentially to UV- or chemical carcinogen-damaged DNA. The solution structure of the XPA central domain, essential for the interaction of damaged DNA, was determined by NMR. This domain was found to be divided mainly into a (Cys)4-type zinc-finger motif subdomain for replication protein A (RPA) recognition and the carboxyl terminal subdomain responsible for DNA binding.  相似文献   

4.
Single- and multi-base (loop) mismatches can arise in DNA by replication errors, during recombination, and by chemical modification of DNA. Single-base and loop mismatches of several nucleotides are efficiently repaired in mammalian cells by a nick-directed, MSH2-dependent mechanism. Larger loop mismatches (> or =12 bases) are repaired by an MSH2-independent mechanism. Prior studies have shown that 12- and 14-base palindromic loops are repaired with bias toward loop retention, and that repair bias is eliminated when five single-base mismatches flank the loop mismatch. Here we show that one single-base mismatch near a 12-base palindromic loop is sufficient to eliminate loop repair bias in wild-type, but not MSH2-defective mammalian cells. We also show that palindromic loop and single-base mismatches separated by 12 bases are repaired independently at least 10% of the time in wild-type cells, and at least 30% of the time in MSH2-defective cells. Palindromic loop and single-base mismatches separated by two bases were never repaired independently. These and other data indicate that loop repair tracts are variable in length. All tracts extend at least 2 bases, some extend <12 bases, and others >12 bases, on one side of the loop. These properties distinguish palindromic loop mismatch repair from the three known excision repair pathways: base excision repair which has one to six base tracts, nucleotide excision repair which has approximately 30 base tracts, and MSH2-dependent mismatch repair, which has tracts that extend for several hundred bases.  相似文献   

5.
In eukaryotic cells, the cell cycle checkpoint proteins Rad9, Rad1, and Hus1 form the 9-1-1 complex which is structurally similar to the proliferating cell nuclear antigen (PCNA) sliding clamp. hMSH2/hMSH6 (hMutSα) and hMSH2/hMSH3 (hMutSβ) are the mismatch recognition factors of the mismatch repair pathway. hMutSα has been shown to physically and functionally interact with PCNA. Moreover, DNA methylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) treatment induces the G2/M cell cycle arrest that is dependent on the presence of hMutSα and hMutLα. In this study, we show that each subunit of the human 9-1-1 complex physically interacts with hMSH2, hMSH3, and hMSH6. The 9-1-1 complex from both humans and Schizosaccharomyces pombe can stimulate hMutSα binding with G/T-containing DNA. Rad9, Rad1, and Hus1 individual subunits can also stimulate the DNA binding activity of hMutSα. Human Rad9 and hMSH6 colocalize to nuclear foci of HeLa cells after exposure to MNNG. However, Rad9 does not form foci in MSH6 defective cells following MNNG treatment. In Rad9 knockdown untreated cells, the majority of the MSH6 is in cytoplasm. Following MNNG treatment, Rad9 knockdown cells has abnormal nuclear morphology and MSH6 is distributed around nuclear envelop. Our findings suggest that the 9-1-1 complex is a component of the mismatch repair involved in MNNG-induced damage response.  相似文献   

6.
Larson ED  Iams K  Drummond JT 《DNA Repair》2003,2(11):1199-1210
Genomic DNA and its precursors are susceptible to oxidation during aerobic cellular metabolism, and at least five distinct repair activities target a single common lesion, 7,8-dihydro-8-oxoguanine (8-oxoG). The human mismatch repair (MMR) pathway, which has been implicated in an apoptotic response to covalent DNA damage, is likely to encounter 8-oxoG in both the parental and daughter strand during replication. Here, we show that lesions containing 8-oxoG paired with adenine or cytosine, which are most likely to arise during replication, are not efficiently processed by the mismatch repair system. Lesions containing 8-oxoG paired with thymine or guanine, which are unlikely to arise, are excised in an MSH2/MSH6-dependent manner as effectively as the corresponding mismatches when placed in a context that reflects the daughter strand during replication. Using a newly developed assay based on methylation sensitivity, we characterized strand-excision events opposite 8-oxoG situated to reflect placement in the parental strand. Lesions that efficiently trigger strand excision and resynthesis (8-oxoG paired with thymine or guanine) result in adenine or cytosine insertion opposite 8-oxoG. These latter pairings are poor substrates for further action by mismatch repair, but precursors for alternative pathways with non-mutagenic outcomes. We suggest that the lesions most likely to be encountered by the human mismatch repair pathway during replication, 8-oxoG.A or 8-oxoG.C, are likely to escape processing in either strand by this system. Taken together, these data suggest that the human mismatch repair pathway is not a major contributor to removal of misincorporated 8-oxoG, nor is it likely to trigger repeated attempts at lesion processing.  相似文献   

7.
8.
Escherichia coli MutY has an important role in preventing mutations associated with the oxidative lesion 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG) in DNA by excising adenines from OG.A mismatches as the first step of base excision repair. To determine the importance of specific steps in the base pair recognition and base removal process of MutY, we have evaluated the effects of modifications of the OG.A substrate on the kinetics of base removal, mismatch affinity and repair to G-C in an E. coli-based assay. Notably, adenine modification was tolerated in the cellular assay, whereas modification of OG resulted in minimal cellular repair. High affinity for the mismatch and efficient base removal required the presence of OG. Taken together, these results suggest that the presence of OG is a critical feature that is necessary for MutY to locate OG.A mismatches and select the appropriate adenines for excision to initiate repair in vivo before replication.  相似文献   

9.
The ability to monitor and characterize DNA mismatch repair activity in various mammalian cells is important for understanding mechanisms involved in mutagenesis and tumorigenesis. Since mismatch repair proteins recognize mismatches containing both normal and chemically altered or damaged bases, in vitro assays must accommodate a variety of mismatches in different sequence contexts. Here we describe the construction of DNA mismatch substrates containing G:T or O6meG:T mismatches, the purification of recombinant native human MutSα (MSH2–MSH6) and MutLα (MLH1–PMS2) proteins, and in vitro mismatch repair and excision assays that can be adapted to study mismatch repair in nuclear extracts from mismatch repair proficient and deficient cells.  相似文献   

10.
Molecular mechanisms of DNA damage and repair: progress in plants   总被引:14,自引:0,他引:14  
Despite stable genomes of all living organisms, they are subject to damage by chemical and physical agents in the environment (e.g., UV and ionizing. radiations, chemical mutagens, fungal and bacterial toxins, etc.) and by free radicals or alkylating agents endogenously generated in metabolism. DNA is also damaged because of errors during its replication. The DNA lesions produced by these damaging agents could be altered base, missing base, mismatch base, deletion or insertion, linked pyrimidines, strand breaks, intra- and inter-strand cross-links. These DNA lesions could be genotoxic or cytotoxic to the cell. Plants are most affected by the UV-B radiation of sunlight, which penetrates and damages their genome by inducing oxidative damage (pyrimidine hydrates) and cross-links (both DNA protein and DNA-DNA) that are responsible for retarding the growth and development. The DNA lesions can be removed by repair, replaced by recombination, or retained, leading to genome instability or mutations or carcinogenesis or cell death. Mostly organisms respond to genome damage by activating a DNA damage response pathway that regulates cell-cycle arrest, apoptosis, and DNA repair pathways. To prevent the harmful effect of DNA damage and maintain the genome integrity, all organisms have developed various strategies to either reverse, excise, or tolerate the persistence of DNA damage products by generating a network of DNA repair mechanisms. A variety of different DNA repair pathways have been reported that include direct reversal, base excision repair, nucleotide excision repair, photoreactivation, bypass, double-strand break repair pathway, and mismatch repair pathway. The direct reversal and photoreactivation require single protein, all the rest of the repair mechanisms utilize multiple proteins to remove or repair the lesions. The base excision repair pathway eliminates single damaged base, while nucleotide excision repair excises a patch of 25- to 32-nucleotide-long oligomer, including the damage. The double-strand break repair utilizes either homologous recombination or nonhomologous endjoining. In plant the latter pathway is more error prone than in other eukaryotes, which could be an important driving force in plant genome evolution. The Arabidopsis genome data indicated that the DNA repair is highly conserved between plants and mammals than within the animal kingdom, perhaps reflecting common factors such as DNA methylation. This review describes all the possible mechanisms of DNA damage and repair in general and an up to date progress in plants. In addition, various types of DNA damage products, free radical production, lipid peroxidation, role of ozone, dessication damage of plant seed, DNA integrity in pollen, and the role of DNA helicases in damage and repair and the repair genes in Arabidopsis genome are also covered in this review.  相似文献   

11.
Alleva JL  Zuo S  Hurwitz J  Doetsch PW 《Biochemistry》2000,39(10):2659-2666
Schizosaccharomyces pombe alternative excision repair has been shown genetically and biochemically to be involved in the repair of a wide variety of DNA lesions. AER is initiated by a damage-specific endonuclease (Uve1p) that recognizes UV-induced photoproducts, base mispairs, abasic sites, and platinum G-G diadducts and cleaves the DNA phosphodiester backbone 5' to a lesion. Several models exist that employ various mechanisms for damage removal based on the activities of Rad2p, a nuclease thought to be responsible for damage excision in AER. This study represents the first report of the biochemical reconstitution of the AER pathway. A base mispair-containing substrate is repaired in a reaction requiring S. pombe Uve1p, Rad2p, DNA polymerase delta, replication factor C, proliferating cell nuclear antigen, and T4 DNA ligase. Surprisingly, damage is removed exclusively by the 5' to 3' exonuclease activity of Rad2p and not its "flap endonuclease" activity and is absolutely dependent upon the presence of the 5'-phosphoryl moiety at the Uve1p cleavage site.  相似文献   

12.
DNA damage-dependent signaling by the DNA mismatch repair (MMR) system is thought to mediate cytotoxicity of the anti-tumor drug cisplatin through molecular mechanisms that could differ from those required for normal mismatch repair. The present study investigated whether ATP-dependent biochemical properties of Escherichia coli MutS protein differ when the protein interacts with a DNA oligonucleotide containing a GT mismatch versus a unique site specifically placed cisplatin compound lesion, a cisplatin 1,2-d(GpG) intrastrand cross-link with a mispaired thymine opposite the 3' platinated guanine. MutS exhibited substantial affinity for this compound lesion in hydrolytic and in non-hydrolytic conditions of ATP, contrasting with the normal nucleotide inhibition effect of mispair binding. The cisplatin compound lesion was also shown to stimulate poorly MutS ATPase activity to approach the hydrolysis rate induced by nonspecific DNA. Moreover, MutS undergoes distinct conformation changes in the presence of the compound lesion and ATP under hydrolytic conditions as shown by limited proteolysis. In the absence of MutS, the cisplatin compound lesion was shown to induce a 39 degrees rigid bending of the DNA double helix contrasting with an unbent state for DNA containing a GT mispair. Furthermore, an unbent DNA substrate containing a monofunctional adduct mimicking a cisplatin residue failed to form a persistent nucleoprotein complex with MutS in the presence of adenine nucleotide. We propose that DNA bending could play a role in MutS biochemical modulations induced by a compound lesion and that cisplatin DNA damage signaling by the MMR system could be modulated in a direct mode.  相似文献   

13.
DNA repair mechanisms are fairly well characterized for nuclear DNA while knowledge regarding the repair mechanisms operable in mitochondria is limited. Several lines of evidence suggest that mitochondria contain DNA repair mechanisms. DNA lesions are removed from mtDNA in cells exposed to various chemicals. Protein activities that process damaged DNA have been detected in mitochondria. As will be discussed, there is evidence for base excision repair (BER), direct damage reversal, mismatch repair, and recombinational repair mechanisms in mitochondria, while nucleotide excision repair (NER), as we know it from nuclear repair, is not present.  相似文献   

14.
The DNA mismatch repair (MMR) system plays a critical role in sensitizing both prokaryotic and eukaryotic cells to the clinically potent anticancer drug cisplatin. It is thought to mediate cytotoxicity through recognition of cisplatin DNA lesions. This drug generates a range of lesions that may also give rise to compound lesions resulting from the misincorporation of a base during translesion synthesis. Using gel mobility shift competition assays and surface plasmon resonance, we have analyzed the interaction of Escherichia coli MutS protein with site-specifically modified DNA oligonucleotides containing each of the four cisplatin cross-links or a set of compound lesions. The major 1,2-d(GpG) cisplatin intrastrand cross-link was recognized with only a 1.5-fold specificity, whereas a 47-fold specificity was found with a natural G/T containing DNA substrate. The rate of association, kon, for binding to the 1,2-d(GpG) adduct was 3.1 x 104 m-1 s-1 and the specificity of binding was essentially dependent on koff. DNA duplexes containing a single 1,2-d(ApG), 1,3-d(GpCpG) adduct, and an interstrand cross-link of cisplatin were not preferentially recognized. Among 12 DNA substrates, each containing a different cisplatin compound lesion derived from replicative misincorporation of one base opposite either of the 1,2-intrastrand adducts, 10 were specifically recognized including those that are more likely formed in vivo based on cisplatin mutation spectra. Moreover, among these lesions, two compound lesions formed when an adenine was misincorporated opposite a 1,2-d(GpG) adduct were not substrates for the MutY-dependent mismatch repair pathway. The ability of MutS to sense differentially various platinated DNA substrates suggests that cisplatin compound lesions formed during misincorporation of a base opposite either adducted base of both 1,2-intrastrand cross-links are more plausible critical lesions for MMR-mediated cisplatin cytotoxicity.  相似文献   

15.
16.
Tran PT  Fey JP  Erdeniz N  Gellon L  Boiteux S  Liskay RM 《DNA Repair》2007,6(11):1572-1583
Replication forks stall at DNA lesions or as a result of an unfavorable replicative environment. These fork stalling events have been associated with recombination and gross chromosomal rearrangements. Recombination and fork bypass pathways are the mechanisms accountable for restart of stalled forks. An important lesion bypass mechanism is the highly conserved post-replication repair (PRR) pathway that is composed of error-prone translesion and error-free bypass branches. EXO1 codes for a Rad2p family member nuclease that has been implicated in a multitude of eukaryotic DNA metabolic pathways that include DNA repair, recombination, replication, and telomere integrity. In this report, we show EXO1 functions in the MMS2 error-free branch of the PRR pathway independent of the role of EXO1 in DNA mismatch repair (MMR). Consistent with the idea that EXO1 functions independently in two separate pathways, we defined a domain of Exo1p required for PRR distinct from those required for interaction with MMR proteins. We then generated a point mutant exo1 allele that was defective for the function of Exo1p in MMR due to disrupted interaction with Mlh1p, but still functional for PRR. Lastly, by using a compound exo1 mutant that was defective for interaction with Mlh1p and deficient for nuclease activity, we provide further evidence that Exo1p plays both structural and catalytic roles during MMR.  相似文献   

17.
Order of assembly of human DNA repair excision nuclease.   总被引:21,自引:0,他引:21  
Human excision nuclease removes DNA damage by concerted dual incisions bracketing the lesion. The dual incisions are accomplished by sequential and partly overlapping actions of six repair factors, RPA, XPA, XPC, TFIIH, XPG, and XPF.ERCC1. Of these, RPA, XPA, and XPC have specific binding affinity for damaged DNA. To learn about the role of these three proteins in damage recognition and the order of assembly of the excision nuclease, we measured the binding affinities of XPA, RPA, and XPC to a DNA fragment containing a single (6-4) photoproduct and determined the rate of damage excision under a variety of reaction conditions. We found that XPC has the highest affinity to DNA and that RPA has the highest selectivity for damaged DNA. Under experimental conditions conducive to binding of either XPA + RPA or XPC to damaged DNA, the rate of damage removal was about 5-fold faster for reactions in which XPA + RPA was the first damage recognition factor presented to DNA compared with reactions in which XPC was the first protein that had the opportunity to bind to DNA. We conclude that RPA and XPA are the initial damage sensing factors of human excision nuclease.  相似文献   

18.
Bai H  Lu AL 《Journal of bacteriology》2007,189(3):902-910
Escherichia coli MutY and MutS increase replication fidelity by removing adenines that were misincorporated opposite 7,8-dihydro-8-oxo-deoxyguanines (8-oxoG), G, or C. MutY DNA glycosylase removes adenines from these mismatches through a short-patch base excision repair pathway and thus prevents G:C-to-T:A and A:T-to-G:C mutations. MutS binds to the mismatches and initiates the long-patch mismatch repair on daughter DNA strands. We have previously reported that the human MutY homolog (hMYH) physically and functionally interacts with the human MutS homolog, hMutSalpha (Y. Gu et al., J. Biol. Chem. 277:11135-11142, 2002). Here, we show that a similar relationship between MutY and MutS exists in E. coli. The interaction of MutY and MutS involves the Fe-S domain of MutY and the ATPase domain of MutS. MutS, in eightfold molar excess over MutY, can enhance the binding activity of MutY with an A/8-oxoG mismatch by eightfold. The MutY expression level and activity in mutS mutant strains are sixfold and twofold greater, respectively, than those for the wild-type cells. The frequency of A:T-to-G:C mutations is reduced by two- to threefold in a mutS mutY mutant compared to a mutS mutant. Our results suggest that MutY base excision repair and mismatch repair defend against the mutagenic effect of 8-oxoG lesions in a cooperative manner.  相似文献   

19.
Adenines mismatched with guanines or 7,8-dihydro-8-oxo-deoxyguanines that arise through DNA replication errors can be repaired by either base excision repair or mismatch repair. The human MutY homolog (hMYH), a DNA glycosylase, removes adenines from these mismatches. Human MutS homologs, hMSH2/hMSH6 (hMutSalpha), bind to the mismatches and initiate the repair on the daughter DNA strands. Human MYH is physically associated with hMSH2/hMSH6 via the hMSH6 subunit. The interaction of hMutSalpha and hMYH is not observed in several mismatch repair-defective cell lines. The hMutSalpha binding site is mapped to amino acid residues 232-254 of hMYH, a region conserved in the MutY family. Moreover, the binding and glycosylase activities of hMYH with an A/7,8-dihydro-8-oxo-deoxyguanine mismatch are enhanced by hMutSalpha. These results suggest that protein-protein interactions may be a means by which hMYH repair and mismatch repair cooperate in reducing replicative errors caused by oxidized bases.  相似文献   

20.
Bloom's syndrome (BS) is a rare genetic disorder characterised by genome instability and cancer susceptibility. BLM, the BS gene product, belongs to the highly-conserved RecQ family of DNA helicases. Although the exact function of BLM in human cells remains to be defined, it seems likely that BLM eliminates some form of homologous recombination (HR) intermediate that arises during DNA replication. Similarly, the mismatch repair (MMR) system also plays a crucial role in the maintenance of genomic stability, by correcting DNA errors generated during DNA replication. Recent evidence implicates components of the MMR system also in HR repair. We now show that hMSH6, a component of the heterodimeric mismatch recognition complex hMSH2/hMSH6 (hMutS(alpha)), interacts with the BLM protein both in vivo and in vitro. In agreement with these findings, BLM and hMSH6 co-localise to discrete nuclear foci following exposure of the cells to ionising radiation. However, the purified recombinant MutS(alpha) complex does not affect the helicase activity of BLM in vitro. As BLM has previously been shown to interact with the hMLH1 component of the hMLH1/hPMS2 (hMutL(alpha)) heterodimeric MMR complex, our present findings further strengthen the link between BLM and processes involving correction of DNA mismatches, such as in the regulation of the fidelity of homologous recombination events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号