首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-five fungal cultures were screened for their ability to transform the anthelmintic drug albendazole. A filamentous fungi Cunninghamella blakesleeana transformed albendazole to three metabolites in significant quantities. The transformation of albendazole was identified by HPLC. Based on the LC-MS-MS data, two metabolites were predicted to be albendazole sulfoxide and albendazole sulfone, the major mammalian metabolites reported previously. A new N-methylated metabolite of albendazole sulfoxide was also produced, where the methylation took place on the N-atom of the imidazole ring system. A temperature of 30°C, pH of 8 and high substrate concentrations produced highest transformation of albendazole. Among the various concentrations studied, 2% w/v of glucose produced highest transformation. The results reveal that the microbial model can be used to produce large quantities of mammalian metabolites.  相似文献   

2.
This paper describes a simple, fast, sensitive and reliable method for the simultaneous determination of albendazole sulfoxide (ASOX) and albendazole sulfone (ASON), the two most important metabolites of the drug albendazole (ABZ), in plasma samples using liquid chromatography and tandem mass spectrometry. After liquid-liquid extraction with dichloromethane, the two albendazole metabolites and the internal standard phenacetin were resolved in a CN column using the mobile phase methanol-water (4:6, v/v) acidified with 1% acetic acid. Detection by electrospray mass spectrometry was carried out in the positive ion mode. The method was linear up to 2500 and 250 ng/ml for ASOX and ASON, respectively, with mean recoveries of more than 85%. The precision and accuracy data, based on within- and between-day variations over 5 days, were lower than 15%. The quantitation limits of 0.5 and 5.0 ng/ml for ASON and ASOX are low enough for the method to be suitable for pharmacokinetic studies. Pharmacokinetic data obtained with the proposed method following oral administration of ABZ to a patient with neurocysticercosis are also reported.  相似文献   

3.
Hepatitis and fulminant hepatic failure have, infrequently, been associated with nimesulide. To establish if nimesulide or its analogues have direct cytotoxic activity on liver cells, experiments were undertaken to investigate the effects of nimesulide and its principal metabolites and production intermediates on the viability and growth of the human hepatoma cell line, HepG2, in vitro. The parent drug, metabolites or production intermediates as well as formulations of nimesulide were incubated for 6-48 hr with HepG2 cells and the extent of toxicity determined using the mitochondrial selective redox dye 3-4,5-dimethylthazol-2-yl)-2,4-diphenyl tetrazolium bromide (MTT). The results showed that there was no appreciable cytotoxic activity exhibited by nimesulide and its principle metabolites or production intermediates on HepG2 cells.  相似文献   

4.
The direct enantiomeric resolution of albendazole sulfoxide (SOABZ), an anthelmintic drug belonging to the benzimidazole class, is reported on a chiral stationary phase (CSP) synthesized by covalent binding of (S)-N-(3,5-dinitrobenzoyl)tyrosine-O-(2-propen-1-yl) methyl ester on a gamma-mercaptopropyl-silanized silica gel. A comparison with the resolution achieved on commercially available Pirkle-type CSPs obtained from N-(3,5-dinitrobenzoyl) derivatives of (R)-phenyglycine or (S)-phenylalanine is described. Some structurally related chiral sulfoxides including oxfendazole (SOFBZ) are also studied. Optimization of the mobile phase nature and composition is investigated showing that a hexane-dioxane-ethanol ternary mixture affords an almost baseline resolution (Rs = 1.25); however, in this case, albendazole sulfone (SO2ABZ) is eluted between the two sulfoxide enantiomers; accordingly, a hexane-ethanol mobile phase would be preferred for biological samples containing both metabolites. The influence of temperature on the resolution is depicted with a hexane-ethanol mobile phase. Finally, application to the enantiomeric assays of SOABZ in plasmatic extracts of rat, sheep, bovin, and man after oral administration of albendazole (sulfoxidized to SOABZ and SO2ABZ) is reported. Some distortions in the enantiomeric ratios are evidenced depending on the species.  相似文献   

5.
Albendazole is a broad-spectrum parasiticide with high effectiveness and low host toxicity. No method is currently available for measuring albendazole and its metabolites in silkworm hemolymph. This study describes a rapid, selective, sensitive, synchronous and reliable detection method for albendazole and its metabolites in silkworm hemolymph using ultrafast liquid chromatography tandem triple quadrupole mass spectrometry (UFLC-MS/MS). The method is liquid-liquid extraction followed by UFLC separation and quantification in an MS/MS system with positive electrospray ionization in multiple reaction monitoring mode. Precursor-to-product ion transitions were monitored at 266.100 to 234.100 for albendazole (ABZ), 282.200 to 208.100 for albendazole sulfoxide (ABZSO), 298.200 to 159.100 for albendazole sulfone (ABZSO2) and 240.200 to 133.100 for albendazole amino sulfone (ABZSO2-NH2). Calibration curves had good linearities with R2 of 0.9905–0.9972. Limits of quantitation (LOQs) were 1.32 ng/mL for ABZ, 16.67 ng/mL for ABZSO, 0.76 ng/mL for ABZSO2 and 5.94 ng/mL for ABZSO2-NH2. Recoveries were 93.12%–103.83% for ABZ, 66.51%–108.51% for ABZSO, 96.85%–105.6% for ABZSO2 and 96.46%–106.14% for ABZSO2-NH2, (RSDs <8%). Accuracy, precision and stability tests showed acceptable variation in quality control (QC) samples. This analytical method successfully determined albendazole and its metabolites in silkworm hemolymph in a pharmacokinetic study. The results of single-dose treatment suggested that the concentrations of ABZ, ABZSO and ABZSO2 increased and then fell, while ABZSO2-NH2 level was low without obvious change. Different trends were observed for multi-dose treatment, with concentrations of ABZSO and ABZSO2 rising over time.  相似文献   

6.
A filamentous fungus Cunninghamella blakesleeana was screened for its ability to biotransform the anthelmintic drug albendazole. The fungus produced three metabolites in the presence of the carbon and nitrogen sources studied. The transformation was identified by HPLC and the structures of the transformation products were assigned by LC-MS-MS analysis and on the basis of previous reports. The results indicated that the fungus metabolized albendazole into albendazole sulfoxide (M1), albendazole sulfone (M2) and an N-methyl metabolite of albendazole sulfoxide (M3). The effect of carbon and nitrogen source on the biotransformation of albendazole was significant. Among the carbon and nitrogen sources studied, fructose and urea respectively produced maximum extent of biotransformation in terms of substrate depletion. Among the carbon sources studied, maltose produced a higher percentage of M1 whereas M2 and M3 were produced to their maximum extent in presence of d-fructose in terms of metabolite per unit quantity of biomass. In the case of nitrogen sources, ammonium acetate, calcium nitrate and barium nitrate produced maximum percentage of M1, M2 and M3 respectively. The results reveal that the carbon and nitrogen source significantly influence the microbial transformation both qualitatively and quantitatively.  相似文献   

7.
The ability of various benzimidazoles (BZs) to bind tubulin under different conditions was assessed by determining their IC50 values (the concentration of unlabeled drug required to inhibit 50% of the labeled drug binding), Ka (the apparent equilibrium association constant) and Bmax (the maximum binding at infinite [BZ] = [drug-receptor]). The ability of unlabeled benzimidazoles--fenbendazole, mebendazole (MBZ), oxibendazole (OBZ), albendazole (ABZ), rycobendazole (albendazole sulfoxide, ABZSO), albendazole sulfone, oxfendazole (OFZ), and thiabendazole--to bind tubulin was determined from their ability to inhibit the binding of [3H]MBZ or [3H]OBZ to tubulin in supernatants derived from unembryonated eggs or adult worms of Haemonchus contortus. The binding constants (IC50, Ka, and Bmax) correlated with the known anthelmintic potency (recommended therapeutic doses) of the BZ compounds except for OFZ and ABZSO whose Ka values were lower than could be expected from anthelmintic potency. The binding of [3H]ABZ or [3H]OFZ to tubulin in supernatants derived from BZ-susceptible and BZ-resistant H. contortus was compared. [3H]ABZ demonstrated saturable high-affinity binding but [3H]OFZ bound with low affinity. The high-affinity binding of [3H]ABZ was reduced for the R strain. Tubulin bound BZ drugs at 4 degrees C with lower apparent Ka than at 37 degrees C.  相似文献   

8.
The cytotoxic effect of aflatoxin B1 on cultures of a differentiated rat hepatoma cell line, Faza 967, has been evaluated by scoring the surviving colonies two weeks after briefly exposing the freshly plated cells to the mycotoxin. At the lowest concentration, aflatoxin B1 exhibits no toxicity, unless the cultures have been pretreated with dexamethasone. HF-1, an hepatoma hybrid cell line exhibiting extinction of the hepatic functions and HF1-4, its subclone, that reexpresses all of these functions, have been compared. A 6hrs exposure to 60ng/ml aflatoxin B1 is not toxic for HF1 even after an hormonal treatment, while dexamethasone enhances the effect on HF1-4. Glucocorticoïds have been shown previously to induce, in the differentiated clones, the hydroxylation of bile acid - a cytochrome P-450-mediated reaction ; in contrast, 3-methylcholanthrene, an inducer of benzopyrene hydroxylase in hepatoma cultures, is without effect on bile acid metabolism and on aflatoxin B1 cytotoxicity. These results suggest that in the differentiated hepatoma cells, aflatoxin B1 is converted into a cytotoxic metabolite by a glucocorticoïd-induced monooxygenase belonging to the cytochrome P-450-related group.  相似文献   

9.
Cysteine conjugate S-oxidase activity, with S-benzyl-L-cysteine as substrate, was found mostly in the microsomal fractions of rat liver and kidney. In the presence of oxygen and NADPH, S-benzyl-L-cysteine is converted to S-benzyl-L-cysteine sulfoxide; no S-benzyl-L-cysteine sulfone was detected. The Vmax for S-benzyl-L-cysteine sulfoxide formation by kidney microsomes was nearly 3-fold greater than the rate measured with liver microsomes. Inclusion of catalase, superoxide dismutase, glutathione, butylated hydroxyanisole, the peroxidase inhibitor, potassium cyanide, the cytochrome P-450 inhibitors, 1-benzylimidazole and metyrapone, or a monoclonal antibody to cytochrome P-450 reductase did not inhibit the metabolic reaction. Flavin-containing monooxygenase alternate substrates, N,N-dimethylaniline, n-octylamine, and methimazole inhibited the S-oxidase activities. Analogues of S-benzyl-L-cysteine, S-methyl-L-cysteine, and S-(1,2-dichlorovinyl)-L-cysteine inhibited the S-benzyl-L-cysteine S-oxidase activities, whereas S-carboxymethyl-L-cysteine and S-benzyl-L-cysteine methyl ester had no effect. These results provide clear evidence against the involvement of reactive oxygen intermediates or cytochrome P-450 in the sulfoxidation of S-benzyl-L-cysteine and indicate that the S-oxidase activities may be associated with flavin-containing monooxygenases which exhibit selectivity in the interaction with cysteine S-conjugates.  相似文献   

10.
Bufuralol, debrisoquine, and dextromethorphan are three prototype substrates of the common genetic deficiency of oxidative drug metabolism in man known as debrisoquine/sparteine-type polymorphism. We describe assays for the in vitro metabolism of (+)- and (-)-bufuralol, debrisoquine, and dextromethorphan in human liver microsomes and reconstituted purified cytochrome P-450 isozymes. These assays combine nonextractive sample preparation by precipitation of protein with perchloric acid with reversed-phase inorganic ion-pair HPLC and fluorescence detection. The minimal detectable levels of the major metabolites formed are 1'-hydroxybufuralol, 0.1 ng/ml; 4-hydroxydebrisoquine, 0.8 ng/ml; and dextrorphan, 0.1 ng/ml. Formation of these metabolites is linear for at least 45 min and between 1 and 100 micrograms of microsomal protein. Comparative kinetic analysis of the three monooxygenase reactions in human liver microsomes revealed an apparent biphasicity of (+)- and (-)-bufuralol 1'-hydroxylation and dextromethorphan O-demethylation but monophasic formation of 4-hydroxydebrisoquine in the substrate concentration range (less than 1 mM) studied. These data, in combination with those obtained by purified human cytochrome P-450 isozymes indicate the involvement of the same enzyme in the metabolism of all three substrates investigated. However, additional and distinct activities contribute to the metabolism of (+)- and (-)-bufuralol and dextromethorphan.  相似文献   

11.
A method to determine the activity of the cytochrome P-450 1A1 enzyme, by measuring 7-ethoxyresorufin-O-deethylase (EROD) activity using high-performance liquid chromatography (HPLC) with fluorescence or with visible absorbance detection of resorufin, is described. The lowest quantifiable activity (0.2 pmol/mg min) is obtained by incubation of 0.3 mg of human duodenal microsomal proteins using HPLC fluorescence detection. Using HPLC with visible absorbance detection, sensitivity was ten times lower. However, the equipment for this last method is available in most laboratories. The use of both HPLC assays allows determination of the low EROD activity level in samples of small size, such as two or three human duodenal biopsies obtained by routine endoscopy. These methods will be a useful tool to study the role of drug intestinal metabolism by cytochrome P-450 1A1.  相似文献   

12.
The induction by phenobarbital (PB) of aldrin epoxidase (AE) and aryl hydrocarbon hydroxylase (AHH), markers of cytochrome P-450- and cytochrome P-448-dependent monooxygenases, was studied in cell lines derived from Reuber H35 rat hepatoma which differ widely in their degree of differentiation. The following results were obtained: (1) PB induced AE 2-6-fold and AHH 2-4-fold in the differentiated clones, Fao, 2sFou, and C2Rev7 during an exposure period of 72 h. The barbiturate increased AHH but not AE in the dedifferentiated clone H5, the poorly differentiated line H4IIEC3/T, and in the well differentiated line H4IIEC3/G-. (2) Continuous presence of the barbiturate was required for maintaining the induction of the two monooxygenase activities in C2Rev7 cells. (3) Maximum induction of AE was observed at a PB concentration of 1.5-3.0 mM. (4) The effects of 7,8-benzoflavone on AHH-activities induced by phenobarbital in C2Rev7 and H5 cells suggested that they are mediated by cytochrome P-450- and cytochrome P-448-dependent monooxygenase forms, respectively. Thus, the flavonoid had only a slight inhibitory effect on PB-induced AHH in C2Rev7 cells, but strongly inhibited PB-induced AHH in H5 cells. The induction of AE and of 7,8-benzoflavone-inhibitable AHH in 2sFou cells indicated that PB is capable of inducing cytochromes P-450 and cytochrome P-448 in the same cell.  相似文献   

13.
Dibenzyl sulfide metabolism by white rot fungi   总被引:1,自引:0,他引:1  
Microbial metabolism of organosulfur compounds is of interest in the petroleum industry for in-field viscosity reduction and desulfurization. Here, dibenzyl sulfide (DBS) metabolism in white rot fungi was studied. Trametes trogii UAMH 8156, Trametes hirsuta UAMH 8165, Phanerochaete chrysosporium ATCC 24725, Trametes versicolor IFO 30340 (formerly Coriolus sp.), and Tyromyces palustris IFO 30339 all oxidized DBS to dibenzyl sulfoxide prior to oxidation to dibenzyl sulfone. The cytochrome P-450 inhibitor 1-aminobenzotriazole eliminated dibenzyl sulfoxide oxidation. Laccase activity (0.15 U/ml) was detected in the Trametes cultures, and concentrated culture supernatant and pure laccase catalyzed DBS oxidation to dibenzyl sulfoxide more efficiently in the presence of 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) than in its absence. These data suggest that the first oxidation step is catalyzed by extracellular enzymes but that subsequent metabolism is cytochrome P-450 mediated.  相似文献   

14.
The present study investigates the urinary excretion of the enantiomers of (+)- and (-)-albendazole sulfoxide (ASOX) and albendazole sulfone (ASON) in 12 patients with neurocysticercosis treated with albendazole for 8 days (7.5 mg/kg/12 h). Serial blood samples (0-12 h) and urine (three periods of 8 h) were collected after administration of the last dose of albendazole. Plasma and urine (+)-ASOX, (-)-ASOX, and ASON metabolites were determined by HPLC using a chiral phase column (Chiralpak AD) with fluorescence detection. The pharmacokinetic parameters (P < 0.05) for (+)-ASOX, (-)-ASOX, and ASON metabolites are reported as means (95% CI); amount excreted (Ae) = 3.19 (1.53-4.85) vs. 0.72 (0.41-1.04) vs. 0.08 (0.03-0.13) mg; plasma concentration-time area under the curve, AUC(0-24) = 3.56 (0.93-6.18) vs. 0.60 (0.12-1.08) vs. 0.38 (0.20-0.55) microg x h/ml, and renal clearance Cl(R) = 1.20 (0.66-1.73) vs. 2.72 (0.39-5.05) vs. 0.25 (0.13-0.37) l/h. Sulfone formation capacity, expressed as the Ae ratio ASON/ASOX + ASON, was 2.21 (1.43-2.99). These data point to enantioselectivity in the renal excretion of ASOX as a complementary mechanism to the metabolism responsible for the plasma accumulation of (+)-ASOX. The results also suggest that the metabolite ASON is partially eliminated as a reaction product of the subsequent metabolism.  相似文献   

15.
When tested as a microbial model for mammalian drug metabolism, the filamentous fungus Cunninghamella elegans metabolized chlorpromazine and methdilazine within 72 h. The metabolites were extracted by chloroform, separated by high-performance liquid chromatography, and characterized by proton nuclear magnetic resonance, mass, and UV spectroscopic analyses. The major metabolites of chlorpromazine were chlorpromazine sulfoxide (36%), N-desmethylchlorpromazine (11%), N-desmethyl-7-hydroxychlorpromazine (6%), 7-hydroxychlorpromazine sulfoxide (36%), N-hydroxychlorpromazine (11%), 7-hydroxychlorpromazine sulfoxide (5%), and chlorpromazine N-oxide (2%), all of which have been found in animal studies. The major metabolites of methdilazine were 3-hydroxymethdilazine (3%). (18)O(2) labeling experiments indicated that the oxygen atoms in methdilazine sulfoxide, methdilazine N-oxide, and 3-hydroxymethdilazine were all derived from molecular oxygen. The production of methdilazine sulfoxide and 3-hydroxymethdilazine was inhibited by the cytochrome P-450 inhibitors metyrapone and proadifen. An enzyme activity for the sulfoxidation of methdilazine was found in microsomal preparations of C. elegans. These experiments suggest that the sulfoxidation and hydroxylation of methdilazine and chlorpromazine by C. elegans are catalyzed by cytochrome P-450.  相似文献   

16.
Hydroxyurea induces DNA repair replication in the cytochrome P-450-containing C2Rev7 rat hepatoma cell line. Repair is severalfold increased by pretreatment of the cells with dexamethasone, which induces cytochrome P-450-dependent monooxygenase activities in these cells. In the dedifferentiated hepatoma line H5, which strongly expresses cytochrome P-448 but no cytochrome P-450-dependent enzyme activities, hydroxyurea is not genotoxic. The results support the notion that the formation of genotoxic metabolites from hydroxyurea is mediated by a cytochrome P-450-dependent enzyme.  相似文献   

17.
Various types of tumors are known to overexpress enzymes belonging to the CYP1 family of cytochromes P450. The present study aimed to characterize the metabolism and further antiproliferative activity of the natural flavonoid diosmetin in the CYP1-expressing human hepatoma cell line HepG2. Diosmetin was converted to luteolin in HepG2 cells after 12 and 30 h of incubation. In the presence of the CYP1A inhibitor α-naphthoflavone, the conversion of diosmetin to luteolin was attenuated. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays revealed luteolin to be more cytotoxic than diosmetin. The antiproliferative effect of diosmetin in HepG2 cells was attributed to blockage at the G2/M phase as determined by flow cytometry. Induction of G2/M arrest was accompanied by up-regulation of phospho-extracellular-signal-regulated kinase (p-ERK), phospho-c-jun N-terminal kinase, p53 and p21 proteins. More importantly, induction of G2/M arrest and p53 and p-ERK up-regulation were reversed by the application of the CYP1 inhibitor α-naphthoflavone. Taken together, the data provide new evidence on the tumor-suppressing role of cytochrome P450 CYP1A enzymes and extend the hypothesis that the anticancer activity of dietary flavonoids is enhanced by P450-activation.  相似文献   

18.
Summary Transplantable rat liver tumors 5123 t.c., 7288 ct.c., 5123 t.c.(H) and the Novikoff hepatoma have active mixed function oxidase systems capable of metabolizing a variety of drug and polycyclic hydrocarbon substrates. The tumor drug metabolism systems are at best 20% as active as rat liver. The tumor drug metabolism activities are induced by pretreatment with phenobarbital or -naphthoflavone and can be inhibited with specific inhibitors such as carbon monoxide or 7,8-benzoflavone. Tumor drug metabolism systems appear to consist of cytochrome P-450 and cytochrome P-450 reductase. The properties of the two protein components from tumors are highly similar to the corresponding components of the liver drug metabolism system.Cytochrome P-450 reductase has been at least partially purified from the Novikoff hepatoma and hepatoma 5123 t.c.(H). The kinetic and physical properties of the tumor reductases are similar to those of the liver reductase except that the Km of hepatoma 5123 t.c.(H)  相似文献   

19.
Bioassay-guided phytochemical study of Androsace umbellata led to the successful isolation of saxifragifolin B (SB) for the first time. The anti-tumor effect of SB was firstly reported that it was shown to have potent cytotoxicity on human hepatoma HepG2 cells with IC50 value of 11.9 microM at 24 h. Mechanistic studies were conducted, the accumulation of sub-G1 population and the externalization of phosphatidylserine suggested that SB exerted its cytotoxic effect by induction of programmed cell death, which was confirmed by activation of PARP and caspase-3. Furthermore, SB-induced apoptosis on HepG2 cells was mediated by activation of caspase-8 and -9, mitochondrial membrane potential (Deltapsim) collapse and the leakage of cytochrome c. In summary, this study provided evidence that SB isolated from A. umbellata could induce apoptosis on human hepatoma HepG2 cells and described the molecular mechanism. Our finding revealed the potential of SB as new chemotherapeutic agent for human hepatoma.  相似文献   

20.
Cell lines derived from Reuber H-4-II-E hepatoma cells and their hybrids that differ in the expression of liver-specific functions are shown to contain different forms of monooxygenases. According to 1) the specificity toward the substrates benzo(a)pyrene, aldrin and chenodexycholic acid, 2) the kinetics of the epoxidation of aldrin, 3) the response to inducers, such as benz(a)anthracene and dexamethasone, and 4) the invitro modifier 7,8-benzoflavone, the monooxygenases predominating in differentiated cell lines belong to the cytochrome P-450-dependent enzyme(s), those in the less differentiated lines belong to the cytochrome P-448-dependent form(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号