首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The highly pathogenic H5N1 avian influenza virus emerged from China in 1996 and has spread across Eurasia and Africa, with a continuous stream of new cases of human infection appearing since the first large-scale outbreak among migratory birds at Qinghai Lake. The role of wild birds, which are the natural reservoirs for the virus, in the epidemiology of the H5N1 virus has raised great public health concern, but their role in the spread of the virus within the natural ecosystem of free-ranging terrestrial wild mammals remains unclear. In this study, we investigated H5N1 virus infection in wild pikas in an attempt to trace the circulation of the virus. Seroepidemiological surveys confirmed a natural H5N1 virus infection of wild pikas in their native environment. The hemagglutination gene of the H5N1 virus isolated from pikas reveals two distinct evolutionary clades, a mixed/Vietnam H5N1 virus sublineage (MV-like pika virus) and a wild bird Qinghai (QH)-like H5N1 virus sublineage (QH-like pika virus). The amino acid residue (glutamic acid) at position 627 encoded by the PB2 gene of the MV-like pika virus was different from that of the QH-like pika virus; the residue of the MV-like pika virus was the same as that of the goose H5N1 virus (A/GS/Guangdong [GD]/1/96). Further, we discovered that in contrast to the MV-like pika virus, which is nonpathogenic to mice, the QH-like pika virus is highly pathogenic. To mimic the virus infection of pikas, we intranasally inoculated rabbits, a species closely related to pikas, with the H5N1 virus of pika origin. Our findings first demonstrate that wild pikas are mammalian hosts exposed to H5N1 subtype avian influenza viruses in the natural ecosystem and also imply a potential transmission of highly pathogenic avian influenza virus from wild mammals into domestic mammalian hosts and humans.Highly pathogenic avian influenza (HPAI) is an extremely infectious, systemic viral disease that causes a high rate of mortality in birds. HPAI H5N1 viruses are now endemic in avian populations in Southeast Asia and have repeatedly been transmitted to humans (9, 14, 27). Since 2003, the H5N1 subtype has been reported in 391 human cases of influenza and has caused 247 human deaths in 15 countries, leading to greater than 60% mortality among infected individuals (38). Although currently incapable of sustained human-to-human transmission, H5N1 viruses undoubtedly pose a serious threat to public health, as well as to the global economy. Hence, preparedness for such a threat is a global priority (36).Wild birds are considered to be natural reservoirs for influenza A viruses (6, 18, 21, 35, 37). Of the 144 type A influenza virus hemagglutinin-neuraminidase (HA-NA) combinations, 103 have been found in wild birds (5, 7, 17, 37). Since the first HPAI outbreak among migratory wild birds appeared at Qinghai Lake in western China in May 2005 (3, 16, 25, 34, 41), HPAI viruses of the H5N1 subtype have been isolated from poultry throughout Eurasia and Africa. The continued occurrence of human cases has created a situation that could facilitate a pandemic emergence. There is heightened concern that wild birds are a reservoir for influenza A viruses that switch hosts and stably adapt to mammals, including horses, swine, and humans (11, 19, 22, 37).Despite the recent expansion of avian influenza virus (AIV) surveillance and genomic data (5, 17, 20, 21, 33, 40), fundamental questions remain concerning the ecology and evolution of these viruses. Little is known about how terrestrial wild mammals within their natural ecological systems affect HPAI H5N1 epidemiology or about the virus''s effects on public health, though there are many reports of natural and experimental H5N1 virus infection in animals belonging to the taxonomic orders Carnivora (12, 13, 15, 28, 29) and Artiodactyla (15). Herein, we provide the results of our investigation into H5N1 virus infection in wild pikas (Ochotona curzoniae of the order Lagomorpha) within their natural ecological setting. We describe our attempt to trace the circulation of H5N1 viruses and to characterize pika H5N1 influenza virus (PK virus).  相似文献   

2.
Many novel reassortant influenza viruses of the H9N2 genotype have emerged in aquatic birds in southern China since their initial isolation in this region in 1994. However, the genesis and evolution of H9N2 viruses in poultry in eastern China have not been investigated systematically. In the current study, H9N2 influenza viruses isolated from poultry in eastern China during the past 10 years were characterized genetically and antigenically. Phylogenetic analysis revealed that these H9N2 viruses have undergone extensive reassortment to generate multiple novel genotypes, including four genotypes (J, F, K, and L) that have never been recognized before. The major H9N2 influenza viruses represented by A/Chicken/Beijing/1/1994 (Ck/BJ/1/94)-like viruses circulating in poultry in eastern China before 1998 have been gradually replaced by A/Chicken/Shanghai/F/1998 (Ck/SH/F/98)-like viruses, which have a genotype different from that of viruses isolated in southern China. The similarity of the internal genes of these H9N2 viruses to those of the H5N1 influenza viruses isolated from 2001 onwards suggests that the Ck/SH/F/98-like virus may have been the donor of internal genes of human and poultry H5N1 influenza viruses circulating in Eurasia. Experimental studies showed that some of these H9N2 viruses could be efficiently transmitted by the respiratory tract in chicken flocks. Our study provides new insight into the genesis and evolution of H9N2 influenza viruses and supports the notion that some of these viruses may have been the donors of internal genes found in H5N1 viruses.Wild birds, including wild waterfowls, gulls, and shorebirds, are the natural reservoirs for influenza A viruses, in which they are thought to be in evolutionary stasis (2, 33). However, when avian influenza viruses are transmitted to new hosts such as terrestrial poultry or mammals, they evolve rapidly and may cause occasional severe systemic infection with high morbidity (20, 29). Despite the fact that avian influenza virus infection occurs commonly in chickens, it is unable to persist for a long period of time due to control efforts and/or a failure of the virus to adapt to new hosts (29). In the past 20 years, greater numbers of outbreaks in poultry have occurred, suggesting that the avian influenza virus can infect and spread in aberrant hosts for an extended period of time (5, 14-16, 18, 32).During the past 10 years, H9N2 influenza viruses have become panzootic in Eurasia and have been isolated from outbreaks in poultry worldwide (3, 5, 11, 14-16, 18, 24). A great deal of previous studies demonstrated that H9N2 influenza viruses have become established in terrestrial poultry in different Asian countries (5, 11, 13, 14, 18, 21, 24, 35). In 1994, H9N2 viruses were isolated from diseased chickens in Guangdong province, China, for the first time (4), and later in domestic poultry in other provinces in China (11, 16, 18, 35). Two distinct H9N2 virus lineages represented by A/Chicken/Beijing/1/94 (H9N2) and A/Quail/Hong Kong/G1/98 (H9N2), respectively, have been circulating in terrestrial poultry of southern China (9). Occasionally these viruses expand their host range to other mammals, including pigs and humans (6, 17, 22, 34). Increasing epidemiological and laboratory findings suggest that chickens may play an important role in expanding the host range for avian influenza virus. Our systematic surveillance of influenza viruses in chickens in China showed that H9N2 subtype influenza viruses continued to be prevalent in chickens in mainland China from 1994 to 2008 (18, 19, 36).Eastern China contains one metropolitan city (Shanghai) and five provinces (Jiangsu, Zhejiang, Anhui, Shandong, and Jiangxi), where domestic poultry account for approximately 50% of the total poultry population in China. Since 1996, H9N2 influenza viruses have been isolated regularly from both chickens and other minor poultry species in our surveillance program in the eastern China region, but their genetic diversity and the interrelationships between H9N2 influenza viruses and different types of poultry have not been determined. Therefore, it is imperative to explore the evolution and properties of these viruses. The current report provides insight into the genesis and evolution of H9N2 influenza viruses in eastern China and presents new evidence for the potential crossover between H9N2 and H5N1 influenza viruses in this region.  相似文献   

3.
Highly pathogenic avian influenza A viruses of the H5N1 subtype continue to circulate in poultry, and zoonotic transmissions are reported frequently. Since a pandemic caused by these highly pathogenic viruses is still feared, there is interest in the development of influenza A/H5N1 virus vaccines that can protect humans against infection, preferably after a single vaccination with a low dose of antigen. Here we describe the induction of humoral and cellular immune responses in ferrets after vaccination with a cell culture-derived whole inactivated influenza A virus vaccine in combination with the novel adjuvant CoVaccine HT. The addition of CoVaccine HT to the influenza A virus vaccine increased antibody responses to homologous and heterologous influenza A/H5N1 viruses and increased virus-specific cell-mediated immune responses. Ferrets vaccinated once with a whole-virus equivalent of 3.8 μg hemagglutinin (HA) and CoVaccine HT were protected against homologous challenge infection with influenza virus A/VN/1194/04. Furthermore, ferrets vaccinated once with the same vaccine/adjuvant combination were partially protected against infection with a heterologous virus derived from clade 2.1 of H5N1 influenza viruses. Thus, the use of the novel adjuvant CoVaccine HT with cell culture-derived inactivated influenza A/H5N1 virus antigen is a promising and dose-sparing vaccine approach warranting further clinical evaluation.Since the first human case of infection with a highly pathogenic avian influenza A virus of the H5N1 subtype in 1997 (9, 10, 37), hundreds of zoonotic transmissions have been reported, with a high case-fatality rate (10, 44). Since these viruses continue to circulate among domestic birds and human cases are regularly reported, it is feared that they will adapt to their new host or exchange gene segments with other influenza A viruses, become transmissible from human to human, and cause a new pandemic. Recently, a novel influenza A virus of the H1N1 subtype emerged. This virus, which originated from pigs, was transmitted between humans efficiently, resulting in the first influenza pandemic of the 21st century (8, 45). Although millions of people have been inoculated with the (H1N1)2009 virus, the case-fatality rate was relatively low compared to that for infections with the H5N1 viruses (11, 31). However, the unexpected pandemic caused by influenza A/H1N1(2009) viruses has further highlighted the importance of rapid availability of safe and effective pandemic influenza virus vaccines. Other key issues for the development of pandemic influenza A virus vaccines include optimal use of the existing (limited) capacity for production of viral antigen and effectiveness against viruses that are antigenically distinct. Ideally, a single administration of a low dose of antigen would be sufficient to induce protective immunity against the homologous strain and heterologous antigenic variant strains. However, since the population at large will be immunologically naïve to a newly introduced virus, high doses of antigen are required to induce protective immunity in unprimed subjects (23, 36). The use of safe and effective adjuvants in pandemic influenza virus vaccines is considered a dose-sparing strategy. Clinical trials evaluating candidate inactivated influenza A/H5N1 virus vaccines showed that the use of adjuvants can increase their immunogenicity and broaden the specificity of the induced antibody responses (2, 7, 19, 23, 27, 36, 41). These research efforts have resulted in the licensing of adjuvanted vaccines against seasonal and pandemic influenza viruses (17). The protective efficacy of immune responses induced with candidate influenza A/H5N1 virus vaccines was demonstrated in ferrets after two immunizations (1, 22, 24, 25) or after a single immunization. The latter was achieved with a low dose of antigen in combination with the adjuvant Iscomatrix (26).Recently, a novel adjuvant that consists of a sucrose fatty acid sulfate ester (SFASE) immobilized on the oil droplets of a submicrometer emulsion of squalane in water has been developed (4). It has been demonstrated that the addition of this novel adjuvant, called CoVaccine HT, to multiple antigens increased the immune response to these antigens in pigs and horses and was well tolerated in both species (4, 16, 40). Furthermore, it was shown that the use of CoVaccine HT increased the virus-specific antibody responses in mice and ferrets after vaccination with a cell culture-derived whole inactivated influenza A/H5N1 virus vaccine (5, 13). One of the mode of actions of CoVaccine HT is the activation of antigen-presenting cells such as dendritic cells, most likely through Toll-like receptor 4 (TLR4) signaling (5).In the present study, we evaluated the protective potential of CoVaccine HT-adjuvanted cell culture-derived whole inactivated influenza A/H5N1 virus (WIV) vaccine in the ferret model, which is considered the most suitable animal model for the evaluation of candidate influenza virus vaccines (6, 14, 15). To this end, ferrets were vaccinated once or twice with various antigen doses with or without the adjuvant to test whether dose sparing could be achieved. The use of CoVaccine HT increased virus-specific antibody responses and T cell responses. A single administration of 3.8 μg hemagglutinin (HA) of WIV NIBRG-14 vaccine preparation in combination with CoVaccine HT conferred protection against challenge infection with the homologous highly pathogenic A/H5N1 virus strain A/VN/1194/04 and partial protection against infection with a heterologous, antigenically distinct strain, A/IND/5/05. Therefore, it was concluded that the use of CoVaccine HT in inactivated influenza virus vaccines induced protective virus-specific humoral and cell-mediated immune responses and that it could be suitable as adjuvant in (pre)pandemic A/H5N1 virus vaccines. Further clinical testing of these candidate vaccines seems to be warranted.  相似文献   

4.
H2 influenza viruses have not circulated in humans since 1968, and therefore a large segment of the population would likely be susceptible to infection should H2 influenza viruses reemerge. The development of an H2 pandemic influenza virus vaccine candidate should therefore be considered a priority in pandemic influenza preparedness planning. We selected a group of geographically and temporally diverse wild-type H2 influenza viruses and evaluated the kinetics of replication and compared the ability of these viruses to induce a broadly cross-reactive antibody response in mice and ferrets. In both mice and ferrets, A/Japan/305/1957 (H2N2), A/mallard/NY/1978 (H2N2), and A/swine/MO/2006 (H2N3) elicited the broadest cross-reactive antibody responses against heterologous H2 influenza viruses as measured by hemagglutination inhibition and microneutralization assays. These data suggested that these three viruses may be suitable candidates for development as live attenuated H2 pandemic influenza virus vaccines.Influenza pandemics occur when a novel influenza virus enters a population with little preexisting immunity (36). During the pandemics of the last century, novel influenza viruses were introduced either directly from an avian reservoir (34) or were the result of reassortment between contemporaneously circulating human, avian, and swine influenza viruses (5, 29, 36). Due to the lack of preexisting immunity to the novel virus, morbidity and mortality rates are typically higher than in epidemics caused by seasonal influenza viruses (4).Although pandemic preparedness planning has largely focused on the highly pathogenic H5 and H7 avian influenza virus subtypes, the recent emergence of the 2009 pandemic H1N1 viruses underscores the need to consider other influenza virus subtypes as well. Of the 16 hemagglutinin (HA) influenza A virus subtypes that have been identified to date, H1, H2, and H3 have been known to cause influenza pandemics (7, 27), suggesting that these viruses are capable of sustained transmission and can cause disease in humans. While the H1 and H3 subtypes have cocirculated in humans since 1977, H2 influenza viruses have not circulated in humans since 1968 (36) and therefore a large segment of the population would likely be susceptible to infection should H2 influenza viruses reemerge. The 1957 H2 pandemic virus was a reassortant that derived the HA, neuraminidase (NA), and PB1 genes from an avian virus and the remaining gene segments from the circulating H1N1 virus (15, 30). As H2 subtype viruses continue to circulate in avian reservoirs worldwide (12, 17, 18, 22, 33), they remain a potential pandemic threat. The development of an H2 influenza virus vaccine candidate should therefore be considered a priority in future pandemic influenza preparedness planning.Given the low likelihood that a previously selected vaccine virus will exactly match the pandemic virus, the ability to elicit a broadly cross-reactive antibody response to antigenically distinct viruses within a subtype is an important consideration in the selection of a pandemic influenza vaccine candidate. Previous studies have examined the ability of inactivated H2 influenza viruses to provide cross-protection against mouse-adapted variants of reassortant human viruses and an avian H2 influenza virus from 1978 (9, 14). Given the potential for live attenuated influenza virus vaccines to confer a great breadth of heterologous cross-protection (1, 2, 6, 35), we recently conducted a study evaluating cold-adapted A/Ann Arbor/6/1960 (AA CA), an H2 influenza virus used as the backbone of the seasonal live attenuated influenza A virus vaccine currently licensed in the United States (3). However, as H2 influenza virus continues to circulate widely and appear in migratory birds (10, 24, 26), in poultry markets (20), and in swine (21), with evidence of interregional gene transmission (19, 22), a more extensive evaluation of recent isolates may be warranted in the selection of a potential H2 pandemic vaccine candidate.H2 influenza viruses fall into three main lineages: a human lineage, a North American avian lineage, and a Eurasian avian lineage (29). In addition to viruses whose replicative ability in mammals has previously been established (11, 21, 23, 25), we selected a group of geographically and temporally diverse H2 influenza viruses from each lineage. We evaluated the kinetics of replication of each of these viruses in mice and ferrets and compared the abilities of these viruses to induce a broadly cross-reactive antibody response to determine which of these viruses would be suitable for further development as an H2 pandemic influenza vaccine candidate.  相似文献   

5.
Avian H7 influenza viruses have been responsible for poultry outbreaks worldwide and have resulted in numerous cases of human infection in recent years. The high rate of conjunctivitis associated with avian H7 subtype virus infections may represent a portal of entry for avian influenza viruses and highlights the need to better understand the apparent ocular tropism observed in humans. To study this, mice were inoculated by the ocular route with viruses of multiple subtypes and degrees of virulence. We found that in contrast to human (H3N2 and H1N1) viruses, H7N7 viruses isolated from The Netherlands in 2003 and H7N3 viruses isolated from British Columbia, Canada, in 2004, two subtypes that were highly virulent for poultry, replicated to a significant titer in the mouse eye. Remarkably, an H7N7 virus, as well as some avian H5N1 viruses, spread systemically following ocular inoculation, including to the brain, resulting in morbidity and mortality of mice. This correlated with efficient replication of highly pathogenic H7 and H5 subtypes in murine corneal epithelial sheets (ex vivo) and primary human corneal epithelial cells (in vitro). Influenza viruses were labeled to identify the virus attachment site in the mouse cornea. Although we found abundant H7 virus attachment to corneal epithelial tissue, this did not account for the differences in virus replication as multiple subtypes were able to attach to these cells. These findings demonstrate that avian influenza viruses within H7 and H5 subtypes are capable of using the eye as a portal of entry.Highly pathogenic avian influenza (HPAI) H5N1 viruses, which have resulted in over 420 documented cases of human infection to date, have generally caused acute, often severe and fatal, respiratory illness (1, 50). While conjunctivitis following infection with H5N1 or human influenza viruses has been rare, most human infections associated with H7 subtype viruses have resulted in ocular and not respiratory disease (1, 9, 37, 38). Infrequent reports of human conjunctivitis infection following exposure to H7 influenza viruses date from 1977, predominantly resulting from laboratory or occupational exposure (21, 40, 48). However, in The Netherlands in 2003, more than 80 human infections with H7N7 influenza virus occurred among poultry farmers and cullers amid widespread outbreaks of HPAI in domestic poultry; the majority of these human infections resulted in conjunctivitis (14, 20). Additionally, conjunctivitis was documented in the two human infections resulting from an H7N3 outbreak in British Columbia, Canada, in 2004, as well as in H7N3- and H7N2-infected individuals in the United Kingdom in 2006 and 2007, respectively (13, 18, 29, 46, 51). The properties that contribute to an apparent ocular tropism of some influenza viruses are currently not well understood (30).Host cell glycoproteins bearing sialic acids (SAs) are the cellular receptors for influenza viruses and can be found on epithelial cells within both the human respiratory tract and ocular tissue (26, 31, 41). Both respiratory and ocular tissues additionally secrete sialylated mucins that function in pathogen defense and protection of the epithelial surface (5, 11, 22). Within the upper respiratory tract, α2-6-linked SAs (the preferred receptor for human influenza viruses) predominate on epithelial cells (26). While α2-3-linked SAs are also present to a lesser degree on respiratory epithelial cells, this linkage is more abundantly expressed on secreted mucins (2). In contrast, α2-3-linked SAs (the preferred receptor for avian influenza viruses) are found on corneal and conjunctival epithelial cells of the human eye (31, 41), while secreted ocular mucins are abundantly composed of α2-6 SAs (5). It has been suggested that avian influenza viruses are more suited to infect the ocular surface due to their general α2-3-linked SA binding preference, but this has not been demonstrated experimentally (30).The mouse model has been used previously to study the role of ocular exposure to respiratory viruses (6, 39). In mice, ocular inoculation with an H3N2 influenza virus resulted in virus replication in nasal turbinates and lung (39), whereas ocular infection with respiratory syncytial virus (RSV) resulted in detectable virus titers in the eye and lung (6). These studies have revealed that respiratory viruses are not limited to the ocular area following inoculation at this site. However, the ability of influenza viruses to replicate specifically within ocular tissue has not been examined.Despite repeated instances of conjunctivitis associated with H7 subtype infections in humans, the reasons for this apparent ocular tropism have not been studied extensively. Here, we present a murine model to study the ability of human and avian influenza viruses to cause disease by the ocular route. We found that highly pathogenic H7 and H5 influenza viruses were capable of causing a systemic and lethal infection in mice following ocular inoculation. These highly pathogenic viruses, unlike human H3N2 and H1N1 viruses, replicated to significant titers in the mouse corneal epithelium and primary human corneal epithelial cells (HCEpiCs). Identification of viruses well suited to infecting the ocular surface is the first step in better understanding the ability of influenza viruses of multiple subtypes to use this tissue as a portal of entry.  相似文献   

6.
7.
8.
9.
10.
A key question in pandemic influenza is the relative roles of innate immunity and target cell depletion in limiting primary infection and modulating pathology. Here, we model these interactions using detailed data from equine influenza virus infection, combining viral and immune (type I interferon) kinetics with estimates of cell depletion. The resulting dynamics indicate a powerful role for innate immunity in controlling the rapid peak in virus shedding. As a corollary, cells are much less depleted than suggested by a model of human influenza based only on virus-shedding data. We then explore how differences in the influence of viral proteins on interferon kinetics can account for the observed spectrum of virus shedding, immune response, and influenza pathology. In particular, induction of high levels of interferon (“cytokine storms”), coupled with evasion of its effects, could lead to severe pathology, as hypothesized for some fatal cases of influenza.Influenza A virus causes an acute respiratory disease in humans and other mammals; in humans, it is particularly important because of the rapidity with which epidemics develop, its widespread morbidity, and the seriousness of complications. Every year, an estimated 500,000 deaths worldwide, primarily of young children and the elderly, are attributed to seasonal influenza virus infections (49). Influenza pandemics may occur when an influenza virus with new surface proteins emerges, against which the majority of the population has no preexisting immunity. Both the emergence of H5N1 virus (34) and the current H1N1 virus pandemic (43) underline the importance of understanding the dynamics of infection and disease. A key question is, what regulates virus abundance in an individual host, causing the characteristic rapid decline in virus shedding following its initial peak? The main contenders in primary influenza virus infection are depletion of susceptible target cells and the impact of the host''s innate immune response (2, 20).On infection, the influenza virus elicits an immune response, including a rapid innate response that is correlated with the observed decline in the virus load after the first 2 days of infection (1). The slower adaptive response, including both humoral and cell-mediated components, takes several days to consolidate but is important for complete virus clearance and establishment of protective immunity. During infection of an immunologically naïve host, the innate immune response is particularly important as the first line of defense against infection. The innate immune response is regulated by chemokines and cytokines, chemical messengers produced by virus-infected epithelial cells and leukocytes (23), and natural interferon-producing cells, such as plasmacytoid dendritic cells (13). Among the key cytokines induced by epithelial cells infected with influenza A virus are type I interferons (IFNs) (IFN-α/β) (23), which directly contribute to the antiviral effect on infected and neighboring cells (38).Like other viruses, influenza A viruses have evolved strategies to limit the induction of innate immune responses (38). The NS1 protein plays a dominant role, and without it, the virus is unable to grow well or to cause pathology in an immunocompetent host (14). NS1 is multifunctional and counteracts both the induction of IFN expression and the function of IFN-activated antiviral effectors via multiple mechanisms (12, 17). Individual strains of influenza A virus possess these activities to various degrees (15, 21, 22, 26), and accordingly, NS1 has been implicated as a virulence factor (3, 17). A striking effect of the failure to control the innate response to virus infection is seen as a “cytokine storm,” which causes severe pathology (8).While there is an extensive literature on modeling influenza virus spread at the population level, the individual-host scale has received much less attention (2, 4, 5, 18, 19, 20, 27, 28). In a recent important paper, Baccam et al. modeled the kinetics of influenza A virus (2). The innate dynamics were included in the form of an IFN response that delayed and reduced virus production but did not prevent it; thus, the infection was resolved primarily through near-total depletion of epithelial cells. Their model was fitted to virus titers from human volunteers exposed to H1N1 influenza virus, but no data were available on the innate immune response or epithelial cell pathology. This has been a general difficulty in developing and validating more refined within-host models; there is a lack of detailed biological data from natural host systems, in particular, measures of immune kinetics and patterns of cellular depletion.The model presented here explicitly includes the ability of IFN to induce a fully antiviral state in order to explore the relative regulatory role of innate immunity and target cell depletion. Data from experimental infections of immunologically naïve horses with an equine influenza virus (36) allowed us to calibrate our model, not only to viral kinetics, but also to IFN dynamics and cell depletion in the context of infection of a naïve natural mammalian host. With our fitted model, we then investigate modulation of the immune response.  相似文献   

11.
Adaptation of influenza A viruses to a new host species usually involves the mutation of one or more of the eight viral gene segments, and the molecular basis for host range restriction is still poorly understood. To investigate the molecular changes that occur during adaptation of a low-pathogenic avian influenza virus subtype commonly isolated from migratory birds to a mammalian host, we serially passaged the avirulent wild-bird H5N2 strain A/Aquatic bird/Korea/W81/05 (W81) in the lungs of mice. The resulting mouse-adapted strain (ma81) was highly virulent (50% mouse lethal dose = 2.6 log10 50% tissue culture infective dose) and highly lethal. Nonconserved mutations were observed in six viral genes (those for PB2, PB1, PA, HA, NA, and M). Reverse genetic experiments substituting viral genes and mutations demonstrated that the PA gene was a determinant of the enhanced virulence in mice and that a Thr-to-Iso substitution at position 97 of PA played a key role. In growth kinetics studies, ma81 showed enhanced replication in mammalian but not avian cell lines; the PA97I mutation in strain W81 increased its replicative fitness in mice but not in chickens. The high virulence associated with the PA97I mutation in mice corresponded to considerably enhanced polymerase activity in mammalian cells. Furthermore, this characteristic mutation is not conserved among avian influenza viruses but is prevalent among mouse-adapted strains, indicating a host-dependent mutation. To our knowledge, this is the first study that the isoleucine residue at position 97 in PA plays a key role in enhanced virulence in mice and is implicated in the adaptation of avian influenza viruses to mammalian hosts.Migratory waterfowl are the natural reservoir of influenza A viruses (11, 53). The viruses replicate efficiently in their natural hosts but replicate poorly if at all in other species (53). However, these viruses can undergo adaptation or genetic reassortment to infect other hosts (43, 44, 53), including humans. Since 1997, the World Health Organization has documented more than 400 laboratory-confirmed cases of human infection with H5N1 avian influenza virus (54).The molecular basis of influenza virus host range restriction and adaptation to a new host species is poorly understood. Mutations associated with cross-species adaptation are thought to be associated with increased virulence (30). Therefore, studies in animal models have attempted to identify the viral molecular determinants of virulence in specific hosts. Reverse genetics (Rg) methods have also identified genetic differences that affect virus virulence and host range, including changes in the viral internal proteins. Experimental infection of mouse lungs is an effective approach for understanding influenza virus virulence and adaptation (reviewed by A. C. Ward [51]). To acquire virulence in mice, influenza A viruses usually must adapt to these hosts over several consecutive generations (serial passages) in the lungs or brain (1, 25, 30). Previous studies have found that the acquisition of virulence during adaptation in the mouse model is associated with mutations in the HA, NP, NA, M, and NS genes and one or more polymerase genes (2, 3, 18, 36, 42, 51). The polymerase basic protein 2 (PB2) gene is a particularly well-characterized polymerase subunit (7, 23, 40, 46). The PB1 and polymerase acidic protein (PA) genes have been implicated in mouse lung virulence (5, 18, 36, 39, 49) but have shown no evidence of having acquired mutations during adaptation (52). However, the many studies conducted to date have focused mainly on highly pathogenic avian influenza (HPAI) viruses such as the H1N1, H5N1, and H7N7 subtypes (7, 23, 48, 50).Various low-pathogenic avian influenza (LPAI) viruses are considered to be potential genetic contributors to the next pandemic strain. Lee et al. (2009) recently reported the presence of avian-like LPAI H5N2 viruses in a number of Korean swine and proposed that the efficient transmissibility of the swine-adapted H5N2 virus could facilitate spread of the virus. They suggested that this adapted virus could potentially serve as a model for pandemic outbreaks of HPAI (e.g., H5N1 and H7N7) virus or could become a pandemic strain itself (21). These findings prompted our interest in the adaptation of an LPAI virus often harbored by wild migratory birds of South Korea. In our ongoing surveillance from 2004 to 2008, approximately 27% of the viruses isolated were of the H5N2 subtype (unpublished data). Studies show that influenza viruses with different genetic backgrounds can acquire different mutations during adaptation in mice. Therefore, we sought to determine whether this common H5N2 virus (nonlethal in mice) would undergo changes different from those observed in highly virulent viruses during adaptation in mice. Wild-bird influenza virus strain A/Aquatic bird/Korea/W81/05 (W81) was adapted in mice over 11 passages and became highly virulent. To identify molecular determinants of this adaptation and altered virulence, we used Rg-generated recombinant viruses to compare the parental and mouse-adapted strains. Here we show that the PA subunit of the polymerase complex, independently of PB2, contributed to adaptation and increased virulence in our mammalian model.  相似文献   

12.
Influenza A viruses cause significant morbidity in swine, resulting in a substantial economic burden. Swine influenza virus (SIV) infection also poses important human public health concerns. Vaccination is the primary method for the prevention of influenza virus infection. Previously, we generated two elastase-dependent mutant SIVs derived from A/Sw/Saskatchewan/18789/02(H1N1): A/Sw/Sk-R345V (R345V) and A/Sw/Sk-R345A (R345A). These two viruses are highly attenuated in pigs, making them good candidates for a live-virus vaccine. In this study, the immunogenicity and the ability of these candidates to protect against SIV infection were evaluated in pigs. We report that intratracheally administrated R345V and R345A induced antigen-specific humoral and cell-mediated immunity characterized by increased production of immunoglobulin G (IgG) and IgA antibodies in the serum and in bronchoalveolar lavage fluid, high hemagglutination inhibition titers in serum, an enhanced level of lymphocyte proliferation, and higher numbers of gamma interferon-secreting cells at the site of infection. Based on the immunogenicity results, the R345V virus was further tested in a protection trial in which pigs were vaccinated twice with R345V and then challenged with homologous A/Sw/Saskatchewan/18789/02, H1N1 antigenic variant A/Sw/Indiana/1726/88 or heterologous subtypic H3N2 A/Sw/Texas/4199-2/9/98. Our data showed that two vaccinations with R345V provided pigs with complete protection from homologous H1N1 SIV infection and partial protection from heterologous subtypic H3N2 SIV infection. This protection was characterized by significantly reduced macroscopic and microscopic lung lesions, lower virus titers from the respiratory tract, and lower levels of proinflammatory cytokines. Thus, elastase-dependent SIV mutants can be used as live-virus vaccines against swine influenza in pigs.Swine influenza virus (SIV) is the causative pathogen of swine influenza, a highly contagious, acute respiratory viral disease of swine. The mortality of SIV-infected pigs is usually low, although morbidity may approach 100%. Swine influenza is characterized by sudden onset, coughing, respiratory distress, weight loss, fever, nasal discharge, and rapid recovery (38). SIV is a member of the influenza virus A genus in the Orthomyxoviridae family, and the virus has a genome consisting of eight segments of negative-sense single-stranded RNA (29). Epithelial cells in the swine respiratory tract have receptors for both avian and mammalian influenza viruses (13); thus, pigs could potentially serve as “mixing vessels” for the generation of new reassortant strains of influenza A virus that have pandemic capacity. There are a number of reports in which the direct transmission of influenza viruses from pigs to humans has been documented (6, 12, 52), and several of these cases have resulted in human fatalities (19, 35, 40, 53). Consequently, effective control of SIV would be beneficial to both humans and animals.Until 1998, classical H1N1 SIVs were the predominant isolates from pigs in the United States and Canada (5, 28). In 1997 to 1998, a dramatic change in the epidemiologic pattern of SIV began. Serological studies conducted by Olsen and colleagues in 1997 to 1998 detected a significant increase in H3-seropositive individuals, and H3N2 SIVs were isolated from pigs in both the United States and Canada (17, 54). Furthermore, reassortment between H3N2 viruses and classical H1N1 SIV resulted in the appearance of H1N2 reassortant viruses (14, 15). In addition to the isolation of H4N6 viruses, which are of duck origin, in pigs in Canada (16), wholly avian viruses of the H3N3 and H1N1 subtypes have also been isolated from Canadian pigs (18). In general, three major SIV subtypes exist, i.e., H1N1, H1N2, and H3N2, each of which has multiple genetic and antigenic variants circulating in North American swine populations (18, 28). The increased incidence of avian-like or human-like SIV reassortants raises concerns for public health and requires research devoted to the development of cross-protective SIV vaccines.Currently available swine influenza vaccines are based on inactivated whole virus of the H1N1 and H3N2 subtypes. Application of these vaccines reduces the severity of disease but does not provide consistent protection from infection (3, 22). In contrast to killed vaccines that are administered intramuscularly, intranasally administered live attenuated influenza vaccines (LAIV) induce an immune response at the site of natural infection. Therefore, an LAIV has the potential to induce broad humoral and cellular immune responses that could provide protection against antigenically different influenza viruses. LAIV based on attenuation of the virus by cold adaptation are available for humans (2) and horses (41). However, to date, no SIV LAIV are commercially available for use in swine in North America. Recent studies by Solorzano et al. showed that a mutant SIV with a truncated NS1 protein was highly attenuated in pigs (36). In addition, this SIV/NS1 LAIV was capable of stimulating a protective immune response against homologous SIVs and a partial protection against heterologous subtypic wild-type (WT) SIVs (31, 50). Stech and colleagues demonstrated that the conversion of a conserved cleavage site in the influenza virus hemagglutinin (HA) protein from a trypsin-sensitive site to an elastase-sensitive site results in in vivo attenuation of the influenza virus in mouse models (9, 37). Furthermore, these elastase-dependent LAIV were able to induce protective systemic and mucosal immune responses. Recently, we showed that two elastase-dependent SIVs derived from A/Sw/Saskatchewan/18789/02 (SIV/Sk02), R345V and R345A, are attenuated in their natural host, pigs (23). In the current study, we addressed the immunogenic and cross-protective abilities of these mutants.  相似文献   

13.
14.
The Asian H5N1 highly pathogenic avian influenza (HPAI) viruses have been increasing in pathogenicity in diverse avian species since 1996 and are now widespread in Asian, European, and African countries. To better understand the basis of the increased pathogenicity of recent Asian H5N1 HPAI viruses in chickens, we compared the fevers and mean death times (MDTs) of chickens infected with the Asian H5N1 A/chicken/Yamaguchi/7/04 (CkYM7) strain with those infected with the H5N1 Duck/Yokohama/aq10/03 (DkYK10) strain, using a wireless thermosensor. Asian H5N1 CkYM7 caused peracute death in chickens before fever could be induced, whereas DkYK10 virus induced high fevers and had a long MDT. Real-time PCR analyses of cytokine mRNA expressions showed that CkYM7 quickly induced antiviral and proinflammatory cytokine mRNA expressions at 24 h postinfection (hpi) that suddenly decreased at 32 hpi. In contrast, these cytokine mRNA expressions increased at 24 hpi in the DkYK10 group, but decreased from 48 hpi onward to levels similar to those resulting from infection with the low-pathogenicity H5N2 A/chicken/Ibaraki/1/2004 strain. Sequential titrations of viruses in lungs, spleens, and kidneys demonstrated that CkYM7 replicated rapidly and efficiently in infected chickens and that the viral titers were more than twofold higher than those of DkYK10. CkYM7 preferentially and efficiently replicated in macrophages and vascular endothelial cells, while DkYK10 grew moderately in macrophages. These results indicate that the increased pathogenicity in chickens of the recent Asian H5N1 HPAI viruses may be associated with extremely rapid and high replication of the virus in macrophages and vascular endothelial cells, which resulted in disruption of the thermoregulation system and innate immune responses.Since the first detection of the Asian lineage of highly pathogenic avian influenza (HPAI) virus (H5N1) in southern China in 1996, H5N1 virus infection in birds has continued for 13 years in Asia, acquiring pathogenicity not only in birds but also in mammals. In 1997, the H5N1 Hong Kong isolates caused illness and death in a variety of terrestrial birds and even in humans (9, 37, 48, 49). In 2001, emerging H5N1 Hong Kong isolates were more pathogenic to chickens and the mean death time (MDT) was 2 days without any prior clinical signs (12). In 2003 to 2004, the H5N1 epizootic occurred simultaneously in East Asian countries (22, 30). The 2003/2004 H5N1 isolates caused death in taxonomically diverse avian species, including domestic ducks (46, 47, 51), and humans (7, 55). Furthermore, the first indication of wild aquatic bird involvement occurred at recreational parks in Hong Kong in late 2002 to 2003 (46), and then migratory aquatic bird die-off occurred in 2005 at Qinghai Lake in China (6, 24). The broad host spectrum and increased pathogenicity of H5N1 viruses to diverse bird species raise serious concerns about the worldwide spread of the virus by migratory birds.According to the international criteria, HPAI viruses are defined by over 75% mortality in 4- to 8-week-old chickens following an intravenous pathogenicity test or an intravenous pathogenicity index (IVPI) of more than 1.2 in 6-week-old chickens (34); however, there are some variations in pathogenicity intensity among the HPAI viruses in chickens (1, 3, 5, 12, 15, 28, 31, 48, 50-52, 57). Most of the HPAI viruses that were isolated before 1996 cause severe clinical signs (e.g., ruffled feathers, depression, labored breathing, and neurological signs) and severe gross lesions (e.g., head and face edema, cyanosis, subcutaneous hemorrhages in combs and leg shanks, and necrosis of combs and wattles) in chickens (1, 3, 15, 31, 50, 52, 57). These viruses usually kill chickens 3 to 6 days after intranasal inoculation. On the other hand, the recently emerged Asian H5N1 HPAI viruses are more virulent and kill chickens within 1 to 2 days without causing typical clinical signs and gross lesions (5, 12, 27, 33, 48, 51), although some Asian H5N1 viruses, such as A/Goose/Guangdong/2/96 (23), A/goose/Hong Kong/437-10/99 (17), and A/chicken/Indonesia/7/03 (58), were less virulent. To successfully control HPAI in poultry, it is important to better understand the mechanisms of increased pathogenicity of recent H5N1 HPAI viruses in chickens.The Asian H5N1 HPAI virus has another important characteristic, which is its capability of crossing host-species barriers. It was reported that the H5N1 virus can infect and cause death in mammals such as mice (5, 9, 12, 14, 29), cats (21), tigers (2), ferrets (11, 26), monkeys (40), and humans (7, 49, 55). High-level inductions of proinflammatory cytokines in mammals infected with the H5N1 viruses, referred to as “cytokine storms,” have been hypothesized to contribute to the severity of pathological changes and ultimate death (4, 7, 13, 45, 55). Cytokine and chemokine dysregulation was detected in clinical cases of H5N1-infected humans (8, 13, 36) and also in monkeys experimentally infected with the H1N1 Spanish flu strain (20). In a mouse model, lymphocyte apoptosis and cytokine dysregulation have been proposed to contribute to the severity of the disease caused by H5N1 (56). Investigations with transgenic mice deficient in each cytokine gene suggest that tumor necrosis factor alpha (TNF-α) may contribute to morbidity and interleukin-1 (IL-1) may be important for virus clearance (53). However, mice deficient in TNF-α or IL-6 succumb to infection with H5N1, and cytokine inhibition treatment does not prevent death (42), suggesting that therapies targeting the virus rather than cytokines may be preferable. Thus, the significance of elevated proinflammatory cytokine responses in the pathogenesis of H5N1-infected mammals requires further studies.In contrast, little is known about proinflammatory cytokine responses and their roles in pathogenicity in chickens infected with HPAI viruses, including the recent Asian H5N1 viruses. It was reported that infection with an HPAI virus results in upregulation of gene expression of gamma interferon (IFN-γ) and inducible nitric oxide synthase (58). However, the roles of proinflammatory cytokines in disease severity and outcomes in chickens infected systemically with HPAI viruses are largely unknown. The less-virulent Asian H5N1 virus, which causes severe clinical signs and gross lesions in chickens (17, 23, 27, 58), would be a valuable tool for investigating the role of proinflammatory cytokines in chickens infected with HPAI viruses, as well as for exploring the pathogenesis of the more-virulent Asian H5N1 HPAI virus, because of the antigenic and molecular similarities between them.In this study, we compared the pathogenicities in chickens of the less-virulent and more-virulent Asian H5N1 HPAI viruses based on MDT, fever, cytokine responses, and viral replication. Our results suggest that the shift in the Asian H5N1 virus to increased virulence may be associated with efficient and rapid replication of the virus in chickens, accompanied by early destruction of host immune responses and followed by peracute death before fever can be induced. Finally, we discuss candidate genes that may account for the high pathogenicity of Asian H5N1 HPAI viruses in chickens.  相似文献   

15.
Today, global attention is focused on two influenza virus strains: the current pandemic strain, swine origin influenza virus (H1N1-2009), and the highly pathogenic avian influenza virus, H5N1. At present, the infection caused by the H1N1-2009 is moderate, with mortality rates of less <1%. In contrast, infection with the H5N1 virus resulted in high mortality rates, and ca. 60% of the infected patients succumb to the infection. Thus, one of the world greatest concerns is that the H5N1 virus will evolve to allow an efficient human infection and human-to-human transmission. Natural killer (NK) cells are one of the innate immune components playing an important role in fighting against influenza viruses. One of the major NK activating receptors involved in NK cell cytotoxicity is NKp46. We previously demonstrated that NKp46 recognizes the hemagglutinin proteins of B and A influenza virus strains. Whether NKp46 could also interact with H1N1-2009 virus or with the avian influenza virus is still unknown. We analyzed the immunological properties of both the avian and the H1N1-2009 influenza viruses. We show that NKp46 recognizes the hemagglutinins of H1N1-2009 and H5 and that this recognition leads to virus killing both in vitro and in vivo. However, importantly, while the swine H1-NKp46 interactions lead to the direct killing of the infected cells, the H5-NKp46 interactions were unable to elicit direct killing, probably because the NKp46 binding sites for these two viruses are different.Natural killer (NK) cells, which comprise 5 to 15% of peripheral blood lymphocytes, are a key frontline defense against a number of pathogens, including intracellular bacteria, parasites, and most importantly with respect to the present study, viruses (6, 40). The antiviral mechanisms by which NK cells operate include both cytotoxic activity and cytokine/chemokine secretion (21). The NK killing activity is executed by numerous receptors, including NKG2D, NKp80, CD16, and the natural cytotoxic receptors (NCRs): NKp30, NKp44, and NKp46 (7, 10, 25).Although the cellular ligands for NKG2D were identified (31, 38), the identity of several of the cellular ligands for the human NCRs is still unknown, except for BAT3 and B7-H6, which are ligands for NKp30 (8, 30). In contrast, viral ligands were identified for the NCRs, and we demonstrated that pp65 of HCMV interacts with NKp30 (3) and that various influenza virus hemagglutinins (HAs) are ligands for the NKp44 and NKp46 receptors (5, 22). Supporting these observations, it was recently shown that the HA-neuraminidase of Newcastle disease virus could also interact with NKp46 and NKp44 but not with NKp30 (17). Furthermore, we have shown in vivo that in the absence of NCR1 (the mouse homologue of NKp46), A/PR8 influenza virus infection is lethal (14).Human influenza virus (H1 and H3 subtype) infections pose a major threat to the entire population, as exemplified by the three major influenza pandemics that occurred during the 20th century. The Asian (A/H2N2) in 1957 to 1958 and the Hong Kong (A/H3N2) pandemics in 1968 to 1969 resulted in the deaths of 1 to 2 million people and the 1918 “Spanish flu” (A/H1N1) pandemic killed around 50 million people (18). At present, the worldwide concern regarding influenza pandemics concentrates mainly on two viruses: the A/H1N1 swine origin influenza virus (H1N1-2009), which currently causes only a moderate pandemic (the mortality rates are ca. 1%) but is more pathogenic than a regular seasonal influenza virus (19, 26, 27), and the avian influenza virus carrying the unique H5 HA (20). The avian influenza virus is quite deadly and, although it remains a zoonotic infection, ca. 60% of infected humans died due to the infection (28).The unique properties of the H5 protein of the avian influenza virus are one of the main reasons for the virulence of the virus. The H5 of the avian influenza virus binds to cell surface glycoproteins or glycolipids containing terminal sialyl-galactosyl residues linked by 2-3-linkage [Neu5Ac(α2-3)Gal] that are found in the human conjunctiva and ciliated portion of the respiratory columnar epithelium (33). In contrast, human viruses (including all three strains that caused the pandemics described above and the H1N1-2009) bind to receptors that mostly contain terminal 2-6-linked sialyl-galactosyl moieties [Neu5Ac(α2-6)Gal]. Such glycosylations are predominant on epithelial cells in the nasal mucosa, paranasal sinuses, pharynx, trachea, and bronchi (33, 37). It has been suggested that the lack of human-to-human transmission of avian influenza viruses is due to their α2,3-SA receptor binding preference, and the concern is that genetic changes in H5 might alter its preference from α2,3-SA to α2,6-SA, allowing human-to-human transmission.In our previous studies (4, 22) we showed that the interaction between NKp46 and influenza virus HAs depends on the sialylation of the NKp46 receptor. We further demonstrated that the sialic acid residues, which are linked via α2,6 to the threonine 225 residue of NKp46, are crucial for the NKp46 interactions with the various influenza virus HAs (4).We show that, both in vitro and in vivo, the killing of H1N1-2009-infected cells is correlated with the degree of NKp46 binding. Surprisingly, we observed that although NKp46 efficiently recognized the avian H5 HA, such interactions were unable to elicit the direct killing of the infected cells. By using mutagenesis analysis experiments and killing assays we demonstrate that NKp46 interacts with H1 and H5 at distinct sites, since we show that the sugar carrying residue at position 225 is crucial for the NKp46-H1N1-2009 interactions, whereas the interaction of H5 with NKp46 depends on both residues 216 and 225.  相似文献   

16.
In less than 3 months after the first cases of swine origin 2009 influenza A (H1N1) virus infections were reported from Mexico, WHO declared a pandemic. The pandemic virus is antigenically distinct from seasonal influenza viruses, and the majority of human population lacks immunity against this virus. We have studied the activation of innate immune responses in pandemic virus-infected human monocyte-derived dendritic cells (DC) and macrophages. Pandemic A/Finland/553/2009 virus, representing a typical North American/European lineage virus, replicated very well in these cells. The pandemic virus, as well as the seasonal A/Brisbane/59/07 (H1N1) and A/New Caledonia/20/99 (H1N1) viruses, induced type I (alpha/beta interferon [IFN-α/β]) and type III (IFN-λ1 to -λ3) IFN, CXCL10, and tumor necrosis factor alpha (TNF-α) gene expression weakly in DCs. Mouse-adapted A/WSN/33 (H1N1) and human A/Udorn/72 (H3N2) viruses, instead, induced efficiently the expression of antiviral and proinflammatory genes. Both IFN-α and IFN-β inhibited the replication of the pandemic (H1N1) virus. The potential of IFN-λ3 to inhibit viral replication was lower than that of type I IFNs. However, the pandemic virus was more sensitive to the antiviral IFN-λ3 than the seasonal A/Brisbane/59/07 (H1N1) virus. The present study demonstrates that the novel pandemic (H1N1) influenza A virus can readily replicate in human primary DCs and macrophages and efficiently avoid the activation of innate antiviral responses. It is, however, highly sensitive to the antiviral actions of IFNs, which may provide us an additional means to treat severe cases of infection especially if significant drug resistance emerges.The novel swine origin 2009 influenza A (H1N1) virus was identified in April 2009, and it is currently causing the first influenza pandemic of the 21st century. The virus is a completely new reassortant virus (8, 38), and the majority of the human population does not have preexisting immunity against it. The case fatality rate of the current pandemic virus infection is still unclear, but it is estimated to be somewhat higher than that of seasonal influenza virus infections (8). In most cases, the pandemic 2009 A (H1N1) virus causes an uncomplicated respiratory tract illness with symptoms similar to those caused by seasonal influenza viruses. However, gastrointestinal symptoms atypical to seasonal influenza have been detected in a significant proportion of cases (4, 7, 35).The pandemic 2009 (H1N1) influenza A virus originates from a swine influenza A virus strain. It underwent multiple reassortment events in pigs and then transferred into the human population (8, 38). The new virus has gene segments from the North American triple-reassortant and Eurasian swine H1N1 viruses (8, 38). Sequence analysis of this new pandemic virus revealed that hemagglutinin (HA), NP, and NS gene segments are derived from the classical swine viruses, PB1 from human H3N2, and PB2 and PA from avian viruses within the triple-reassortant virus (8). In addition, the NA and M segments originate from the Eurasian swine virus lineage. The pandemic 2009 (H1N1) virus is genetically and antigenically distinct from previous seasonal human influenza A (H1N1) viruses. Thus, the current seasonal influenza vaccines are likely to give little, if any, protection against pandemic 2009 A (H1N1) virus infection (12, 14). However, some evidence indicates that people born early in the 20th century have cross-neutralizing antibodies against the pandemic 2009 A (H1N1) viruses (12, 14).At present, relatively little is known about the pathogenesis and transmission of the pandemic 2009 A (H1N1) virus in humans. Studies with ferrets revealed that the pandemic virus replicated better than seasonal H1N1 viruses in the respiratory tracts of the animals. This suggests that the virus is more pathogenic in ferrets than seasonal influenza viruses (19, 24). The respiratory tract is the primary infection site of all mammalian influenza viruses, and, indeed, the specific glycan receptors on the apical surface of the upper respiratory tract have been reported to bind HA of the 2009 A (H1N1) virus (19). In human lung tissue binding assays, 2009 A (H1N1) HA showed a glycan binding pattern similar to that of the HA from the pandemic 1918 A (H1N1) virus though its affinity to α2,6 glycans was much lower than that of the 1918 virus HA. The lower glycan binding properties of the pandemic 2009 A (H1N1) virus seemed to correlate with less-efficient transmission in ferrets compared to seasonal H1N1 viruses (19). According to another study with ferrets, the transmission of the pandemic 2009 A (H1N1) virus via respiratory droplets was as efficient as that of a seasonal A (H1N1) virus (24). It is clear that, besides experimental infections in animal models, analyses of the characters and pathogenesis of the pandemic 2009 A (H1N1) virus infection in humans are urgently needed.In the present study, we have focused on analyzing innate immune responses in primary human dendritic cells (DCs) and macrophages in response to an infection with one of the Finnish isolates of the pandemic 2009 A (H1N1) virus. DCs and macrophages reside beneath the epithelium of the respiratory organs, and these cells are thus potential targets for influenza viruses. From the epithelial cells influenza viruses spread in DCs and macrophages, which coordinate the development of an effective innate immune response against the virus (22, 34, 41). During influenza virus infection, DCs and macrophages secrete antiviral cytokines such as interferons (IFNs) and tumor necrosis factor alpha (TNF-α) (3, 13, 26). Moreover, DCs and macrophages activate virus-destroying NK cells and T cells with the cytokines they secrete and via direct cell-to-cell contacts (9, 29, 33, 37). Here we show that the pandemic (H1N1) virus infects and replicates very well in human monocyte-derived DCs and macrophages. The pandemic virus as well as two recent seasonal H1N1 viruses induced a relatively weak innate immune response in these cells, as evidenced by a poor expression of antiviral and proinflammatory cytokine genes. However, like seasonal influenza A viruses, the pandemic 2009 (H1N1) virus was extremely sensitive to the antiviral actions of type I IFNs (IFN-α/β). Interestingly, the pandemic 2009 (H1N1) virus was even more sensitive to antiviral IFN-λ3 than a seasonal A (H1N1) virus. Thus, IFNs may provide us with an additional means to combat severe pandemic influenza virus infections, especially if viral resistance against neuraminidase (NA) inhibitors begins to emerge.  相似文献   

17.
This study investigated whether transmissible H5 subtype human-avian reassortant viruses could be generated in vivo. To this end, ferrets were coinfected with recent avian H5N1 (A/Thailand/16/04) and human H3N2 (A/Wyoming/3/03) viruses. Genotype analyses of plaque-purified viruses from nasal secretions of coinfected ferrets revealed that approximately 9% of recovered viruses contained genes from both progenitor viruses. H5 and H3 subtype viruses, including reassortants, were found in airways extending toward and in the upper respiratory tract of ferrets. However, only parental H5N1 genotype viruses were found in lung tissue. Approximately 34% of the recovered reassortant viruses possessed the H5 hemagglutinin (HA) gene, with five unique H5 subtypes recovered. These H5 reassortants were selected for further studies to examine their growth and transmissibility characteristics. Five H5 viruses with representative reassortant genotypes showed reduced titers in nasal secretions of infected ferrets compared to the parental H5N1 virus. No transmission by direct contact between infected and naïve ferrets was observed. These studies indicate that reassortment between H5N1 avian influenza and H3N2 human viruses occurred readily in vivo and furthermore that reassortment between these two viral subtypes is likely to occur in ferret upper airways. Given the relatively high incidence of reassortant viruses from tissues of the ferret upper airway, it is reasonable to conclude that continued exposure of humans and animals to H5N1 alongside seasonal influenza viruses increases the risk of generating H5 subtype reassortant viruses that may be shed from upper airway secretions.Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype have caused devastating outbreaks in avian species during the past decade. After emerging in the Guangdong province of China in 1996, H5N1 viruses have extended their geographic distribution from Asia into Europe and Africa (45, 51). Sporadic transmission of H5N1 viruses from infected birds to humans has resulted in over 380 laboratory-confirmed infections and a case fatality rate of ∼60% since 2003 (48). Currently circulating H5N1 viruses lack the ability to undergo efficient and sustained transmission among humans although instances of limited human-to-human transmission have been reported (13, 41). If H5N1 viruses were to acquire genetic changes that confer efficient transmissibility among humans, then another pandemic would likely occur.The pandemics of 1957 and 1968 highlight the importance of genetic reassortment between avian and human influenza viruses as a mechanism for the generation of human pandemic strains (15, 46, 47). The structural separation of the influenza virus genome into eight independent genes allows formation of hybrid progeny viruses during coinfections. The 1957 H2N2 and 1968 H3N2 pandemic viruses acquired the hemagglutinin (HA) and PB1 genes, with or without the neuraminidase (NA) gene, respectively, from an avian virus progenitor (14, 33). The remaining genes of these pandemic reassortants were derived from a contemporary human virus (14, 33). The host species in which such human pandemic strains were generated by reassortment between human and avian viruses is not known. However, coinfection of the same cell with both human and avian viruses must have occurred, even though human and avian influenza viruses have preferences for different sialic acid receptor structures present on cell surface glycoproteins and glycolipids (20, 30). The HA of human viruses preferentially binds α(2,6)-linked sialic acids while that of avian viruses preferentially bind α(2,3)-linked sialic acids (3, 12). Cells possessing both of these receptors could support coinfection of avian and human viruses, leading to reassortment.Human respiratory tract epithelial cells can possess surface glycans with α(2,3)- and α(2,6)-linked sialic acids and as such represent a potential host for the generation of avian-human reassortant viruses (24, 35). The general distribution of surface α(2,3)- and α(2,6)-linked sialic acids varies among cells of the human upper and lower respiratory tracts, which are anatomically separated by the larynx. Recent studies have shown that α(2,3)-linked sialic acids are present in tissues of the human lower respiratory tract (i.e., lung alveolar cells) (24, 35) as well as tissues of the human upper respiratory tract (24). Consistent with these findings, HPAI H5N1 viruses have been shown to attach to and infect tissues belonging to the lower respiratory tract (i.e., trachea, bronchi, and lung) (5, 25, 35, 40, 42, 43) as well as tissues belonging to the upper respiratory tract (i.e., nasopharyngeal, adenoid, and tonsillar) (25). Glycans with α(2,6)-linked sialic acids are more widespread on epithelial cells of the upper airways than lung alveoli (24, 35). In accordance, human seasonal influenza viruses preferentially attach to and infect cells of the upper respiratory tract (6, 25, 35, 43). If cells with both types of receptors are present in the human respiratory tract, simultaneous infection of a person with both human and avian viruses could generate reassortant viruses.Although viruses derived by reassortment between avian H5N1 and human H3N2 progenitors have been generated in vitro (17), reassortment between these avian and human strains in a coinfected mammalian host has not been shown. Furthermore, our knowledge of the genetic and phenotypic repertoire of such reassortants generated in vivo and their potential for transmission to uninfected hosts is limited (2, 17). In the present study, we used the ferret model to better understand the generation of reassortant viruses in a host coinfected with contemporary avian (H5N1) and human (H3N2) viruses and the extent to which such reassortants replicate and transmit from animal to animal. The domestic ferret (Mustela putoris) serves as an ideal small-animal model for influenza because ferrets are susceptible to human and avian influenza viruses, including HPAI H5N1 viruses, and reflect the relative transmissibility of human and avian influenza viruses in humans (9, 17, 18, 31, 36, 39, 53). Our study revealed that coinfection of ferrets reproducibly generated reassortant viruses that could be recovered from tissues within and extending toward the upper respiratory tract. Although H5 reassortant viruses were recovered from the upper airways, they displayed no transmissibility to contact ferrets, suggesting that additional functional changes are required for these viral subtypes to become pandemic within human populations.  相似文献   

18.
19.
The influenza A virus M2 protein has important roles during virus entry and in the assembly of infectious virus particles. The cytoplasmic tail of the protein can be palmitoylated at a cysteine residue, but this residue is not conserved in a number of human influenza A virus isolates. Recombinant viruses encoding M2 proteins with a serine substituted for the cysteine at position 50 were generated in the A/WSN/33 (H1N1) and A/Udorn/72 (H3N2) genetic backgrounds. The recombinant viruses were not attenuated for replication in MDCK cells, Calu-3 cells, or in primary differentiated murine trachea epithelial cell cultures, indicating there was no significant contribution of M2 palmitoylation to virus replication in vitro. The A/WSN/33 M2C50S virus displayed a slightly reduced virulence after infection of mice, suggesting that there may be novel functions for M2 palmitoylation during in vivo infection.Influenza A virus is a member of the Orthomyxoviridae and contains a segmented, negative-sense RNA genome that codes for 10 or 11 proteins, depending upon the virus strain (11). The integral membrane protein M2 is the viral ion channel protein that is required during virus entry (29) and for the production of infectious virus particles (4, 10, 12, 13). The sequences responsible for the latter map to the cytoplasmic tail of the protein and overlap with a number of sites for posttranslational modification, which include palmitoylation and phosphorylation (7, 26, 31). Palmitoylation occurs on the cysteine present at amino acid 50 and is not required for ion channel activity of the M2 protein from A/Udorn/72 (H3N2) (7). Palmitoylation of M2 appeared to be dispensable for the production of infectious virus particles using a reassortant virus consisting of seven segments from an H3N8 subtype virus (A/Equine/Miami/63) and the M segment from an H1N1 subtype virus (A/Puerto Rico/8/34) (2). No studies examining the role of M2 palmitoylation in the context of a naturally occurring influenza A virus strain have been published to date.The significance of palmitoylation of the influenza A virus hemagglutinin (HA) protein can vary among virus strains. Palmitoylation of HA from an H7 and an H1 but not an H3 subtype is required for efficient membrane fusion (5, 24, 32), whereas palmitoylation of HA from an H3 but not an H1 subtype is required for virus assembly (5). An analysis of 3,532 sequences of influenza isolates from humans revealed that the M2 residue C50 is conserved in a strain-specific manner. A total of 2,602 of 2,610 H3N2 sequences code for a cysteine at this position; the cysteine, however, is conserved in only 330 of 1,051 H1N1 sequences (data not shown). A serine residue is substituted for cysteine in the majority of the H1N1 viruses that do not have a cytoplasmic palmitoylation site; the newly emerged 2009 H1N1 influenza A viruses, however, do have a cysteine at this position (3). The sequence alignment data are consistent with a strain-specific selective pressure to maintain the palmitoylation site on the M2 protein. Interestingly, other M2 cytoplasmic tail sequences display differential effects on infectious virus production, depending on the strain used (12).To investigate the role of M2 palmitoylation in influenza A virus replication, we substituted a serine for the cysteine residue at position 50 (C50S) of the M2 protein in two influenza A virus strains, A/Udorn/72 (H3N2) (rUdorn) and A/WSN/33 (H1N1) (rWSN). The resultant viruses were tested for their ability to replicate in tissue culture cells, and the mouse-adapted virus was tested for virulence in a mouse model of infection. Neither mutant virus showed any defect in virus replication in tissue culture cells, in differentiated murine primary trachea epithelial cells (mTEC), or in the lungs of infected mice. The viruses lacking a palmitoylation site, however, did have a modest reduction in virulence, suggesting that M2 palmitoylation is dispensable for in vitro replication but contributes to virus virulence in vivo.  相似文献   

20.
Airway macrophages provide a first line of host defense against a range of airborne pathogens, including influenza virus. In this study, we show that influenza viruses differ markedly in their abilities to infect murine macrophages in vitro and that infection of macrophages is nonproductive and no infectious virus is released. Virus strain BJx109 (H3N2) infected macrophages with high efficiency and was associated with mild disease following intranasal infection of mice. In contrast, virus strain PR8 (H1N1) was poor in its ability to infect macrophages and highly virulent for mice. Depletion of airway macrophages by clodronate-loaded liposomes led to the development of severe viral pneumonia in BJx109-infected mice but did not modulate disease severity in PR8-infected mice. The severe disease observed in macrophage-depleted mice infected with BJx109 was associated with exacerbated virus replication in the airways, leading to severe airway inflammation, pulmonary edema, and vascular leakage, indicative of lung injury. Thymic atrophy, lymphopenia, and dysregulated cytokine and chemokine production were additional systemic manifestations associated with severe disease. Thus, airway macrophages play a critical role in limiting lung injury and associated disease caused by BJx109. Furthermore, the inability of PR8 to infect airway macrophages may be a critical factor contributing to its virulence for mice.Airway macrophages (Mφ) (AM), located at the interphase between air and lung tissue, provide the first line of defense following inhalation of airborne pathogens, including influenza viruses. In addition to phagocytosis of virions and virus-infected cells (16, 24), infection of AM represents an early event in recognition of the virus by the innate immune system. Following intranasal (i.n.) infection of mice, influenza virus replicates productively in type II epithelial cells lining the respiratory tract. Murine Mφ are also susceptible to influenza virus infection and viral proteins are produced, but replication is abortive and infectious progeny are not released (52, 69), although recent studies suggest limited release from mouse Mφ exposed to highly pathogenic H1N1 and H5N1 viruses (44). Following exposure to influenza virus, Mφ synthesize and release proinflammatory cytokines and alpha/beta interferon (26, 27, 45, 55), which further limit viral replication and spread within the respiratory tract. Inflammatory responses in the airways must be tightly regulated to ensure rapid virus clearance while avoiding excessive or chronic inflammation that may damage the delicate tissue-air interface.Liposome-encapsulated dichloromethylene diphosphonate (clodronate or CL2-MDP) is taken up by phagocytic Mφ and accumulates in the cytosol, resulting in Mφ death and depletion (66). Administration of clodronate liposomes (CL-LIP) has been widely used to selectively deplete airway Mφ in mouse models without affecting circulating monocytes (for examples, see references 4, 6, 8, 36, 47, 64, and 71). While CL-LIP has been used predominantly in rodent models of infection, it is noteworthy that CL-LIP treatment of pigs, a natural host of influenza virus, resulted in enhanced morbidity and mortality following infection with a human H1N1 subtype virus (30). In murine studies, depletion of airway Mφ prior to influenza virus infection led to increased cytotoxic CD8+ T-cell responses in the lungs of virus-infected mice (71); however, treatment with CL-LIP 48 h after infection was associated with impaired CD8+ T-cell responses (41). Furthermore, CL-LIP treatment prior to intranasal infection of mice with a recombinant virus bearing the surface glycoproteins of the 1918 pandemic strain led to exacerbated disease and mortality (64). Treatment of mice with CL-LIP has been associated with enhanced virus replication (41, 64, 71); however, the mechanisms by which airway Mφ initiate and modulate inflammatory responses and disease after influenza virus infection have not been fully elucidated.We observed in a previous study that influenza A virus strains show marked differences in their abilities to infect murine Mφ in vitro and implicated the Mφ mannose receptor (MMR) (CD206), a C-type lectin (46), in infectious virus entry (48). Virus strain BJx109, a reassortant virus bearing the surface glycoproteins of A/Beijing/353/89 (H3N2) and internal components derived from A/PR/8/34 (H1N1) (PR8) bears a highly glycosylated hemagglutinin (HA) molecule and was shown to infect Mφ to high levels, while the HA of PR8 is poorly glycosylated and the virus infected Mφ very poorly. In the current study, we demonstrate that intranasal infection of mice with BJx109 leads to mild clinical disease, while infection with an equivalent dose of PR8 leads to severe disease and rapid death. Depletion of airway Mφ by intranasal administration of CL-LIP prior to and during infection with influenza viruses had little effect on the course of PR8 infection; however, BJx109 infection of Mφ-depleted animals led to severe disease and death. Severe disease was associated with enhanced virus replication, severe airway inflammation, and pulmonary edema and vascular leakage, indicative of lung injury. Together, these data demonstrate that airway Mφ play a critical role in moderating disease severity during BJx109 infection. Furthermore, they suggest that the ability of PR8 to evade infectious uptake by airway Mφ is likely to be an important factor contributing to its virulence for mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号