首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Newly designed primers for [Fe-Fe]-hydrogenases indicated that (i) fermenters, acetogens, and undefined species in a fen harbor hitherto unknown hydrogenases and (ii) Clostridium- and Thermosinus-related primary fermenters, as well as secondary fermenters related to sulfate or iron reducers might be responsible for hydrogen production in the fen. Comparative analysis of [Fe-Fe]-hydrogenase and 16S rRNA gene-based phylogenies indicated the presence of homologous multiple hydrogenases per organism and inconsistencies between 16S rRNA gene- and [Fe-Fe]-hydrogenase-based phylogenies, necessitating appropriate qualification of [Fe-Fe]-hydrogenase gene data for diversity analyses.Molecular hydrogen (H2) is important in intermediary ecosystem metabolism (i.e., processes that link input to output) in wetlands (7, 11, 12, 33) and other anoxic habitats like sewage sludges (34) and the intestinal tracts of animals (9, 37). H2-producing fermenters have been postulated to form trophic links to H2-consuming methanogens, acetogens (i.e., organisms capable of using the acetyl-coenzyme A [CoA] pathway for acetate synthesis) (7), Fe(III) reducers (17), and sulfate reducers in a well-studied moderately acidic fen in Germany (11, 12, 16, 18, 22, 33). 16S rRNA gene analysis revealed the presence of Clostridium spp. and Syntrophobacter spp., which represent possible primary and secondary fermenters, as well as H2 producers in this fen (11, 18, 33). However, H2-producing bacteria are polyphyletic (30, 31, 29). Thus, a structural marker gene is required to target this functional group by molecular methods. [Fe-Fe]-hydrogenases catalyze H2 production in fermenters (19, 25, 29, 30, 31), and genes encoding [Fe-Fe]-hydrogenases represent such a marker gene. The objectives of this study were to (i) develop primers specific for highly diverse [Fe-Fe]-hydrogenase genes, (ii) analyze [Fe-Fe]-hydrogenase genes in pure cultures of fermenters, acetogens, and a sulfate reducer, (iii) assess [Fe-Fe]-hydrogenase gene diversity in H2-producing fen soil enrichments, and (iv) evaluate the limitations of the amplified [Fe-Fe]-hydrogenase fragment as a phylogenetic marker.  相似文献   

2.
In silico analysis of group 4 [NiFe]-hydrogenases from a hyperthermophilic archaeon, Thermococcus onnurineus NA1, revealed a novel tripartite gene cluster consisting of dehydrogenase-hydrogenase-cation/proton antiporter subunits, which may be classified as the new subgroup 4b of [NiFe]-hydrogenases-based on sequence motifs.Hydrogenases are the key enzymes involved in the metabolism of H2, catalyzing the following chemical reaction: 2H+ + 2e ↔ H2. Hydrogenases can be classified into [NiFe]-hydrogenases, [FeFe]-hydrogenases, and [Fe]-hydrogenases, based on their distinctive functional core containing the catalytic metal center (11, 17).The genomic analysis of Thermococcus onnurineus NA1, a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area, revealed the presence of several distinct gene clusters encoding seven [NiFe]-hydrogenases and one homolog similar to Mbx (membrane-bound oxidoreductase) from Pyrococcus furiosus (1, 6, 8, 12). According to the classification system of hydrogenases by Vignais et al. (17), three hydrogenases (one F420-reducing and two NADP-reducing hydrogenases) belong to group 3 [NiFe]-hydrogenases, and four hydrogenases belong to group 4 [NiFe]-hydrogenases. The group 4 hydrogenases are widely distributed among bacteria and archaea (17), with Hyc and Hyf (hydrogenase 3 and 4, respectively) from Escherichia coli (19), Coo (CO-induced hydrogenase) from Rhodospirillum rubrum (4), Ech (energy-converting hydrogenase) from Methanosarcina barkeri (7), and Mbh (membrane-bound hydrogenase) from P. furiosus (6, 10, 12) being relatively well-characterized hydrogenases in this group. One of the four group 4 hydrogenases from T. onnurineus NA1 was found to be similar in sequence to that of P. furiosus Mbh (10).  相似文献   

3.
Using a metagenomics approach, we have cloned a piece of environmental DNA from the Sargasso Sea that encodes an [NiFe] hydrogenase showing 60% identity to the large subunit and 64% to the small subunit of a Thiocapsa roseopersicina O2-tolerant [NiFe] hydrogenase. The DNA sequence of the hydrogenase identified by the metagenomic approach was subsequently found to be 99% identical to the hyaA and hyaB genes of an Alteromonas macleodii hydrogenase, indicating that it belongs to the Alteromonas clade. We were able to express our new Alteromonas hydrogenase in T. roseopersicina. Expression was accomplished by coexpressing only two accessory genes, hyaD and hupH, without the need to express any of the hyp accessory genes (hypABCDEF). These results suggest that the native accessory proteins in T. roseopersicina could substitute for the Alteromonas counterparts that are absent in the host to facilitate the assembly of a functional Alteromonas hydrogenase. To further compare the complex assembly machineries of these two [NiFe] hydrogenases, we performed complementation experiments by introducing the new Alteromonas hyaD gene into the T. roseopersicina hynD mutant. Interestingly, Alteromonas endopeptidase HyaD could complement T. roseopersicina HynD to cleave endoproteolytically the C-terminal end of the T. roseopersicina HynL hydrogenase large subunit and activate the enzyme. This study refines our knowledge on the selectivity and pleiotropy of the elements of the [NiFe] hydrogenase assembly machineries. It also provides a model for functionally analyzing novel enzymes from environmental microbes in a culture-independent manner.Hydrogen is a promising energy carrier for the future (10). Photosynthetic microbes such as cyanobacteria have attracted considerable attention, because they can split water photolytically to produce H2. However, one major drawback of the processes is that their H2-evolving hydrogenases are extremely sensitive to O2, which is an inherent by-product of oxygenic photosynthesis. Thus, transfer of O2-tolerant [NiFe] hydrogenases into cyanobacteria might be one approach to overcome this O2 sensitivity issue. A small number of O2-tolerant hydrogenases has been identified (9, 21, 47). However, they tend to favor H2 uptake over evolution. Searching for novel O2-tolerant [NiFe] hydrogenases from environmental microbes therefore becomes an important part of the effort to construct such biophotolytic systems.The oceans harbor an abundance of microorganisms with H2 production capability. Traditionally, new hydrogenases have been screened only from culturable organisms. However, since only a few microbes can be cultured (14), many of them have not been identified, and their functions remain unknown. Metagenomics is a rapidly growing field, which allows us to obtain information about uncultured microbes and to understand the true diversity of microbes in their natural environments. Metagenomics analysis provides a completely new approach for identifying novel [NiFe] hydrogenases from the oceans in a culture-independent manner. The Global Ocean Sampling (GOS) expedition has produced the largest metagenomic data set to date, providing a rich catalog of proteins and protein families, including those enzymes involved in hydrogen metabolism (45, 52, 56-58). Putative novel [NiFe] hydrogenase enzymes that were identified from marine microbial metagenomic data in these expeditions can be examined to find potentially important new hydrogenases. Because source organisms for metagenomic sequences are not typically known, these hydrogenases have to be heterologously expressed in culturable foreign hosts for protein and functional analyses.Unlike most proteins, hydrogenases have a complex architecture and must be assembled and matured through a multiple-step process (7, 11). Hydrogenases are divided into three distinct groups based on their metal contents (54): Fe-S cluster-free hydrogenases (22, 23, 48), [FeFe] hydrogenases (1, 12, 25), and [NiFe] hydrogenases (2, 3, 55). [NiFe] hydrogenases are heterodimers composed of a large subunit and a small subunit, and their NiFe catalytic centers are located in the large subunits (2, 15, 19, 40). A whole set of accessory proteins are required to properly assemble the catalytic centers (7). The accessory protein HypE first interacts with HypF to form a HypF-HypE complex, and the carbamyl group linked to HypF is then dehydrated by HypE in the presence of ATP to release the CN group that is transferred to iron through a HypC-HypD-HypE complex (6). The origin of the CO ligand that is also bound to the iron is not clear, and possibly it comes from formate, formyl-tetrahydrofolate, or acetate. The liganded Fe atom is inserted into the immature large subunit, in which HypC proteins function as chaperones to facilitate the metal insertion (5, 34, 36). Ni is delivered to the catalytic center by the zinc-metalloenzyme HypA that interacts with HypB, a nickel-binding and GTP-hydrolyzing protein. The final step in the maturation process is endoproteolytic cleavage. Once the nickel is transferred to the active site, the endopeptidase, such as HyaD or HynD, cleaves the C-terminal end of the large subunit (33, 43), which triggers a conformational change of the protein so that the Ni-Fe catalytic center can be internalized.Heterologous expression of functional [NiFe] hydrogenases has been demonstrated in several studies (4, 18, 31, 39, 44, 50), suggesting that it could be a feasible approach to express novel hydrogenases from the environment for functional analysis. In this study, we sought to prove the concept that metagenomically derived environmental DNA can give rise to a functional [NiFe] hydrogenase through expression in a foreign host and that novel [NiFe] hydrogenases from environmental microbes can be studied in a culture-independent manner. We cloned environmental DNA that harbors the genes of a putative novel hydrogenase that shows strong homology to a known O2-tolerant hydrogenase, HynSL, from the phototrophic purple sulfur bacterium Thiocapsa roseopersicina (21, 28, 41, 59). We heterologously expressed the two structural genes (hyaA and hyaB) and two accessory genes (hupH and hyaD) of this novel environmental hydrogenase in T. roseopersicina, a foreign host that may already have the necessary machinery required to process the environmental hydrogenase since it carries the homologous hydrogenase HynSL. We analyzed the new hydrogenase protein and its functions. In addition, we compared the maturation mechanisms between the two homolog hydrogenases by performing complementation experiments.  相似文献   

4.
5.
6.
The purpose of this study was the enrichment and phylogenetic identification of bacteria that dechlorinate 4,5,6,7-tetrachlorophthalide (commercially designated “fthalide”), an effective fungicide for rice blast disease. Sequential transfer culture of a paddy soil with lactate and fthalide produced a soil-free enrichment culture (designated the “KFL culture”) that dechlorinated fthalide by using hydrogen, which is produced from lactate. Phylogenetic analysis based on 16S rRNA genes revealed the dominance of two novel phylotypes of the genus Dehalobacter (FTH1 and FTH2) in the KFL culture. FTH1 and FTH2 disappeared during culture transfer in medium without fthalide and increased in abundance with the dechlorination of fthalide, indicating their growth dependence on the dechlorination of fthalide. Dehalobacter restrictus TEA is their closest relative, with 97.5% and 97.3% 16S rRNA gene similarities to FTH1 and FTH2, respectively.4,5,6,7-Tetrachlorophthalide (commercially designated “fthalide”) is an effective fungicide for rice blast disease, which inhibits melanin biosynthesis and the formation of the mature appressorial cells of the rice blast pathogen on the host plant (5, 16). Fthalide has been reported to be reductively dechlorinated in soil (16) and compost (28), although its fates in paddy soil and the fthalide-dechlorinating bacteria are unknown. Besides fthalide, polychlorinated aromatic compounds are known to be reductively dechlorinated by the bacteria of several phyla. Six strains of Desulfitobacterium spp. of the phylum Firmicutes (2, 3, 6, 10, 23, 29) and Desulfomonile tiedjei DCB-1 of the phylum Proteobacteria (21) can dechlorinate polychlorinated phenols. Three strains of the phylum Chloroflexi can dechlorinate a variety of compounds, including polychlorinated phenols, benzenes, biphenyls, or dibenzo-p-dioxins: Dehalococcoides ethenogenes 195 (9, 19), Dehalococcoides sp. strain CBDB1 (1, 4), and strain DF-1 of Chloroflexi, collectively called the “o-17/DF-1 group” (18). Dehalococcoides spp. utilize hydrogen as an electron donor and acetate as a carbon source for growth coupled to the reductive dechlorination of chlorinated compounds (1, 12, 13, 19, 26). In contrast, Desulfitobacterium spp. can dechlorinate chlorinated compounds not only with hydrogen, but also organic acids, such as formate, pyruvate, lactate, or butyrate (3, 10, 23). Strain DF-1 can utilize hydrogen and formate for the dechlorination of polychlorinated biphenyls (PCBs) (18).In this study, bacteria that dechlorinate fthalide were enriched from a paddy soil with sequentially transferred cultures using a soil-free medium supplemented with single organic acids. Acetate, formate, lactate, and butyrate were used in this study because they are frequently used in the enrichment of dechlorinators and release hydrogen at different concentrations (8, 11, 14). Fthalide-dechlorinating bacteria in the enriched culture were phylogenetically identified based on the 16S rRNA gene with PCR-denaturing gradient gel electrophoresis (DGGE), a 16S rRNA gene clone library, and quantitative real-time PCR (qPCR).  相似文献   

7.
Spores of Bacillus subtilis contain a number of small, acid-soluble spore proteins (SASP) which comprise up to 20% of total spore core protein. The multiple α/β-type SASP have been shown to confer resistance to UV radiation, heat, peroxides, and other sporicidal treatments. In this study, SASP-defective mutants of B. subtilis and spores deficient in dacB, a mutation leading to an increased core water content, were used to study the relative contributions of SASP and increased core water content to spore resistance to germicidal 254-nm and simulated environmental UV exposure (280 to 400 nm, 290 to 400 nm, and 320 to 400 nm). Spores of strains carrying mutations in sspA, sspB, and both sspA and sspB (lacking the major SASP-α and/or SASP-β) were significantly more sensitive to 254-nm and all polychromatic UV exposures, whereas the UV resistance of spores of the sspE strain (lacking SASP-γ) was essentially identical to that of the wild type. Spores of the dacB-defective strain were as resistant to 254-nm UV-C radiation as wild-type spores. However, spores of the dacB strain were significantly more sensitive than wild-type spores to environmental UV treatments of >280 nm. Air-dried spores of the dacB mutant strain had a significantly higher water content than air-dried wild-type spores. Our results indicate that α/β-type SASP and decreased spore core water content play an essential role in spore resistance to environmentally relevant UV wavelengths whereas SASP-γ does not.Spores of Bacillus spp. are highly resistant to inactivation by different physical stresses, such as toxic chemicals and biocidal agents, desiccation, pressure and temperature extremes, and high fluences of UV or ionizing radiation (reviewed in references 33, 34, and 48). Under stressful environmental conditions, cells of Bacillus spp. produce endospores that can stay dormant for extended periods. The reason for the high resistance of bacterial spores to environmental extremes lies in the structure of the spore. Spores possess thick layers of highly cross-linked coat proteins, a modified peptidoglycan spore cortex, a low core water content, and abundant intracellular constituents, such as the calcium chelate of dipicolinic acid and α/β-type small, acid-soluble spore proteins (α/β-type SASP), the last two of which protect spore DNA (6, 42, 46, 48, 52). DNA damage accumulated during spore dormancy is also efficiently repaired during spore germination (33, 47, 48). UV-induced DNA photoproducts are repaired by spore photoproduct lyase and nucleotide excision repair, DNA double-strand breaks (DSB) by nonhomologous end joining, and oxidative stress-induced apurinic/apyrimidinic (AP) sites by AP endonucleases and base excision repair (15, 26-29, 34, 43, 53, 57).Monochromatic 254-nm UV radiation has been used as an efficient and cost-effective means of disinfecting surfaces, building air, and drinking water supplies (31). Commonly used test organisms for inactivation studies are bacterial spores, usually spores of Bacillus subtilis, due to their high degree of resistance to various sporicidal treatments, reproducible inactivation response, and safety (1, 8, 19, 31, 48). Depending on the Bacillus species analyzed, spores are 10 to 50 times more resistant than growing cells to 254-nm UV radiation. In addition, most of the laboratory studies of spore inactivation and radiation biology have been performed using monochromatic 254-nm UV radiation (33, 34). Although 254-nm UV-C radiation is a convenient germicidal treatment and relevant to disinfection procedures, results obtained by using 254-nm UV-C are not truly representative of results obtained using UV wavelengths that endospores encounter in their natural environments (34, 42, 50, 51, 59). However, sunlight reaching the Earth''s surface is not monochromatic 254-nm radiation but a mixture of UV, visible, and infrared radiation, with the UV portion spanning approximately 290 to 400 nm (33, 34, 36). Thus, our knowledge of spore UV resistance has been constructed largely using a wavelength of UV radiation not normally reaching the Earth''s surface, even though ample evidence exists that both DNA photochemistry and microbial responses to UV are strongly wavelength dependent (2, 30, 33, 36).Of recent interest in our laboratories has been the exploration of factors that confer on B. subtilis spores resistance to environmentally relevant extreme conditions, particularly solar UV radiation and extreme desiccation (23, 28, 30, 34 36, 48, 52). It has been reported that α/β-type SASP but not SASP-γ play a major role in spore resistance to 254-nm UV-C radiation (20, 21) and to wet heat, dry heat, and oxidizing agents (48). In contrast, increased spore water content was reported to affect B. subtilis spore resistance to moist heat and hydrogen peroxide but not to 254-nm UV-C (12, 40, 48). However, the possible roles of SASP-α, -β, and -γ and core water content in spore resistance to environmentally relevant solar UV wavelengths have not been explored. Therefore, in this study, we have used B. subtilis strains carrying mutations in the sspA, sspB, sspE, sspA and sspB, or dacB gene to investigate the contributions of SASP and increased core water content to the resistance of B. subtilis spores to 254-nm UV-C and environmentally relevant polychromatic UV radiation encountered on Earth''s surface.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
The development of cellular systems in which the enzyme hydrogenase is efficiently coupled to the oxygenic photosynthesis apparatus represents an attractive avenue to produce H2 sustainably from light and water. Here we describe the molecular design of the individual components required for the direct coupling of the O2-tolerant membrane-bound hydrogenase (MBH) from Ralstonia eutropha H16 to the acceptor site of photosystem I (PS I) from Synechocystis sp. PCC 6803. By genetic engineering, the peripheral subunit PsaE of PS I was fused to the MBH, and the resulting hybrid protein was purified from R. eutropha to apparent homogeneity via two independent affinity chromatographical steps. The catalytically active MBH-PsaE (MBHPsaE) hybrid protein could be isolated only from the cytoplasmic fraction. This was surprising, since the MBH is a substrate of the twin-arginine translocation system and was expected to reside in the periplasm. We conclude that the attachment of the additional PsaE domain to the small, electron-transferring subunit of the MBH completely abolished the export competence of the protein. Activity measurements revealed that the H2 production capacity of the purified MBHPsaE fusion protein was very similar to that of wild-type MBH. In order to analyze the specific interaction of MBHPsaE with PS I, His-tagged PS I lacking the PsaE subunit was purified via Ni-nitrilotriacetic acid affinity and subsequent hydrophobic interaction chromatography. Formation of PS I-hydrogenase supercomplexes was demonstrated by blue native gel electrophoresis. The results indicate a vital prerequisite for the quantitative analysis of the MBHPsaE-PS I complex formation and its light-driven H2 production capacity by means of spectroelectrochemistry.Molecular hydrogen (H2) is often discussed as an alternative source of energy (13, 22, 26, 41). It is a highly energetic, renewable, and zero-carbon dioxide emission fuel; however, it is produced mainly from fossil resources. One intriguing possibility for sustainable H2 production is the development of cellular systems in which the light-driven oxygenic photosynthesis is efficiently coupled to hydrogen production by hydrogenase (1, 21, 36).During the process of oxygenic photosynthesis, photosystem II (PS II), a thylakoid membrane (TM)-embedded multiprotein complex, utilizes solar energy to oxidize water into dioxygen (O2), protons, and electrons. The electrons released by PS II are further conducted through an electron transport chain consisting of plastoquinones, the cytochrome b6f complex, and either plastocyanin or cytochrome c6 to the chlorophyll (Chl) dimer P700 in photosystem I (PS I) (20, 48). During light-induced charge separation in PS I, P700 is oxidized, leading to the reduction of the adjacent cofactor A0 (Chl a). From there, the electrons are transmitted to the phylloquinone A1 and subsequently to the Fe4S4 clusters FX, FA, and FB (9) that are located at the acceptor site of PS I. The acceptor site is composed of the PsaC subunit, which harbors the iron-sulfur clusters FA and FB, and the two additional cofactor-free extrinsic subunits PsaD and PsaE. In the final step, the electrons are transferred from FB to the ferredoxin (PetF), which has a midpoint potential of −412 mV (see Fig. Fig.1B)1B) (8, 9).Open in a separate windowFIG. 1.Models of the hydrogenase and photosystem I complexes used in this study. (A) Membrane-bound hydrogenase (MBHwt) of Ralstonia eutropha H16. (B) Wild-type photosystem I (PS I) from Synechocystis sp. PCC 6803. (C) MBHstop protein lacking the C-terminal anchor domain of HoxK. (D) MBHPsaE and PS IΔPsaE.Hydrogenases of the NiFe and FeFe types catalyze the reversible cleavage of H2 into protons and electrons (18, 63). For most hydrogenases, this reaction is highly sensitive to O2 and leads to the reversible or even irreversible inactivation of the enzyme (49, 66, 67). A prominent exception is the oxygen-tolerant membrane-bound [NiFe]-hydrogenase (MBH) from Ralstonia eutropha H16, which catalyzes H2 conversion in the presence of O2 (42, 65). The MBH consists of large subunit HoxG (67 kDa), harboring the NiFe active site, and small subunit HoxK (35 kDa), bearing three FeS clusters (Fig. (Fig.1)1) (32). Both cofactor-containing subunits are completely assembled within the cytoplasm and become subsequently translocated through the cytoplasmic membrane by the twin-arginine translocation (Tat) system. This transport is guided by a specific Tat signal peptide that is located at the N terminus of small subunit HoxK (53). The MBH is then connected to the membrane via the hydrophobic C-terminal “anchor” domain of HoxK, which provides the electronic connection to the diheme cytochrome b, HoxZ (5, 57). All structural, accessory, and regulatory genes for the synthesis of active MBH are arranged in a large, megaplasmid-borne operon (7, 11, 14, 29, 33, 38, 58).The concept of light-driven hydrogen production has been investigated in numerous studies (for reviews, see references 3, 21, and 23), including one involving direct electron transfer from PS I to the free form of hydrogenase in vitro (45). In a preliminary attempt, the MBH from R. eutropha was recently directly fused to PsaE (creating MBHPsaE) (28). The fusion protein was partially purified and subjected to in vitro reconstitution with PS I lacking PsaE (PS IΔPsaE) (54) for light-driven hydrogen production. This concept was based on the previous observation that PS I lacking the peripheral subunit PsaE is fully reconstituted in vitro simply by the addition of independently purified PsaE protein (12).In the present communication, we describe a novel purification procedure for R. eutropha MBHPsaE that yields homogeneous, functionally active MBHPsaE. Additionally, a new method for efficient and fast purification of Synechocystis sp. PCC 6803 (hereafter referred to as Synechocystis) His-tagged PS I was established. Finally, the pure proteins MBHPsaE and PS IΔPsaE were successfully subjected to in vitro reconstitution.  相似文献   

16.
Phenoxyalkanoic acid (PAA) herbicides are widely used in agriculture. Biotic degradation of such herbicides occurs in soils and is initiated by α-ketoglutarate- and Fe2+-dependent dioxygenases encoded by tfdA-like genes (i.e., tfdA and tfdAα). Novel primers and quantitative kinetic PCR (qPCR) assays were developed to analyze the diversity and abundance of tfdA-like genes in soil. Five primer sets targeting tfdA-like genes were designed and evaluated. Primer sets 3 to 5 specifically amplified tfdA-like genes from soil, and a total of 437 sequences were retrieved. Coverages of gene libraries were 62 to 100%, up to 122 genotypes were detected, and up to 389 genotypes were predicted to occur in the gene libraries as indicated by the richness estimator Chao1. Phylogenetic analysis of in silico-translated tfdA-like genes indicated that soil tfdA-like genes were related to those of group 2 and 3 Bradyrhizobium spp., Sphingomonas spp., and uncultured soil bacteria. Soil-derived tfdA-like genes were assigned to 11 clusters, 4 of which were composed of novel sequences from this study, indicating that soil harbors novel and diverse tfdA-like genes. Correlation analysis of 16S rRNA and tfdA-like gene similarity indicated that any two bacteria with D > 20% of group 2 tfdA-like gene-derived protein sequences belong to different species. Thus, data indicate that the soil analyzed harbors at least 48 novel bacterial species containing group 2 tfdA-like genes. Novel qPCR assays were established to quantify such new tfdA-like genes. Copy numbers of tfdA-like genes were 1.0 × 106 to 65 × 106 per gram (dry weight) soil in four different soils, indicating that hitherto-unknown, diverse tfdA-like genes are abundant in soils.Phenoxyalkanoic acid (PAA) herbicides such as MCPA (4-chloro-2-methyl-phenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) are widely used to control broad-leaf weeds in agricultural as well as nonagricultural areas (19, 77). Degradation occurs primarily under oxic conditions in soil, and microorganisms play a key role in the degradation of such herbicides in soil (62, 64). Although relatively rapidly degraded in soil (32, 45), both MCPA and 2,4-D are potential groundwater contaminants (10, 56, 70), accentuating the importance of bacterial PAA herbicide-degrading bacteria in soils (e.g., references 3, 5, 6, 20, 41, 59, and 78).Degradation can occur cometabolically or be associated with energy conservation (15, 54). The first step in the degradation of 2,4-D and MCPA is initiated by the product of cadAB or tfdA-like genes (29, 30, 35, 67), which constitutes an α-ketoglutarate (α-KG)- and Fe2+-dependent dioxygenase. TfdA removes the acetate side chain of 2,4-D and MCPA to produce 2,4-dichlorophenol and 4-chloro-2-methylphenol, respectively, and glyoxylate while oxidizing α-ketoglutarate to CO2 and succinate (16, 17).Organisms capable of PAA herbicide degradation are phylogenetically diverse and belong to the Alpha-, Beta-, and Gammproteobacteria and the Bacteroidetes/Chlorobi group (e.g., references 2, 14, 29-34, 39, 60, 68, and 71). These bacteria harbor tfdA-like genes (i.e., tfdA or tfdAα) and are categorized into three groups on an evolutionary and physiological basis (34). The first group consists of beta- and gammaproteobacteria and can be further divided into three distinct classes based on their tfdA genes (30, 46). Class I tfdA genes are closely related to those of Cupriavidus necator JMP134 (formerly Ralstonia eutropha). Class II tfdA genes consist of those of Burkholderia sp. strain RASC and a few strains that are 76% identical to class I tfdA genes. Class III tfdA genes are 77% identical to class I and 80% identical to class II tfdA genes and linked to MCPA degradation in soil (3). The second group consists of alphaproteobacteria, which are closely related to Bradyrhizobium spp. with tfdAα genes having 60% identity to tfdA of group 1 (18, 29, 34). The third group also harbors the tfdAα genes and consists of Sphingomonas spp. within the alphaproteobacteria (30).Diverse PAA herbicide degraders of all three groups were identified in soil by cultivation-dependent studies (32, 34, 41, 78). Besides CadAB, TfdA and certain TfdAα proteins catalyze the conversion of PAA herbicides (29, 30, 35). All groups of tfdA-like genes are potentially linked to the degradation of PAA herbicides, although alternative primary functions of group 2 and 3 TfdAs have been proposed (30, 35). However, recent cultivation-independent studies focused on 16S rRNA genes or solely on group 1 tfdA sequences in soil (e.g., references 3-5, 13, and 41). Whether group 2 and 3 tfdA-like genes are also quantitatively linked to the degradation of PAA herbicides in soils is unknown. Thus, tools to target a broad range of tfdA-like genes are needed to resolve such an issue. Primers used to assess the diversity of tfdA-like sequences used in previous studies were based on the alignment of approximately 50% or less of available sequences to date (3, 20, 29, 32, 39, 47, 58, 73). Primers specifically targeting all major groups of tfdA-like genes to assess and quantify a broad diversity of potential PAA degraders in soil are unavailable. Thus, the objectives of this study were (i) to develop primers specific for all three groups of tfdA-like genes, (ii) to establish quantitative kinetic PCR (qPCR) assays based on such primers for different soil samples, and (iii) to assess the diversity and abundance of tfdA-like genes in soil.  相似文献   

17.
18.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

19.
Three functional NiFe hydrogenases were previously characterized in Thiocapsa roseopersicina BBS: two of them are attached to the periplasmic membrane (HynSL and HupSL), and one is localized in the cytoplasm (HoxEFUYH). The ongoing genome sequencing project revealed the presence of genes coding for another soluble Hox-type hydrogenase enzyme (hox2FUYH). Hox2 is a heterotetrameric enzyme; no indication for an additional subunit was found. Detailed comparative in vivo and in vitro activity and expression analyses of HoxEFUYH (Hox1) and the newly discovered Hox2 enzyme were performed. Functional differences between the two soluble NiFe hydrogenases were disclosed. Hox1 seems to be connected to both sulfur metabolism and dark/photofermentative processes. The bidirectional Hox2 hydrogenase was shown to be metabolically active under specific conditions: it can evolve hydrogen in the presence of glucose at low sodium thiosulfate concentration. However, under nitrogen-fixing conditions, it can oxidize H2 but less than the other hydrogenases in the cell.Hydrogenases are metalloenzymes involved in microbial hydrogen metabolism. A great variety of them have been identified and studied in various microorganisms and grouped on the basis of their metal content as NiFe, FeFe, and iron-sulfur cluster free hydrogenases (10, 42, 43). The basic protein structure of NiFe hydrogenases is heterodimeric, while FeFe hydrogenases are mostly composed of a single amino acid chain with multiple iron-sulfur clusters (28, 43, 44). Well-defined maturation proteins assist for the assembly and activation of hydrogenase enzymes; NiFe hydrogenases require a more complex accessory machinery than FeFe enzymes (2, 3, 24).Thiocapsa roseopersicina BBS is a photosynthetic purple sulfur bacterium belonging to the Chromatiaceae family (4). It prefers to utilize reduced sulfur compounds for anaerobic photochemolithoautotrophic growth, but simple organic substrates such as glucose or acetate can be also used as extra carbon, energy, and electron sources. It can be cultivated under aerobic (nonphotosynthetic) conditions in the presence of organic compounds. In the absence of other nitrogen sources, it is able to fix molecular nitrogen; this process is accompanied by H2 production. T. roseopersicina was earlier shown to possess at least three NiFe hydrogenases varying in their in vivo functions, localizations, and compositions. Hyn and Hup hydrogenases are attached to the membrane facing the periplasmic side (6, 18, 30). Hyn is a bidirectional enzyme with extraordinary stability (17). Recent study has demonstrated that the HynSL subunits are physiologically connected to cellular redox processes via the Isp1 and Isp2 proteins, which play an essential role in electron transfer (27). The second membrane-associated enzyme, Hup, is involved in H2 oxidation and shows homology to uptake hydrogenases, which recycle H2 produced by the nitrogenase enzyme complex or present in the environment. Next to the hydrogenase small and large subunits (HupSL), a b-type cytochrome, HupC, was demonstrated to be part of the in vivo active enzyme as a transmitter of electrons to the quinone pool (27). In several bacteria, e.g., Rhodobacter capsulatus (7) and Ralstonia eutropha (15, 20), the expression of the hydrogenase(s) was shown to be regulated by the hydrogen level in the environment. The genes encoding the hydrogen-sensing system also exist in T. roseopersicina (hupUV, hupT, and hupR), but the hupTUV genes proved to be silent in the wild-type strain—only hupR is expressed—which is why expression of hupSL genes is constitutive (16).A Hox-type soluble hydrogenase was also identified in T. roseopersicina (31); it is a representative of the bidirectional heteromultimeric cytoplasmic NiFe hydrogenases (37, 39). Enzymes belonging to this group are basically composed of two moieties: hydrogenase (HoxYH) and diaphorase (HoxFU) heterodimers. Additional subunits were identified in few cases. In R. eutropha H16, two HoxI proteins completing the Hox complex were suggested to provide a binding domain for NADPH (5). HoxE has been identified as the fifth subunit of heteropentameric NAD+-reducing Hox hydrogenases in several cyanobacteria, Allochromatium vinosum and T. roseopersicina (21, 31, 37). In-frame deletion of the hoxE gene ceased both the H2-producing and -oxidizing activities of Hox in vivo, but these were not affected in vitro. Consequently, an electron transfer role of the HoxE subunit was suggested (31, 32).The possibility of the presence of further hydrogenases in T. roseopersicina was noted few years ago (31). In the hynSL hupSL hoxH triple-mutant strain (GB112131), a small in vivo and in vitro hydrogenase activity could be measured under photomixotrophic growth conditions (both CO2 and organic compounds are used for growth) at the late growth phase. This residual activity could not be detected in the hypF mutant strain (M539). Since HypF protein has an essential role in the maturation process of all NiFe hydrogenases (9), these results suggested the presence of a previously unknown hydrogenase. Here we describe the identification and characterization of the second Hox-type hydrogenase, emphasizing the functional similarities and differences between the two soluble enzymes of this bacterium. In order to distinguish between the two Hox-type enzymes unequivocally, the HoxEFUYH complex will be renamed Hox1 and the newly described Hox2FUYH enzyme is called Hox2.  相似文献   

20.
Low-G+C thermophilic obligate anaerobes in the class Clostridia are considered among the bacteria most resistant to genetic engineering due to the difficulty of introducing foreign DNA, thus limiting the ability to study and exploit their native hydrolytic and fermentative capabilities. Here, we report evidence of natural genetic competence in 13 Thermoanaerobacter and Thermoanaerobacterium strains previously believed to be difficult to transform or genetically recalcitrant. In Thermoanaerobacterium saccharolyticum JW/SL-YS485, natural competence-mediated DNA incorporation occurs during the exponential growth phase with both replicating plasmid and homologous recombination-based integration, and circular or linear DNA. In T. saccharolyticum, disruptions of genes similar to comEA, comEC, and a type IV pilus (T4P) gene operon result in strains unable to incorporate further DNA, suggesting that natural competence occurs via a conserved Gram-positive mechanism. The relative ease of employing natural competence for gene transfer should foster genetic engineering in these industrially relevant organisms, and understanding the mechanisms underlying natural competence may be useful in increasing the applicability of genetic tools to difficult-to-transform organisms.The genera Thermoanaerobacter and Thermoanaerobacterium contain bacteria which are thermophilic, obligate anaerobes that specialize in polysaccharide and carbohydrate fermentation, producing primarily l-lactic acid, acetic acid, ethanol, CO2, and H2 (24, 27, 49). Taxonomically, they are distinguished from other anaerobic thermophilic clostridia by the ability to reduce thiosulfate to hydrogen sulfide or elemental sulfur (21). The majority of characterized Thermoanaerobacter and Thermoanaerobacterium strains have been isolated from hot springs and other thermal environments (20-22, 38, 47); however, they have also been isolated from canned foods (4, 10), soil (48), paper mills and breweries (41, 43), and deep subsurface environments (5, 13, 35), suggesting a somewhat ubiquitous environmental presence.Representatives of the Thermoanaerobacter and Thermoanaerobacterium genera have been considered for biotechnological applications, such as conversion of lignocellulosic biomass to ethanol (8, 27) or other fuels and chemicals (3, 24). However, the branched fermentation pathways of these organisms generally require modification for industrial application. Several studies have investigated manipulating bioprocess and growth conditions to alter end product ratios and yields, but this has not resulted in reliable conditions to maximize the yield of a single end product (18, 25). Genetic engineering is likely necessary for commercial application of Thermanaerobacter or Thermoanaerobacterium species (26, 27, 44). As genetic systems for these bacteria have emerged (28, 45), increased product yields have been demonstrated by gene knockout of l-lactate dehydrogenase (9, 14), phosphotransacetylase and acetate kinase (40), and hydrogenase (39). Despite this recent progress, genetic transformation is still considered the greatest barrier for engineering these organisms (44).In contrast, some of the bacteria most amenable to genetic manipulation are those exhibiting natural competence; for example, work with the naturally competent Streptococcus pneumoniae first established DNA as the molecule containing inheritable information (42). Naturally competent organisms are found in many bacterial phyla, although the overall number of bacteria known to be naturally competent is relatively small (16).The molecular mechanisms of natural competence are often divided into two stages: early-stage genes that encode regulatory and signal cascades to control competence induction, and late-stage genes that encode the machinery of DNA uptake and integration (16). The Gram-positive late-stage consensus mechanism for DNA uptake and assimilation, elucidated primarily through work with Bacillus subtilis, occurs through several molecular machinery steps. First, DNA is believed to interact with a type IV pilus (T4P) or pseudopilus that brings it into close proximity of the cell membrane. The precise mechanism of this phenomenon is unclear; although components of the T4P in both Gram-positive and Gram-negative bacteria have been shown to bind DNA (7, 19), in specific studies, a full pilus structure has been either not observed or shown not to be essential during natural competence (6, 36). Two proteins, ComEA and ComEC, are then involved in creation and transport of single-stranded DNA across the membrane, where it is subsequently bound by CinA-localized RecA and either integrated into the genome or replicated at an independent origin, as for plasmid DNA (6).Here, we report that several Thermoanaerobacter and Thermoanaerobacterium strains are naturally competent, characterize growth conditions conducive to natural competence, and identify genes in Thermoanaerobacterium saccharolyticum JW/SL-YS485 required for competence exhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号