首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 643 毫秒
1.
2.
Identifying the functions of human immunodeficiency virus (HIV)-specific CD8+ T cells that are not merely modulated by the level of virus but clearly distinguish patients with immune control from those without such control is of paramount importance. Features of the HIV-specific CD8+ T-cell response in antiretroviral-treated patients (designated Rx <50) and untreated patients (long-term nonprogressors [LTNP]) matched for very low HIV RNA levels were comprehensively examined. The proliferative capacity of HIV-specific CD8+ T cells was not restored in Rx <50 to the level observed in LTNP, even though HIV-specific CD4+ T-cell proliferation in the two patient groups was comparable. This diminished HIV-specific CD8+ T-cell proliferation in Rx <50 was primarily due to a smaller fraction of antigen-specific cells recruited to divide and not to the numbers of divisions that proliferating cells had undergone. Exogenous interleukin-2 (IL-2) induced proliferating cells to divide further but did not rescue the majority of antigen-specific cells with defective proliferation. In addition, differences in HIV-specific CD8+ T-cell proliferation could not be attributed to differences in cellular subsets bearing a memory phenotype, IL-2 production, or PD-1 expression. Although polyfunctionality of HIV-specific CD8+ T cells in Rx <50 was not restored to the levels observed in LTNP despite prolonged suppression of HIV RNA levels, per-cell cytotoxic capacity was the functional feature that most clearly distinguished the cells of LTNP from those of Rx <50. Taken together, these data suggest that there are selective qualitative abnormalities within the HIV-specific CD8+ T-cell compartment that persist under conditions of low levels of antigen.Understanding the features of an effective immune response to human immunodeficiency virus (HIV) is among the most important goals for the design of HIV vaccines and immunotherapies. Most HIV-infected patients develop persistent viremia and CD4+ T-cell decline in the absence of antiviral therapy. However, evidence that immunologic control of HIV is possible can be drawn from a small group of rare patients who maintain normal CD4+ T-cell counts and restrict HIV replication to below 50 copies/ml plasma for up to 25 years without antiretroviral therapy (ART) (4, 22, 31, 40). Historically, these unique individuals were included within heterogeneous cohorts referred to as long-term survivors or long-term nonprogressors (LTNP), categorized solely based on their disease-free survival exceeding 7 to 10 years and their stable CD4+ T-cell counts (21). Over time, it became apparent that only a small subset of individuals within these cohorts had truly nonprogressive infection, maintaining good health with nondeclining CD4+ T-cell counts, and these true nonprogressors tended to have HIV type 1 (HIV-1) RNA levels below the lower detection limits of the newly available assays (23, 31). Some investigators have adopted other designations more recently, including elite controllers, elite suppressors, or HIV controllers. These designations vary by institution and, in some cases, rely only upon viral load measurements without a requirement for stable CD4+ T-cell counts (4, 22, 40). However, for our designation of true LTNP, we employ the inclusion criteria of stable health, nondeclining CD4+ T-cell counts, and maintenance of plasma viral RNA levels below 50 copies/ml without ART (29-31).Several lines of evidence strongly suggest that CD8+ T cells mediate this control of HIV in LTNP. HLA B*5701 is highly overrepresented in these patients, and in B*5701+ patients, the HIV-specific CD8+ T-cell response is largely focused on peptides restricted by the B57 protein (15, 31). In addition, similar control of simian immunodeficiency virus replication has been described in rhesus macaques carrying the Mamu B*08 or B*17 allele (25, 49). In these macaques, CD8+ T-cell depletion studies have strongly suggested that control of viral replication is mediated by CD8+ T cells (14). Although these results support the idea that CD8+ T cells are responsible for immunologic control, the mechanism remains incompletely understood.Several lines of evidence suggest that immunologic control in LTNP is not simply due to differences in autologous virus recognition by CD8+ T cells. The frequencies of CD8+ T cells specific for HIV or individual HIV-encoded gene products in the peripheral blood are not different in LTNP and untreated progressors (reviewed in reference 32). Putative “escape” mutations are found in viruses of both HLAB*57+ LTNP and HLA-matched progressors (4, 6, 28, 33, 34). In addition, comparable frequencies of CD8+ T cells of LTNP and progressors recognize autologous CD4+ T cells infected with the autologous virus (12, 28). Similar observations have recently been made in the rhesus macaque model (26). Collectively, these observations strongly suggest that features of the CD8+ T-cell response associated with immunologic control are not due to quantitative differences in the numbers of HIV-specific cells or to differential abilities of the autologous virus gene products to be recognized between patient groups.Several qualitative features in the HIV-specific CD8+ T-cell response have been associated with immunologic control in LTNP. LTNP have been found to have higher frequencies of “polyfunctional” CD8+ T cells, named for their ability to degranulate and produce multiple cytokines, including interleukin-2 (IL-2) (2, 5, 51). However, these cells comprise an extremely small proportion of the HIV-specific CD8+ T-cell response. In addition, there is considerable overlap between patient groups, and many LTNP have few or no such cells. Compared to those of progressors, HIV-specific CD8+ T cells of LTNP have a dramatically higher proliferative capacity, a greater ability to upregulate granzyme B (GrB) and perforin production, and a greater cytolytic capacity against autologous HIV-infected CD4+ T cells (3, 17, 24, 29, 30). Increased HIV-specific CD8+ T-cell proliferative capacity in LTNP compared to progressors has also been associated with lower PD-1 expression or IL-2 production by HIV-specific CD4+ or CD8+ T cells (11, 24, 48, 51).Considerable controversy exists over the cause-and-effect relationships between these qualitative differences in the CD8+ T-cell response and HIV viremia between patient groups. High levels of antigen can have potent effects on diverse cell types in humans and in animal models. For HIV, lowering the level of viremia through ART has been observed to increase the function of CD4+ and CD8+ T cells, NK cells, monocytes, and plasmacytoid dendritic cells (16, 18, 20, 37, 41, 45-47, 50). However, the vast majority of treated progressors will not control HIV replication when ART is interrupted (7, 9, 35), suggesting that many of the qualitative differences in the CD4+ or CD8+ T-cell response between LTNP and untreated progressors are not the cause of control over HIV but rather are likely an effect of viremia. In some but not all studies, ART was sufficient to restore the proliferative capacity, phenotype, and cytokine production by CD4+ T cells to levels similar to responses to other viruses or to the HIV-specific response of LTNP (13, 16, 18, 20, 37, 46, 50). Because better IL-2 production or function of HIV-specific CD4+ T cells has been associated with increased CD8+ T-cell proliferative capacity (24), it has also been suggested that diminished proliferative capacity of progressor CD8+ T cells may be an effect of viremia during the chronic phase of infection. In some studies, ART is sufficient to increase the frequency of polyfunctional HIV-specific CD8+ T cells or to decrease PD-1 expression (30, 41). However, the interpretations of the observations within these studies have relied on extrapolations between studies based upon cohorts with differing levels and durations of viral suppression or on examination of a limited number of functions or subsets in either CD4+ or CD8+ T cells.In the present study, we extended our earlier work and comprehensively examined a broad array of functions of HIV-specific T cells derived from two large patient groups, LTNP and progressors on ART, who possess comparable levels of HIV viremia as determined by a sensitive single-copy assay. In response to autologous HIV-infected CD4+ T cells, HIV-specific CD8+ T-cell proliferative capacity, IL-2 responsiveness, surface phenotype, PD-1 expression, polyfunctionality, and cytotoxic capacity were measured in considerable detail. We observe that although ART results in restoration of many of these functions, HIV-specific CD8+ T-cell polyfunctionality and proliferative and killing capacities are not restored to levels observed in LTNP.  相似文献   

3.
Highly active antiretroviral therapy (HAART) can reduce human immunodeficiency virus type 1 (HIV-1) viremia to clinically undetectable levels. Despite this dramatic reduction, some virus is present in the blood. In addition, a long-lived latent reservoir for HIV-1 exists in resting memory CD4+ T cells. This reservoir is believed to be a source of the residual viremia and is the focus of eradication efforts. Here, we use two measures of population structure—analysis of molecular variance and the Slatkin-Maddison test—to demonstrate that the residual viremia is genetically distinct from proviruses in resting CD4+ T cells but that proviruses in resting and activated CD4+ T cells belong to a single population. Residual viremia is genetically distinct from proviruses in activated CD4+ T cells, monocytes, and unfractionated peripheral blood mononuclear cells. The finding that some of the residual viremia in patients on HAART stems from an unidentified cellular source other than CD4+ T cells has implications for eradication efforts.Successful treatment of human immunodeficiency virus type 1 (HIV-1) infection with highly active antiretroviral therapy (HAART) reduces free virus in the blood to levels undetectable by the most sensitive clinical assays (18, 36). However, HIV-1 persists as a latent provirus in resting, memory CD4+ T lymphocytes (6, 9, 12, 16, 48) and perhaps in other cell types (45, 52). The latent reservoir in resting CD4+ T cells represents a barrier to eradication because of its long half-life (15, 37, 40-42) and because specifically targeting and purging this reservoir is inherently difficult (8, 25, 27).In addition to the latent reservoir in resting CD4+ T cells, patients on HAART also have a low amount of free virus in the plasma, typically at levels below the limit of detection of current clinical assays (13, 19, 35, 37). Because free virus has a short half-life (20, 47), residual viremia is indicative of active virus production. The continued presence of free virus in the plasma of patients on HAART indicates either ongoing replication (10, 13, 17, 19), release of virus after reactivation of latently infected CD4+ T cells (22, 24, 31, 50), release from other cellular reservoirs (7, 45, 52), or some combination of these mechanisms. Finding the cellular source of residual viremia is important because it will identify the cells that are still capable of producing virus in patients on HAART, cells that must be targeted in any eradication effort.Detailed analysis of this residual viremia has been hindered by technical challenges involved in working with very low concentrations of virus (13, 19, 35). Recently, new insights into the nature of residual viremia have been obtained through intensive patient sampling and enhanced ultrasensitive sequencing methods (1). In a subset of patients, most of the residual viremia consisted of a small number of viral clones (1, 46) produced by a cell type severely underrepresented in the peripheral circulation (1). These unique viral clones, termed predominant plasma clones (PPCs), persist unchanged for extended periods of time (1). The persistence of PPCs indicates that in some patients there may be another major cellular source of residual viremia (1). However, PPCs were observed in a small group of patients who started HAART with very low CD4 counts, and it has been unclear whether the PPC phenomenon extends beyond this group of patients. More importantly, it has been unclear whether the residual viremia generally consists of distinct virus populations produced by different cell types.Since the HIV-1 infection in most patients is initially established by a single viral clone (23, 51), with subsequent diversification (29), the presence of genetically distinct populations of virus in a single individual can reflect entry of viruses into compartments where replication occurs with limited subsequent intercompartmental mixing (32). Sophisticated genetic tests can detect such population structure in a sample of viral sequences (4, 39, 49). Using two complementary tests of population structure (14, 43), we analyzed viral sequences from multiple sources within individual patients in order to determine whether a source other than circulating resting CD4+ T cells contributes to residual viremia and viral persistence. Our results have important clinical implications for understanding HIV-1 persistence and treatment failure and for improving eradication strategies, which are currently focusing only on the latent CD4+ T-cell reservoir.  相似文献   

4.
The immune correlates of human/simian immunodeficiency virus control remain elusive. While CD8+ T lymphocytes likely play a major role in reducing peak viremia and maintaining viral control in the chronic phase, the relative antiviral efficacy of individual virus-specific effector populations is unknown. Conventional assays measure cytokine secretion of virus-specific CD8+ T cells after cognate peptide recognition. Cytokine secretion, however, does not always directly translate into antiviral efficacy. Recently developed suppression assays assess the efficiency of virus-specific CD8+ T cells to control viral replication, but these assays often use cell lines or clones. We therefore designed a novel virus production assay to test the ability of freshly ex vivo-sorted simian immunodeficiency virus (SIV)-specific CD8+ T cells to suppress viral replication from SIVmac239-infected CD4+ T cells. Using this assay, we established an antiviral hierarchy when we compared CD8+ T cells specific for 12 different epitopes. Antiviral efficacy was unrelated to the disease status of each animal, the protein from which the tested epitopes were derived, or the major histocompatibility complex (MHC) class I restriction of the tested epitopes. Additionally, there was no correlation with the ability to suppress viral replication and epitope avidity, epitope affinity, CD8+ T-cell cytokine multifunctionality, the percentage of central and effector memory cell populations, or the expression of PD-1. The ability of virus-specific CD8+ T cells to suppress viral replication therefore cannot be determined using conventional assays. Our results suggest that a single definitive correlate of immune control may not exist; rather, a successful CD8+ T-cell response may be comprised of several factors.CD8+ T cells may play a critical role in blunting peak viremia and controlling human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. The transient depletion of CD8+ cells in SIV-infected macaques results in increased viral replication (26, 31, 51, 70). The emergence of virus-specific CD8+ T cells coincides with the reduction of peak viremia (12, 39, 42, 63), and CD8+ T-cell pressure selects for escape mutants (6, 9, 13, 28, 29, 38, 60, 61, 85). Furthermore, particular major histocompatibility complex (MHC) class I alleles are overrepresented in SIV- and HIV-infected elite controllers (15, 29, 33, 34, 46, 56, 88).Because it has been difficult to induce broadly neutralizing antibodies (Abs), the AIDS vaccine field is currently focused on developing a vaccine designed to elicit HIV-specific CD8+ T cells (8, 52, 53, 82). Investigators have tried to define the immune correlates of HIV control. Neither the magnitude nor the breadth of epitopes recognized by virus-specific CD8+ T-cell responses correlates with the control of viral replication (1). The quality of the immune response may, however, contribute to the antiviral efficacy of the effector cells. It has been suggested that the number of cytokines that virus-specific CD8+ T cells secrete may correlate with viral control, since HIV-infected nonprogressors appear to maintain CD8+ T cells that secrete several cytokines, compared to HIV-infected progressors (11, 27). An increased amount of perforin secretion may also be related to the proliferation of HIV-specific CD8+ T cells in HIV-infected nonprogressors (55). While those studies offer insight into the different immune systems of progressors and nonprogressors, they did not address the mechanism of viral control. Previously, we found no association between the ability of SIV-specific CD8+ T-cell clones to suppress viral replication in vitro and their ability to secrete gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), or interleukin-2 (IL-2) (18).Evidence suggests that some HIV/SIV proteins may be better vaccine targets than others. CD8+ T cells recognize epitopes derived from Gag as early as 2 h postinfection, whereas CD8+ T cells specific for epitopes in Env recognize infected cells only at 18 h postinfection (68). Additionally, a previously reported study of HIV-infected individuals showed that an increased breadth of Gag-specific responses was associated with lower viral loads (35, 59, 65, 66). CD8+ T-cell responses specific for Env, Rev, Tat, Vif, Vpr, Vpu, and Nef were associated with higher viral loads, with increased breadth of Env in particular being significantly associated with a higher chronic-phase viral set point.None of the many sophisticated methods employed for analyzing the characteristics of HIV- or SIV-specific immune responses clearly demarcate the critical qualities of an effective antiviral response. In an attempt to address these questions, we developed a new assay to measure the antiviral efficacy of individual SIV-specific CD8+ T-cell responses sorted directly from fresh peripheral blood mononuclear cells (PBMC). Using MHC class I tetramers specific for the epitope of interest, we sorted freshly isolated virus-specific CD8+ T cells and determined their ability to suppress virus production from SIV-infected CD4+ T cells. We then looked for a common characteristic of efficacious epitope-specific CD8+ T cells using traditional methods.  相似文献   

5.
6.
The role of CD4+ helper T cells in modulating the acquired immune response to herpes simplex virus type 1 (HSV-1) remains ill defined; in particular, it is unclear whether CD4+ T cells are needed for the generation of the protective HSV-1-specific CD8+-T-cell response. This study examined the contribution of CD4+ T cells in the generation of the primary CD8+-T-cell responses following acute infection with HSV-1. The results demonstrate that the CD8+-T-cell response generated in the draining lymph nodes of CD4+-T-cell-depleted C57BL/6 mice and B6-MHC-II−/− mice is quantitatively and qualitatively distinct from the CD8+ T cells generated in normal C57BL/6 mice. Phenotypic analyses show that virus-specific CD8+ T cells express comparable levels of the activation marker CD44 in mice lacking CD4+ T cells and normal mice. In contrast, CD8+ T cells generated in the absence of CD4+ T cells express the interleukin 2 receptor α-chain (CD25) at lower levels. Importantly, the CD8+ T cells in the CD4+-T-cell-deficient environment are functionally active with respect to the expression of cytolytic activity in vivo but exhibit a diminished capacity to produce gamma interferon and tumor necrosis factor alpha. Furthermore, the primary expansion of HSV-1-specific CD8+ T cells is diminished in the absence of CD4+-T-cell help. These results suggest that CD4+-T-cell help is essential for the generation of fully functional CD8+ T cells during the primary response to HSV-1 infection.Infection due to herpes simplex virus type 1 (HSV-1) results in a wide spectrum of clinical presentations depending on the host''s age, the host''s immune status, and the route of inoculation (47). HSV-1 typically causes mild and self-limited lesions on the orofacial areas or genital sites. However, the disease can be life-threatening, as in the case of neonatal and central nervous system infections (18). The host''s immune responses, particularly CD8+ T cells, play an important role in determining the outcome of HSV infections in both the natural human host (18, 19, 28) and experimental murine models (11, 43). Immunodepletion and adoptive transfer studies have demonstrated the role of CD8+ T cells in reducing viral replication, resolving cutaneous disease, and providing overall protection upon rechallenge (6, 25, 26). CD8+ T cells play a particularly important role in preventing infection of the peripheral nervous system (PNS) and the reactivation of latent virus from neurons in the sensory ganglia of infected mice (21, 24, 36). The mechanisms that CD8+ T cells employ include gamma interferon (IFN-γ) production and functions associated with cytolytic granule content at the sites of primary infection (23, 31, 38). In the PNS of infected mice, the mechanisms primarily involve IFN-γ secretion (16, 20, 29), particularly against infected neurons expressing surface Qa-1 (41). Histopathological evidence from HSV-1-infected human ganglion sections show a large CD8+-T-cell infiltrate and the presence of inflammatory cytokines, suggesting that the presence of activated, effector memory cells within the PNS is important for maintaining HSV-1 latency in the natural human host (10, 42).The generation of a robust CD8+-T-cell response is essential for the control of various infectious pathogens. Some studies suggest that a brief interaction with antigen-presenting cells (APCs) is sufficient for CD8+-T-cell activation and expansion into functional effectors (44). However, the magnitude and quality of the overall CD8+-T-cell response generated may be dependent on additional factors (49). Recent evidence suggests that CD4+ T cells facilitate the activation and development of CD8+-T-cell responses either directly through the provision of cytokines or indirectly by the conditioning of dendritic cells (DC) (8, 48, 51). Those studies suggested that the latter mechanism is the dominant pathway, wherein CD4+ T cells assist CD8+-T-cell priming via the engagement of CD40 ligand (CD154) on CD4+ T cells and CD40 expressed on DC (4, 30, 33). This interaction results in the activation and maturation of DC, making them competent to stimulate antigen-specific CD8+-T-cell responses (35, 37).The requirement for CD4+-T-cell help in the generation of primary and secondary CD8+-T-cell responses to antigen varies. Primary CD8+-T-cell responses to infectious pathogens, such as Listeria monocytogenes, lymphocytic choriomeningitis virus (LCMV), influenza virus, and vaccinia virus, can be mounted effectively independently of CD4+-T-cell help (3, 12, 22, 34). In contrast, primary CD8+-T-cell responses to nonmicrobial antigens display an absolute dependence on CD4+-T-cell help (4, 5, 30, 33, 46). This observed difference in the requirement for CD4+-T-cell help may ultimately be a product of the initial inflammatory stimulus generated following immunization (49). Microbial antigens trigger an inflammatory response that can lead to the direct activation and priming of APCs, such as DC, thereby bypassing the need for CD4+-T-cell help. Nonmicrobial antigens, however, trigger an attenuated inflammatory response that does not directly activate and prime DCs. In the absence of this inflammation, CD4+ T cells are thought to condition and license DC functions through CD154/CD40 interactions, which leads to the subsequent activation of antigen-specific CD8+-T-cell responses (5, 49). Even in the case of pathogens where primary CD8+-T-cell responses were independent of CD4+-T-cell help, the secondary responses to these pathogens were found to be defective in the absence of CD4+-T-cell help (3, 12, 34, 40).The requirement for CD4+-T-cell help in priming CD8+-T-cell responses against HSV-1 infection is not well defined. Earlier studies with HSV-1 suggested that CD4+ T cells play an important role in the generation of primary CD8+-T-cell responses, detected in vitro, to acute infection with HSV-1 (14), principally through the provision of interleukin 2 (IL-2) for optimal CD8+-T-cell differentiation and proliferation. Subsequent studies, utilizing an in vivo approach, indicated that CD4+ T cells were not required for CD8+-T-cell-mediated cytolytic function (23). CD4+ T cells are thought to provide help by conditioning DC in a cognate, antigen-specific manner, thereby making them competent to stimulate HSV-1-specific CD8+-T-cell responses (37). By contrast, findings from other studies show that CD4+-T-cell-depleted mice were able to fully recover from acute infection with HSV-1 (38). These studies imply that the absence of CD4+ T cells does not prevent priming of CD8+ T cells in vivo.Studies from this laboratory have identified two distinct HSV-1-specific CD8+-T-cell subpopulations generated during the primary response, based upon the ability to synthesize IFN-γ following antigenic stimulation in vitro (1). To better understand the need for CD4+-T-cell help, we examined the functional characteristics and phenotypes of these CD8+-T-cell populations generated during a primary response to acute infection with HSV-1 in mice lacking CD4+ T cells. Our findings show that primary CD8+-T-cell responses to HSV-1 are compromised in the absence of CD4+-T-cell help. Specifically, the HSV-1 gB-specific CD8+ T cells produced in the absence of CD4+ T cells were found to be active with regard to cytolysis in vivo but were functionally impaired in the production of IFN-γ and TNF-α compared with intact C57BL/6 mice. Virus-specific CD8+ T cells were also reduced in number in CD4-depleted mice and in B6 mice lacking major histocompatibility complex (MHC) class II expression (B6-MHC-II−/−) compared to wild-type (WT) mice. In addition, our data showed higher virus burdens in the infectious tissues obtained from mice lacking CD4+ T cells than in those from intact mice. Collectively, these findings demonstrate that CD4+-T-cell help is essential for the generation of primary CD8+-T-cell responses following acute cutaneous infection with HSV-1.  相似文献   

7.
Little is known about the transmission or tropism of the newly discovered human retrovirus, human T-cell lymphotropic virus type 3 (HTLV-3). Here, we examine the entry requirements of HTLV-3 using independently expressed Env proteins. We observed that HTLV-3 surface glycoprotein (SU) binds efficiently to both activated CD4+ and CD8+ T cells. This contrasts with both HTLV-1 SU, which primarily binds to activated CD4+ T cells, and HTLV-2 SU, which primarily binds to activated CD8+ T cells. Binding studies with heparan sulfate proteoglycans (HSPGs) and neuropilin-1 (NRP-1), two molecules important for HTLV-1 entry, revealed that these molecules also enhance HTLV-3 SU binding. However, unlike HTLV-1 SU, HTLV-3 SU can bind efficiently in the absence of both HSPGs and NRP-1. Studies of entry performed with HTLV-3 Env-pseudotyped viruses together with SU binding studies revealed that, for HTLV-1, glucose transporter 1 (GLUT-1) functions at a postbinding step during HTLV-3 Env-mediated entry. Further studies revealed that HTLV-3 SU binds efficiently to naïve CD4+ T cells, which do not bind either HTLV-1 or HTLV-2 SU and do not express detectable levels of HSPGs, NRP-1, and GLUT-1. These results indicate that the complex of receptor molecules used by HTLV-3 to bind to primary T lymphocytes differs from that of both HTLV-1 and HTLV-2.The primate T-cell lymphotropic virus (PTLV) group of deltaretroviruses consists of three types of human T-cell lymphotropic viruses (HTLVs) (HTLV-1, HTLV-2, HTLV-3), their closely related simian T-cell lymphotropic viruses (STLVs) (STLV-1, STLV-2, STLV-3), an HTLV (HTLV-4) for which a simian counterpart has not been yet identified, and an STLV (STLV-5) originally described as a divergent STLV-1 (5-7, 30, 35, 37, 38, 45, 51, 53). HTLV-1 and HTLV-2, which have a 70% nucleotide homology, differ in both their pathobiology and tropism (reviewed in reference 13). While HTLV-1 causes a neurological disorder (tropical spastic paraparesis/HTLV-1-associated myelopathy) and a hematological disease (adult T-cell leukemia/lymphoma) (15, 42, 55), HTLV-2 is only rarely associated with tropical spastic paraparesis/HTLV-1-associated myelopathy-like disease and is not definitively linked to any lymphoproliferative disease (12, 20). In vivo, both HTLV-1 and HTLV-2 infect T cells. Although HTLV-1 is primarily found in CD4+ T cells, other cell types in the peripheral blood of infected individuals have been found to contain HTLV-1, including CD8+ T cells, dendritic cells, and B cells (19, 29, 33, 36, 46).Binding and entry of retroviruses requires specific interactions between the Env glycoproteins on the virus and cell surface receptor complexes on target cells. For HTLV-1, three molecules have been identified as important for entry, as follows: heparan sulfate proteoglycans (HSPGs), neuropilin-1 (NRP-1), and glucose transporter 1 (GLUT-1) (16, 22, 26, 28, 29, 34, 39, 44). Recent studies support a model in which HSPG and NRP-1 function during the initial binding of HTLV-1 to target cells, and GLUT-1 functions at a postattachment stage, most likely to facilitate fusion (29, 34, 49). Efficient HTLV-2 binding and entry requires NRP-1 and GLUT-1 but not HSPGs (16, 26, 39, 49).This difference in the molecules required for binding to target cells reflects differences in the T-cell tropisms of these two viruses. Activated CD4+ T cells express much higher levels of HSPGs than CD8+ T cells (26). In infected individuals, HTLV-1 is primarily found in CD4+ T cells, while HTLV-2 is primarily found in CD8+ T cells (21, 43, 46). In vitro, HTLV-1 preferentially transforms CD4+ T cells while HTLV-2 preferentially transforms CD8+ T cells, and this difference has been mapped to the Env proteins (54).We and others have reported the discovery of HTLV-3 in two Cameroonese inhabitants (6, 7, 53). We recently uncovered the presence of a third HTLV-3 strain in a different population living several hundred kilometers away from the previously identified groups (5), suggesting that this virus may be common in central Africa. Since the HTLV-3 sequences were obtained by PCR amplification of DNA isolated from peripheral blood mononuclear cells (PBMCs) of infected individuals, little is known about its tropism and pathobiology in vivo. Based on the correlation between HSPG expression levels and viral tropisms of HTLV-1 and HTLV-2, we reasoned that knowledge about the HTLV-3 receptors might provide insight into the tropism of this virus. We therefore generated vectors expressing HTLV-3 Env proteins and used them to begin to characterize the receptor complex used by HTLV-3 to bind and enter cells.  相似文献   

8.
9.
Rapid depletion of memory CD4+ T cells and delayed induction of neutralizing antibody (NAb) responses are characteristics of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections. Although it was speculated that postinfection NAb induction could have only a limited suppressive effect on primary HIV replication, a recent study has shown that a single passive NAb immunization of rhesus macaques 1 week after SIV challenge can result in reduction of viral loads at the set point, indicating a possible contribution of postinfection NAb responses to virus control. However, the mechanism accounting for this NAb-triggered SIV control has remained unclear. Here, we report rapid induction of virus-specific polyfunctional T-cell responses after the passive NAb immunization postinfection. Analysis of SIV Gag-specific responses of gamma interferon, tumor necrosis factor alpha, interleukin-2, macrophage inflammatory protein 1β, and CD107a revealed that the polyfunctionality of Gag-specific CD4+ T cells, as defined by the multiplicity of these responses, was markedly elevated in the acute phase in NAb-immunized animals. In the chronic phase, despite the absence of detectable NAbs, virus control was maintained, accompanied by polyfunctional Gag-specific T-cell responses. These results implicate virus-specific polyfunctional CD4+ T-cell responses in this NAb-triggered virus control, suggesting possible synergism between NAbs and T cells for control of HIV/SIV replication.Virus-specific CD4+ and CD8+ T-cell responses are crucial for the control of pathogenic human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) infections (5, 6, 20, 23, 30, 39, 40). However, CD4+ T cells, especially CCR5+ memory CD4+ T cells, are themselves targets for these viruses, which may be an obstacle to potent virus-specific CD4+ T-cell induction (10, 47, 52). Indeed, HIV-1/SIV infection causes rapid, massive depletion of memory CD4+ T cells (26, 31), and host immune responses fail to contain viral replication and allow persistent chronic infection, although virus-specific CD8+ T-cell responses exert suppressive pressure on viral replication (15).Recently, the importance of T-cell quality in virus containment has been high-lighted, and T-cell polyfunctionality, which is defined by their multiplicity of antigen-specific cytokine production, has been analyzed as an indicator of T-cell quality (4, 8, 11, 41). However, there has been no evidence indicating an association of polyfunctional T-cell responses in the acute phase with HIV-1/SIV control. Even in the chronic phase, whether polyfunctional CD4+ T-cell responses may be associated with virus control has been unclear, although an inverse correlation between polyfunctional CD8+ T-cell responses and viral loads has been shown in HIV-1-infected individuals (4).Another characteristic of HIV-1/SIV infections is the absence of potent neutralizing antibody (NAb) induction during the acute phase (7). This is mainly due to the unusually neutralization-resistant nature of the virus, such as masking of target epitopes in viral envelope proteins (24). Whether this lack of effective NAb response contributes to the failure to control the virus, and whether NAb induction in the acute phase can contribute to virus control, remains unclear. Previous studies documenting virus escape from NAb recognition suggested that NAbs can also exert selective pressure on viral replication to a certain extent (38, 45, 49), but it was speculated that postinfection NAb induction could have only a limited suppressive effect on primary HIV-1/SIV replication (34, 37).By passive NAb immunization of rhesus macaques after SIV challenge, we recently provided evidence indicating that the presence of NAbs during the acute phase can result in SIV control (50). In that study, passive NAb immunization 1 week after SIVmac239 challenge resulted in transient detectable NAb responses followed by reduction in set point viral loads compared to unimmunized macaques. However, the mechanism of this virus control has remained unclear. In the present study, we found rapid appearance of polyfunctional Gag-specific CD4+ T-cell responses after such passive NAb immunization postinfection. These animals maintained virus control for more than 1 year in the absence of detectable plasma NAbs, which was accompanied by potent Gag-specific T-cell responses. These results implicate virus-specific polyfunctional CD4+ T-cell responses in this NAb-triggered primary and long-term SIV control.  相似文献   

10.
Human immunodeficiency virus (HIV) envelope (Env)-mediated bystander apoptosis is known to cause the progressive, severe, and irreversible loss of CD4+ T cells in HIV-1-infected patients. Env-induced bystander apoptosis has been shown to be gp41 dependent and related to the membrane hemifusion between envelope-expressing cells and target cells. Caveolin-1 (Cav-1), the scaffold protein of specific membrane lipid rafts called caveolae, has been reported to interact with gp41. However, the underlying pathological or physiological meaning of this robust interaction remains unclear. In this report, we examine the interaction of cellular Cav-1 and HIV gp41 within the lipid rafts and show that Cav-1 modulates Env-induced bystander apoptosis through interactions with gp41 in SupT1 cells and CD4+ T lymphocytes isolated from human peripheral blood. Cav-1 significantly suppressed Env-induced membrane hemifusion and caspase-3 activation and augmented Hsp70 upregulation. Moreover, a peptide containing the Cav-1 scaffold domain sequence markedly inhibited bystander apoptosis and apoptotic signal pathways. Our studies shed new light on the potential role of Cav-1 in limiting HIV pathogenesis and the development of a novel therapeutic strategy in treating HIV-1-infected patients.HIV infection causes a progressive, severe, and irreversible depletion of CD4+ T cells, which is responsible for the development of AIDS (9). The mechanism through which HIV infection induces cell death involves a variety of processes (58). Among these processes, apoptosis is most likely responsible for T-cell destruction in HIV-infected patients (33), because active antiretroviral therapy has been associated with low levels of CD4+ T-cell apoptosis (7), and AIDS progression was shown previously to correlate with the extent of immune cell apoptosis (34). Importantly, bystander apoptosis of uninfected cells was demonstrated to be one of the major processes involved in the destruction of immune cells (58), with the majority of apoptotic CD4+ T cells in the peripheral blood and lymph nodes being uninfected in HIV patients (22).Binding to uninfected cells or the entry of viral proteins released by infected cells is responsible for the virus-mediated killing of innocent-bystander CD4+ T cells (2-4, 9, 65). The HIV envelope glycoprotein complex, consisting of gp120 and gp41 subunits expressed on an HIV-infected cell membrane (73), is believed to induce bystander CD4+ T-cell apoptosis (58). Although there is a soluble form of gp120 in the blood, there is no conclusive agreement as to whether the concentration is sufficient to trigger apoptosis (57, 58). The initial step in HIV infection is mediated by the Env glycoprotein gp120 binding with high affinity to CD4, the primary receptor on the target cell surface, which is followed by interactions with the chemokine receptor CCR5 or CXCR4 (61). This interaction triggers a conformational change in gp41 and the insertion of its N-terminal fusion peptide into the target membrane (30). Next, a prehairpin structure containing leucine zipper-like motifs is formed by the two conserved coiled-coil domains, called the N-terminal and C-terminal heptad repeats (28, 66, 70). This structure quickly collapses into a highly stable six-helix bundle structure with an N-terminal heptad repeat inside and a hydrophobic C-terminal heptad repeat outside (28, 66, 70). The formation of the six-helix bundle leads to a juxtaposition and fusion with the target cell membrane (28, 66, 70). The fusogenic potential of HIV Env is proven to correlate with the pathogenesis of both CXCR4- and CCR5-tropic viruses by not only delivering the viral genome to uninfected cells but also mediating Env-induced bystander apoptosis (71). Initial infection is dominated by the CCR5-tropic strains, with the CXCR4-tropic viruses emerging in the later stages of disease (20). Studies have shown that CXCR4-tropic HIV-1 triggers more depletion of CD4+ T cells than CCR5-tropic strains (36).Glycolipid- and cholesterol-enriched membrane microdomains, termed lipid rafts, are spatially organized plasma membranes and are known to have many diverse functions (26, 53). These functions include membrane trafficking, endocytosis, the regulation of cholesterol and calcium homeostasis, and signal transduction in cellular growth and apoptosis. Lipid rafts have also been implicated in HIV cell entry and budding processes (19, 46, 48, 51). One such organelle is the caveola, which is a small, flask-shaped (50 to 100 nm in diameter) invagination in the plasma membrane (5, 62). The caveola structure, which is composed of proteins known as caveolins, plays a role in various functions by serving as a mobile platform for many receptors and signal proteins (5, 62). Caveolin-1 (Cav-1) is a 22- to 24-kDa major coat protein responsible for caveola assembly (25, 47). This scaffolding protein forms a hairpin-like structure and exists as an oligomeric complex of 14 to 16 monomers (21). Cav-1 has been shown to be expressed by a variety of cell types, mostly endothelial cells, type I pneumocytes, fibroblasts, and adipocytes (5, 62). In addition, Cav-1 expression is evident in immune cells such as macrophages and dendritic cells (38, 39). However, Cav-1 is not expressed in isolated thymocytes (49). Furthermore, Cav-1 and caveolar structures are absent in human or murine T-cell lines (27, 41, 68). Contrary to this, there has been one report showing evidence of Cav-1 expression in bovine primary cell subpopulations of CD4+, CD8+, CD21+, and IgM+ cells with Cav-1 localized predominantly in the perinuclear region (38). That report also demonstrated a membrane region staining with Cav-1-specific antibody of human CD21+ and CD26+ peripheral blood lymphocytes (PBLs). Recently, the expression of Cav-1 in activated murine B cells, with a potential role in the development of a thymus-independent immune response, was also reported (56). It remains to be determined whether Cav-1 expression is dependent on the activation state of lymphocytes. For macrophages, however, which are one of the main cell targets for HIV infection, Cav-1 expression has been clearly documented (38).The scaffolding domain of Cav-1, located in the juxtamembranous region of the N terminus, is responsible for its oligomerization and binding to various proteins (5, 62, 64). It recognizes a consensus binding motif, ΦXΦXXXXΦ, ΦXXXXΦXXΦ, or ΦXΦXXXXΦXXΦ, where Φ indicates an aromatic residue (F, W, or Y) and X indicates any residue (5, 62, 64). A Cav-1 binding motif (WNNMTWMQW) has been identified in the HIV-1 envelope protein gp41 (42, 43). Cav-1 has been shown to associate with gp41 by many different groups under various circumstances, including the immunoprecipitation of gp41 and Cav-1 in HIV-infected cells (42, 43, 52). However, the underlying pathological or physiological functions of this robust interaction between Cav-1 and gp41 remain unclear.Here, we report that the interaction between Cav-1 and gp41 leads to a modification of gp41 function, which subsequently regulates Env-induced T-cell bystander apoptosis. Moreover, we show that a peptide containing the Cav-1 scaffold domain sequence is capable of modulating Env-induced bystander apoptosis, which suggests a novel therapeutic application for HIV-1-infected patients.  相似文献   

11.
Cytotoxicity and proliferation capacity are key functions of antiviral CD8 T cells. In the present study, we investigated a series of markers to define these functions in virus-specific CD8 T cells. We provide evidence that there is a lack of coexpression of perforin and CD127 in human CD8 T cells. CD127 expression on virus-specific CD8 T cells correlated positively with proliferation capacity and negatively with perforin expression and cytotoxicity. Influenza virus-, cytomegalovirus-, and Epstein-Barr virus/human immunodeficiency virus type 1-specific CD8 T cells were predominantly composed of CD127+ perforin/CD127 perforin+, and CD127/perforin CD8 T cells, respectively. CD127/perforin and CD127/perforin+ cells expressed significantly more PD-1 and CD57, respectively. Consistently, intracellular cytokine (gamma interferon, tumor necrosis factor alpha, and interleukin-2 [IL-2]) responses combined to perforin detection confirmed that virus-specific CD8 T cells were mostly composed of either perforin+/IL-2 or perforin/IL-2+ cells. In addition, perforin expression and IL-2 secretion were negatively correlated in virus-specific CD8 T cells (P < 0.01). As previously shown for perforin, changes in antigen exposure modulated also CD127 expression. Based on the above results, proliferating (CD127+/IL-2-secreting) and cytotoxic (perforin+) CD8 T cells were contained within phenotypically distinct T-cell populations at different stages of activation or differentiation and showed different levels of exhaustion and senescence. Furthermore, the composition of proliferating and cytotoxic CD8 T cells for a given antiviral CD8 T-cell population appeared to be influenced by antigen exposure. These results advance our understanding of the relationship between cytotoxicity, proliferation capacity, the levels of senescence and exhaustion, and antigen exposure of antiviral memory CD8 T cells.Cytotoxic CD8 T cells are a fundamental component of the immune response against viral infections and mediate an important role in immunosurveillance (7, 10, 55), and the induction of vigorous CD8 T-cell responses after vaccination is thought to be a key component of protective immunity (37, 41, 49, 50, 58, 60, 69). Cytotoxic CD8 T cells exert their antiviral and antitumor activity primarily through the secretion of cytotoxic granules containing perforin (pore-forming protein) and several granule-associated proteases, including granzymes (Grms) (5, 15, 20, 44). Several studies have recently advanced the characterization of the mechanism of granule-dependent cytotoxic activity and performed a comprehensive investigation of the content of cytotoxic granules in human virus-specific CD8 T cells (2, 19, 29, 44, 53).Heterogeneous profiles of cytotoxic granules have been identified in different virus-specific memory CD8 T cells and associated with distinct differentiation stages of memory CD8 T cells (2, 19, 29, 44). Furthermore, we have observed a hierarchy among the cytotoxic granules in setting the efficiency of cytotoxic activity and demonstrated that perforin (and to a lesser extent GrmB) but not GrmA or GrmK were associated with cytotoxic activity (29). Recently, a novel mechanism of perforin-dependent granule-independent CTL cytotoxicity has also been demonstrated (45).Major advances in the characterization of antigen (Ag)-specific CD4 and CD8 T cells have been made recently and have aimed at identifying functional profiles that may correlate with protective CD8 T-cell responses (1, 3, 4, 12, 13, 24, 28, 36-38, 40, 41, 49, 50, 56-58, 60, 64, 68). In particular, the functional characterization of antigen-specific T cells was mainly performed on the basis of (i) the pattern of cytokines secreted (i.e., gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], interleukin-2 [IL-2], or macrophage inflammatory protein 1β [MIP-1β]), (ii) the proliferation capacity, and (iii) the cytotoxic capacity (13, 28, 59). Of note, degranulation activity (i.e., CD107a mobilization following specific stimulation) has been used as a surrogate marker of cytotoxic activity (11, 13).The term “polyfunctional” has been used to define T-cell immune responses that, in addition to typical effector functions such as secretion of IFN-γ, TNF-α, or MIP-1β and cytotoxic activity (measured by the degranulation capacity), comprise distinct T-cell populations able to secrete IL-2 and retain proliferation capacity (13, 28, 49, 50). Some evidence indicates that a hallmark of protective immune responses is the presence of polyfunctional T-cell responses (59). Furthermore, the ability to secrete IL-2 was shown to be linked to proliferation capacity, and both factors have been associated with protective antiviral immunity (13, 28, 49, 50). Although a lack of correlation between degranulation activity and GrmB expression was reported in mice (65), the relationship between degranulation activity and perforin expression has never been comprehensively investigated in mice and in humans.The private α chain of the IL-7 receptor (IL-7Rα, also called CD127) has been suggested to selectively identify CD8 T cells that will become long-lived memory cells (6, 34, 36). Moreover, it was shown in mice (34, 36) and humans (14, 48, 63) that the CD127high memory-precursor CD8 T cells produced IL-2 in contrast to CD127low effector CD8 T cells. Of interest, CD127 expression has also been shown to correlate with Ag-specific proliferation capacity in mice (34, 36). A similar correlation was observed in humans, although only for polyclonal stimulations (48). With the exception of studies performed in HIV-1 infection, where an association between CD127 expression and HIV-1 viremia has been shown (21, 22, 42, 48, 54), very limited information is available on the CD127 expression in human virus-specific CD8 T cells other that HIV-1.Although cytotoxic activity and proliferation capacity are key components of the antiviral cellular immune response, the relationship between these functions has been only investigated in nonprogressive HIV-1 infection (46), where these two functions were shown to be related. However, it still remains to be determined whether these functions are mediated by the same or by different T-cell populations.In the present study, we performed a comprehensive characterization of virus-specific CD8 T-cell responses against HIV-1, cytomegalovirus (CMV), Epstein Barr virus (EBV), and influenza virus (Flu) in order to (i) analyze the degree of concordance between degranulation activity and perforin/Grm expression; (ii) identify the relevance of CD127 in identifying virus-specific CD8 T cells endowed with proliferation capacity; (iii) delineate the relationship between proliferation capacity, cytotoxic activity, activation/differentiation stage, and level of exhaustion of CD8 T cells; and (iv) determine the influence of antigen exposure in shaping the functional composition of virus-specific CD8 T cells.Our data indicate that cytotoxic (as defined by perforin expression) and proliferating (as defined by CD127 expression or IL-2 secretion) virus-specific CD8 T cells are contained within distinct CD8 T-cell populations. Furthermore, the proportion of proliferating and cytotoxic T cells within a given virus-specific CD8 T-cell population appears to be influenced by antigen exposure. These results advance our understanding of the relationship between cytotoxicity, proliferative capacity, differentiation stage, and Ag exposure of memory CD8 T cells.  相似文献   

12.
The kinetics of CD8+ T cell epitope presentation contribute to the antiviral efficacy of these cells yet remain poorly defined. Here, we demonstrate presentation of virion-derived Vpr peptide epitopes early after viral penetration and prior to presentation of Vif-derived epitopes, which required de novo Vif synthesis. Two Rev epitopes exhibited differential presentation kinetics, with one Rev epitope presented within 1 h of infection. We also demonstrate that cytolytic activity mirrors the recognition kinetics of infected cells. These studies show for the first time that Vpr- and Rev-specific CD8+ T cells recognize and kill simian immunodeficiency virus (SIV)-infected CD4+ T cells early after SIV infection.The antiviral activity of AIDS virus-specific CD8+ T cells is well documented in both in vivo (1, 4, 21) and in vitro (8, 24, 29) studies. Accordingly, human immunodeficiency virus (HIV) vaccine modalities that focus on engendering antiviral CD8+ T cells are being developed (13, 26, 28). Ideally, a CD8+ T cell-based vaccine would stimulate responses against epitopes that are presented by major histocompatibility complex class I (MHC-I) molecules early after infection of a target cell. However, successful selection of antigenic sequences for a CD8+ T cell-based vaccine has been frustrated in part by an incomplete understanding of the properties of effective CD8+ T cell responses (25).  相似文献   

13.
Previous studies have identified a central role for HLA-B alleles in influencing control of HIV infection. An alternative possibility is that a small number of HLA-B alleles may have a very strong impact on HIV disease outcome, dominating the contribution of other HLA alleles. Here, we find that even following the exclusion of subjects expressing any of the HLA-B class I alleles (B*57, B*58, and B*18) identified to have the strongest influence on control, the dominant impact of HLA-B alleles on virus set point and absolute CD4 count variation remains significant. However, we also find that the influence of HLA on HIV control in this C-clade-infected cohort from South Africa extends beyond HLA-B as HLA-Cw type remains a significant predictor of virus and CD4 count following exclusion of the strongest HLA-B associations. Furthermore, there is evidence of interdependent protective effects of the HLA-Cw*0401-B*8101, HLA-Cw*1203-B*3910, and HLA-A*7401-B*5703 haplotypes that cannot be explained solely by linkage to a protective HLA-B allele. Analysis of individuals expressing both protective and detrimental alleles shows that even the strongest HLA alleles appear to have an additive rather than dominant effect on HIV control at the individual level. Finally, weak but significant frequency-dependent effects in this cohort can be detected only by looking at an individual''s combined HLA allele frequencies. Taken together, these data suggest that although individual HLA alleles, particularly HLA-B, can have a strong impact, HIV control overall is likely to be influenced by the additive effect of some or all of the other HLA alleles present.HIV-specific CD8+ T cells play a central role in resolution of primary viremia and the long-term suppression of viral replication (13). Supporting this notion is the observed correlation between possession of particular human leukocyte antigen (HLA) class I alleles and control of HIV, measured both directly by time-to-AIDS (5, 6) and indirectly via clinical markers of disease progression (viral load [VL] and CD4 count) (15, 26, 28). Specific HLA class I alleles have been associated with relatively successful control of viral replication and slow disease progression, most notably, alleles HLA-B*57 and HLA-B*27 (1, 7, 12, 15, 21, 23), and also with relatively ineffective control of viral replication and rapid disease progression [B*35(Px), B*5802, and B*18] (5, 15, 17, 23). In addition, general trends suggesting an HLA class I heterozygote advantage (5) and rare allele advantage (28) and, most recently, a correlation between levels of surface expression linked to certain HLA-Cw alleles (11, 27) and HIV control has also been described.Among the different HLA class I loci, the HIV-specific CD8+ T-cell responses restricted by HLA-B alleles are thought to play the central role in determining disease outcome: the majority of detectable HIV-specific CD8+ T-cell responses are restricted by HLA-B alleles (3, 15, 16), HLA-B-restricted responses typically express a more effective “polyfunctional” phenotype (14), the strongest HLA-associations with either slow or rapid progression are with HLA-B alleles (5, 10, 11, 15), and HLA-B-restricted CD8+ T cells exert the strongest selection pressure on the virus (15, 19, 24). However, whether this apparent association between HIV immune control and HLA-B is a general and causal trend or, rather, is biased by the coincidence that the strongest HLA associations with either extreme of disease control happen, by chance, to involve HLA-B alleles remains uncertain.In order to further investigate the correlation between HLA type and HIV infection control, we here examine a cohort now comprising >1,200 chronically HIV C-clade-infected, treatment-naïve subjects from Durban, South Africa, in an extended analysis following from our previous studies of a smaller cohort (15). We first address the question of whether the dominant role of HLA-B in this population compared to the roles of HLA-A or HLA-C results from the influence of HLA-B alleles in general or is dependent on a few known strong associations, such as that between HLA-B*57 alleles and low viremia. Second, in light of recent data (11, 27), we assess the impact of HLA-C alleles on HIV disease outcome and examine the effect of HLA haplotypes on observed HLA associations with disease control. Third, we investigate the question of whether the impact of certain HLA-B alleles on HIV outcome dominates that of other HLA-B alleles to negate the contribution of the latter or whether the impact of individual HLA alleles can be additive. Finally, we compare the impact of individual HLA alleles on HIV on immune control to the impact of heterozygote and rare allele advantage in this cohort.  相似文献   

14.
During untreated human immunodeficiency virus type 1 (HIV-1) infection, virus-specific CD8+ T cells partially control HIV replication in peripheral lymphoid tissues, but host mechanisms of HIV control in the central nervous system (CNS) are incompletely understood. We characterized HIV-specific CD8+ T cells in cerebrospinal fluid (CSF) and peripheral blood among seven HIV-positive antiretroviral therapy-naïve subjects. All had grossly normal brain magnetic resonance imaging and spectroscopy and normal neuropsychometric testing. Frequencies of epitope-specific CD8+ T cells by direct tetramer staining were on average 2.4-fold higher in CSF than in blood (P = 0.0004), while HIV RNA concentrations were lower. Cells from CSF were readily expanded ex vivo and responded to a broader range of HIV-specific human leukocyte antigen class I restricted optimal peptides than did expanded cells from blood. HIV-specific CD8+ T cells, in contrast to total CD8+ T cells, in CSF and blood were at comparable maturation states, as assessed by CD45RO and CCR7 staining. The strong relationship between higher T-cell frequencies and lower levels of viral antigen in CSF could be the result of increased migration to and/or preferential expansion of HIV-specific T cells within the CNS. This suggests an important role for HIV-specific CD8+ T cells in control of intrathecal viral replication.Human immunodeficiency virus type 1 (HIV-1) invades the central nervous system (CNS) early during primary infection (21, 30, 35), and proviral DNA persists in the brain throughout the course of HIV-1 disease (7, 25, 29, 47, 77, 83). Limited data from human and nonhuman primate studies suggest that little or no viral replication occurs in the brain during chronic, asymptomatic infection, based on the absence of demonstrable viral RNA or proteins (8, 85). In contrast, cognitive impairment affects approximately 40% of patients who progress to advanced AIDS without highly active antiretroviral therapy (21, 30, 35, 65). During HIV-associated dementia, there is active HIV-1 replication in the brain (23, 52, 61, 81), and viral sequence differences between cerebrospinal fluid (CSF) and peripheral tissues suggest distinct anatomic compartments of replication (18, 19, 22, 53, 75, 76, 78). Host mechanisms that control viral replication in the CNS during chronic, asymptomatic HIV-1 infection are incompletely understood.Anti-HIV CD8+ T cells are present in blood and peripheral tissues throughout the course of chronic HIV-1 infection (2, 14). Multiple lines of evidence support a critical role for these cells in controlling HIV-1 replication. During acute HIV-1 infection, the appearance of CD8+ T-cell responses correlates temporally with a decline in viremia (11, 43), and a greater proliferative capacity of peripheral blood HIV-specific CD8+ T cells correlates with better control of viremia (36, 54). In addition, the presence of certain major histocompatibility complex class I human leukocyte antigen (HLA) alleles, notably HLA-B*57, predicts slower progression to AIDS and death during chronic, untreated HIV-1 infection (55, 62). Finally, in the simian immunodeficiency virus (SIV) model, macaques depleted of CD8+ T cells experience increased viremia and rapid disease progression (39, 51, 67).Little is known regarding the role of intrathecal anti-HIV CD8+ T cells in HIV neuropathogenesis. Nonhuman primate studies have identified SIV-specific CD8+ T cells in the CNS early after infection (16, 80). Increased infiltration of SIV antigen-specific CD8+ T cells and cytotoxic T lymphocytes has been detected only in CSF of slow progressors without neurological symptoms (72). In chronically infected macaques with little or no SIV replication in the brain, the frequency of HIV-specific T cells was higher in CSF than in peripheral blood but did not correlate with the level of plasma viremia or CD4+ T-cell counts (56). Although intrathecal anti-HIV CD8+ T cells may help control viral replication, a detrimental role in the neuropathogenesis of HIV-1 has also been postulated (38). Immune responses contribute to neuropathogenesis in models of other infectious diseases, and during other viral infections cytotoxic T lymphocytes can worsen disease through direct cytotoxicity or release of inflammatory cytokines such as gamma interferon (IFN-γ) (3, 17, 31, 37, 42, 44, 71).We tested the hypothesis that quantitative and/or qualitative differences in HIV-specific CD8+ T-cell responses are present in CSF compared to blood during chronic, untreated HIV-1 infection. We characterized HIV-specific CD8+ T-cell responses in CSF among seven antiretroviral therapy-naïve adults with chronic HIV-1 infection, relatively high peripheral blood CD4+ T-cell counts, and low plasma HIV-1 RNA concentrations. We show that among these HIV-positive individuals with no neurological symptoms and with little or no HIV-1 RNA in CSF, frequencies of HIV-specific T cells are significantly higher in CSF than in blood. These CSF cells are at a state of differentiation similar to that of T cells in blood and are functionally competent for expansion and IFN-γ production. The higher frequency of functional HIV-specific CD8+ T cells in CSF, in the context of low or undetectable virus in CSF, suggests that these cells play a role in the control of intrathecal viral replication.  相似文献   

15.
16.
Despite many efforts to develop AIDS vaccines eliciting virus-specific T-cell responses, whether induction of these memory T cells by vaccination before human immunodeficiency virus (HIV) exposure can actually contribute to effective T-cell responses postinfection remains unclear. In particular, induction of HIV-specific memory CD4+ T cells may increase the target cell pool for HIV infection because the virus preferentially infects HIV-specific CD4+ T cells. However, virus-specific CD4+ helper T-cell responses are thought to be important for functional CD8+ cytotoxic-T-lymphocyte (CTL) induction in HIV infection, and it has remained unknown whether HIV-specific memory CD8+ T cells induced by vaccination without HIV-specific CD4+ T-cell help can exert effective responses after virus exposure. Here we show the impact of CD8+ T-cell memory induction without virus-specific CD4+ T-cell help on the control of a simian immunodeficiency virus (SIV) challenge in rhesus macaques. We developed a prophylactic vaccine by using a Sendai virus (SeV) vector expressing a single SIV Gag241-249 CTL epitope fused with enhanced green fluorescent protein (EGFP). Vaccination resulted in induction of SeV-EGFP-specific CD4+ T-cell and Gag241-249-specific CD8+ T-cell responses. After a SIV challenge, the vaccinees showed dominant Gag241-249-specific CD8+ T-cell responses with higher effector memory frequencies in the acute phase and exhibited significantly reduced viral loads. These results demonstrate that virus-specific memory CD8+ T cells induced by vaccination without virus-specific CD4+ T-cell help could indeed facilitate SIV control after virus exposure, indicating the benefit of prophylactic vaccination eliciting virus-specific CTL memory with non-virus-specific CD4+ T-cell responses for HIV control.Virus-specific T-cell responses are crucial for controlling human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication (3, 4, 12, 20, 28, 36, 37). Therefore, a great deal of effort has been exerted to develop AIDS vaccines eliciting virus-specific T-cell responses (23, 27, 30, 47), but whether this approach actually results in HIV control remains unclear (1, 6). It is important to determine which T-cell responses need to be induced by prophylactic vaccination for HIV control after virus exposure.Because HIV preferentially infects HIV-specific CD4+ T cells (5), induction of HIV-specific memory CD4+ T cells by vaccination may increase the target cell pool for HIV infection and could enhance viral replication (42). However, CD4+ helper T-cell responses are important for functional CD8+ cytotoxic-T-lymphocyte (CTL) induction (11, 40, 43, 46), and it has remained unknown whether HIV-specific memory CD8+ T cells induced by vaccination with non-virus-specific CD4+ T-cell help (but without HIV-specific CD4+ T-cell help) can exert effective responses after virus exposure. Indeed, the real impact of prophylactic induction of CTL memory itself on HIV replication has not been well documented thus far.We previously developed a prophylactic AIDS vaccine consisting of DNA priming followed by boosting with a recombinant Sendai virus (SeV) vector expressing SIVmac239 Gag (26). Evaluation of this vaccine''s efficacy against a SIVmac239 challenge in Burmese rhesus macaques showed that some vaccinees contained SIV replication whereas unvaccinated animals developed AIDS (15, 27). In particular, vaccination consistently resulted in control of SIV replication in those animals possessing the major histocompatibility complex class I (MHC-I) haplotype 90-120-Ia. Gag206-216 (IINEEAADWDL) and Gag241-249 (SSVDEQIQW) epitope-specific CD8+ T-cell responses were shown to be involved in SIV control in these vaccinated macaques (14, 16).In the present study, focusing on CD8+ T-cell responses directed against one of these epitopes, we have evaluated the efficacy of a vaccine expressing the Gag241-249 epitope fused with enhanced green fluorescent protein (EGFP) against a SIVmac239 challenge in 90-120-Ia-positive rhesus macaques. The animals exhibited this single-epitope-specific CD8+ T-cell response and SeV-EGFP-specific CD4+ T-cell responses after vaccination and showed rapid, dominant induction of potent secondary Gag241-249-specific CD8+ T-cell responses after a SIV challenge. Plasma viral loads in these vaccinees were significantly reduced compared to those of naive controls. These results indicate that induction of CD8+ T-cell memory without virus-specific CD4+ T-cell help by prophylactic vaccination can result in effective CD8+ T-cell responses after virus exposure.  相似文献   

17.
Simian immunodeficiency virus (SIV)-infected African nonhuman primates do not progress to AIDS in spite of high and persistent viral loads (VLs). Some authors consider the high viral replication observed in chronic natural SIV infections to be due to lower anti-SIV antibody titers than those in rhesus macaques, suggesting a role of antibodies in controlling viral replication. We therefore investigated the impact of antibody responses on the outcome of acute and chronic SIVagm replication in African green monkeys (AGMs). Nine AGMs were infected with SIVagm.sab. Four AGMs were infused with 50 mg/kg of body weight anti-CD20 (rituximab; a gift from Genentech) every 21 days, starting from day −7 postinfection up to 184 days. The remaining AGMs were used as controls and received SIVagm only. Rituximab-treated AGMs were successfully depleted of CD20 cells in peripheral blood, lymph nodes (LNs), and intestine, as shown by the dynamics of CD20+ and CD79a+ cells. There was no significant difference in VLs between CD20-depleted AGMs and control monkeys: peak VLs ranged from 107 to 108 copies/ml; set-point values were 104 to 105 SIV RNA copies/ml. Levels of acute mucosal CD4+ T-cell depletion were similar for treated and nontreated animals. SIVagm seroconversion was delayed for the CD20-depleted AGMs compared to results for the controls. There was a significant difference in both the timing and magnitude of neutralizing antibody responses for CD20-depleted AGMs compared to results for controls. CD20 depletion significantly altered the histological structure of the germinal centers in the LNs and Peyer''s patches. Our results, although obtained with a limited number of animals, suggest that humoral immune responses play only a minor role in the control of SIV viral replication during acute and chronic SIV infection in natural hosts.In marked contrast to pathogenic human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections of humans and macaques, which are characterized by the constant progression to AIDS in a variable time frame (26), African monkey species naturally infected with SIV are generally spared from any signs of disease (reviewed in references 53 and 71).There are currently three animal models of SIV infection in natural hosts: SIVagm infection of African green monkeys (AGMs), SIVsmm infection of sooty mangabeys, and SIVmnd-1 and SIVmnd-2 infection of mandrills (53, 71). SIV infection in natural hosts is characterized by the following: (i) active viral replication, with set-point viral loads (VLs) similar to or even higher than those found in pathogenic infections (44-46, 49, 50, 52, 61-63); (ii) transient depletion of peripheral CD4+ T cells during primary infection, which rebound to preinfection levels during chronic infection (12, 30, 44-46, 49, 62); (iii) significant CD4+ T-cell depletion in the intestine, which can be partially restored during chronic infection in spite of significant viral replication (21, 48); (iv) low levels of CD4+ CCR5+ cells in blood and tissues (47); (v) transient and moderate increases in immune activation and T-cell proliferation during acute infection, with a return to baseline levels during the chronic phase (44-46, 49, 50, 52, 61-63), as a result of an anti-inflammatory milieu which is rapidly established after infection (14, 30); and (vi) no significant increase in CD4+ T-cell apoptosis during either acute or chronic infection (37, 48), thus avoiding enteropathy and microbial translocation, which control excessive immune activation and prevent disease progression by allowing CD4+ T-cell recovery in the presence of high VLs (21, 48). Hence, the current view is that the main reason behind the lack of disease progression in natural African hosts lies in a better adaptation of the host in response to the highly replicating virus. A better understanding of the mechanisms underlying the lack of disease in natural hosts for SIV infection may provide important clues for understanding the pathogenesis of HIV infection (53, 71).To date, it is still unknown whether or not immune responses are responsible for the lack of disease progression in natural hosts, since data are scarce. Studies of cellular immune responses are significantly more limited than is the case with pathogenic infection, and although not always in agreement (3, 13, 28, 29, 73, 76), their convergence point is that cellular immune responses are not essentially superior to those observed in pathogenic infections (3, 13, 28, 29, 73, 76). This observation is not surprising in the context of the high viral replication in natural hosts. Data are even scarcer on the role of humoral immune responses in the control of disease progression in natural hosts. However, several studies reported that anti-SIV antibody titers are lower in SIV infections of natural hosts, with a lack of anti-Gag responses being characteristic of natural SIV infections in African nonhuman primates (1, 6, 24, 25, 42, 43, 71). Because the viral replication in SIVagm-infected AGMs is of the same magnitude or higher than that in pathogenic infections of rhesus macaques (RMs), it has been hypothesized that these high VLs may be a consequence of the lower antibody titers. Moreover, a recent study has also shown that B cells in lymph nodes (LNs) of AGMs are activated at an earlier time point than is the case for SIVmac251-infected RMs, which implies that humoral immune responses may be important in controlling SIV replication in the natural hosts (9). Conversely, it has been shown that passively transferring immunoglobulins from animals naturally infected with SIVagm prior to infection with a low dose of SIVagm did not prevent infection in AGMs (42, 60), which is in striking contrast to results in studies of pathogenic infections, which convincingly demonstrated with animal models that intravenously administered or topically applied antibodies can protect macaques against intravenous or mucosal simian-human immunodeficiency virus challenge (34-36, 54, 72).Previous CD20+ B-cell-depletion studies during pathogenic RM infections have indicated that humoral immune responses may be important for controlling both the postpeak VL and disease progression (38, 57). However, these studies used strains that are highly resistant to neutralization (SIVmac251 and SIVmac239), making it difficult to assess the role that antibodies have in controlling SIV replication and disease progression. Moreover, our recent results suggested a limited impact of humoral immune responses in controlling replication of a neutralization-sensitive SIVsmm strain in rhesus macaques (18).To investigate the effect that CD20+ B cells and antibodies have on SIV replication in natural hosts, we have depleted CD20+ B cells in vivo in AGMs infected with SIVagm.sab92018. We assessed the impact of humoral immune responses on the control of viral replication and other immunological parameters, and we report that ablating humoral immune responses in SIVagm-infected AGMs does not significantly alter the course of virus replication or disease progression.  相似文献   

18.
The control of human immunodeficiency virus type 1 (HIV-1) associated with particular HLA class I alleles suggests that some CD8+ T-cell responses may be more effective than others at containing HIV-1. Unfortunately, substantial diversities in the breadth, magnitude, and function of these responses have impaired our ability to identify responses most critical to this control. It has been proposed that CD8 responses targeting conserved regions of the virus may be particularly effective, since the development of cytotoxic T-lymphocyte (CTL) escape mutations in these regions may significantly impair viral replication. To address this hypothesis at the population level, we derived near-full-length viral genomes from 98 chronically infected individuals and identified a total of 76 HLA class I-associated mutations across the genome, reflective of CD8 responses capable of selecting for sequence evolution. The majority of HLA-associated mutations were found in p24 Gag, Pol, and Nef. Reversion of HLA-associated mutations in the absence of the selecting HLA allele was also commonly observed, suggesting an impact of most CTL escape mutations on viral replication. Although no correlations were observed between the number or location of HLA-associated mutations and protective HLA alleles, limiting the analysis to mutations selected by acute-phase immunodominant responses revealed a strong positive correlation between mutations at conserved residues and protective HLA alleles. These data suggest that control of HIV-1 may be associated with acute-phase CD8 responses capable of selecting for viral escape mutations in highly conserved regions of the virus, supporting the inclusion of these regions in the design of an effective vaccine.Despite substantial advances in antiretroviral therapies, development of an effective human immunodeficiency virus type 1 (HIV-1) vaccine remains a critical goal (6, 39, 82). Unfortunately, current vaccine efforts have failed to reduce infection rates in humans (9, 75) and have only achieved modest decreases in viral loads in the simian immunodeficiency virus (SIV)/SHIV macaque model (21, 44, 81). A majority of these vaccine approaches have focused on inducing T-cell responses, utilizing large regions of the virus in an attempt to induce a broad array of immune responses (6, 34, 44, 81). While it is well established that CD8+ T-cell responses play a critical role in the containment of HIV-1 (45, 49, 67), supported in part by the strong association of particular HLA class I alleles with control of HIV (20, 33, 42, 61), it remains unclear which particular CD8+ T-cell responses are best able to control the virus and thus should be preferentially targeted by a vaccine. Studies comparing the magnitude, breadth, and function of CD8+ T-cell responses in subjects exhibiting either enhanced or poor control of HIV-1 have yielded few clues as to the specific factors associated with an effective CD8+ T-cell response (2, 28, 64, 67). Various differences in the functional capacity of T-cell responses have been observed in long-term nonprogressors (1, 26, 64), although it is possible that these differences may be reflective of an intact immune response, as opposed to having had directly enhanced immune control. As such, efforts are needed to identify factors or phenotypes associated with protective CD8+ T-cell responses in order to enable vaccines to induce the most effective responses.Recent studies have begun to suggest that the specificity of the CD8+ T-cell response, or the targeting of specific regions of the virus, may be associated with control of HIV-1. Preferential targeting of Gag, a structurally conserved viral protein responsible for multiple functions, has been associated with lower viral loads (25, 43, 56, 60, 77, 85). Furthermore, Kiepiela et al. (43) recently illustrated in a large cohort of 578 clade C-infected subjects that Gag-specific responses were associated with lowered viremia, in contrast to Env-specific responses, which were associated with higher viremia. These data are in line with previous observations that many of the major histocompatibility complex (MHC) class I alleles most strongly associated with control of HIV-1 and SIV, namely, HLA-B57, HLA-B27, and Mamu-A*01, restrict immunodominant CD8+ T-cell responses against the Gag protein (8, 10, 24, 63, 68, 83). However, other alleles associated with slower disease progression, such as HLA-B51 in humans and Mamu-B08 and B-17 in the rhesus macaque, do not immunodominantly target Gag, suggesting that targeting of some other regions of the virus may also be capable of eliciting control (8, 52-54). In addition, recent studies investigating the pattern of HIV-1-specific CD8+ T-cell responses during acute infection reveal that only a small subset of CD8+ T-cell responses restricted by any given HLA allele arise during acute infection and that there exist clear immunodominance patterns to these responses (8, 77, 85). Since control of HIV-1 is likely to be established or lost during the first few weeks of infection, these data suggest that potentially only a few key CD8+ T-cell responses may be needed to adequately establish early control of HIV-1.One of the major factors limiting the effectiveness of CD8+ T-cell responses is the propensity for HIV-1 to evade these responses through sequence evolution or viral escape (3, 13, 66). Even single point mutations within a targeted CD8 epitope can effectively abrogate recognition by either the HLA allele or the T-cell receptor. However, recent studies have begun to highlight that many sequence polymorphisms will revert to more common consensus residues upon transmission of HIV-1 to a new host, including many cytotoxic T-lymphocyte (CTL) escape mutations (4, 30, 33, 48, 50). Notably, the more rapidly reverting mutations have been observed to preferentially occur at conserved residues, indicating that structurally conserved regions of the virus may be particularly refractory to sequence changes (50). In support of these data, many CTL escape mutations have now been observed to directly impair viral replication (15, 23, 55, 74), in particular those known to either revert or require the presence of secondary compensatory mutations (15, 23, 73, 74). Taken together, these data suggest that, whereas CTL escape mutations provide a benefit to the virus to enable the evasion of host immune pressures, some of these mutations may come at a substantial cost to viral replication. These data may also imply that the association between Gag-specific responses and control of HIV-1 may be due to the targeting of highly conserved regions of the virus that are difficult to evade through sequence evolution.The propensity by which HIV-1 escapes CD8+ T-cell responses, and the reproducibility by which mutations arise at precise residues in targeted CD8 epitopes (3, 48), also enables the utilization of sequence data to predict which responses may be most capable of exerting immune selection pressure on the virus. Studies in HIV-1, SIV, and hepatitis C virus (16, 58, 65, 78) are now rapidly identifying immune-driven CTL escape mutations across these highly variable pathogens at the population level by correlating sequence polymorphisms in these viruses with the expression of particular HLA alleles. We provide here an analysis of HLA-associated mutations across the entire HIV-1 genome using a set of sequences derived from clade B chronically infected individuals. Through full-length viral genome coverage, these data provide an unbiased analysis of the location of these mutations and suggest that the control of HIV-1 by particular HLA alleles correlates with their ability to preferentially restrict early CD8+ T-cell responses capable of selecting for viral escape mutations at highly conserved residues of the virus. These data provide support for the inclusion of specific highly conserved regions of HIV-1 into vaccine antigens.  相似文献   

19.
CD4C/HIVnef transgenic (Tg) mice express Nef in CD4+ T cells and in the cells of the macrophage/monocyte/dendritic lineage, and they develop an AIDS-like disease similar to human AIDS. In these mice, Nef is constitutively expressed throughout life. To rule out the contribution of any developmental defects caused by early expression of Nef, we generated inducible human immunodeficiency virus type 1 (HIV-1) Nef Tg mice by using the tetracycline-inducible system. Faithful expression of the Nef transgene was induced in (CD4C/rtTA × TRE/HIVNef) or (CD4C/rtTA2S-M2 × TRE/HIVNef) double-Tg mice upon doxycycline (DOX) treatment in drinking water. Long-term treatment of these mice with DOX also led to loss, apoptosis, and activation of CD4+ T cells, this latter phenotype being observed even with low levels of Nef. These phenotypes could be transferred by bone marrow (BM) transplantation, indicating a hematopoietic cell autonomous effect. In addition, in mixed Tg:non-Tg BM chimeras, only Tg and not non-Tg CD4+ T cells exhibited an effector/memory phenotype in the absence of lymphopenia. Finally, the DOX-induced double-Tg mice developed nonlymphoid organ diseases similar to those of CD4C/HIVNef Tg mice and of humans infected with HIV-1. These results show for the first time that adult mice are susceptible to the detrimental action of Nef and that Nef-mediated T-cell activation can be independent of lymphopenia. These Tg mice represent a unique model which is likely to be instrumental for understanding the cellular and molecular pathways of Nef action as well as the main characteristics of immune reconstitution following DOX withdrawal.Small animal models able to express the entire human immunodeficiency virus (HIV) genome or selected HIV genes have provided useful information on the pathogenesis of AIDS and still represent important research tools toward this goal. Among these models, transgenic (Tg) mice containing intact copies of HIV DNA, defective provirus with the gag and pol genes deleted, or individual HIV-1 genes have been reported to develop various pathologies, some of which resemble those found in human AIDS (2, 3, 8, 9, 16, 17, 18, 24, 27, 29, 30, 38, 44, 45, 46, 49, 51, 52). The cell type context in which the HIV-1 transgene is expressed in these Tg mice appears to play an important role in determining the type of pathological lesions. Tg mice generated in our laboratory and expressing the entire coding sequence of HIV-1 (CD4C/HIVWT) or HIV-1 Nef alone (CD4C/HIVNef) in the relevant target cells of HIV-1, namely, CD4+ T cells, macrophages, and dendritic cells, develop pathologies very similar to those in human AIDS (17, 18). The AIDS-like disease of CD4C/HIVNef Tg mice is characterized by immunodeficiency, loss of CD4+ T cells, thymic atrophy, activation of T cells and pathologies in heart, lungs, and kidneys (18, 53). Similarly, expression of simian immunodeficiency virus (SIV) Nef in Tg mice under the control of the same promoter sequences (CD4C) results in an AIDS-like disease (42). These studies demonstrated that Nef plays an important role in the development of the AIDS-like disease induced by HIV-1 or SIV in Tg mice.Among the AIDS-like phenotypes of these models, the T-cell activation observed by a number of groups in Tg mice expressing Nef (3, 33, 44, 53) may be of special interest for its resemblance to that of humans or macaques infected with HIV-1 or SIV, respectively. HIV infection results in a state of chronic immune activation which correlates very closely with disease progression in humans (11, 14, 23). Similarly, SIV-infected macaques which develop AIDS show aberrant immune activation (35), while SIV-infected sooty mangabey monkeys, natural hosts of SIV, do not develop immunopathologies and do not show immune activation either (41). Various factors may contribute to this immune activation, including increased plasma lipopolysaccharide levels due to microbial translocation from the gut (4), impaired regulatory T cell function (32), or the action of the HIV-1 gene products themselves, such as Env gp120 and Nef (10, 12, 43). Consistent with this latter scenario, we reported that in CD4C/HIVNef Tg mice the extent of T-cell activation correlates with levels of Nef expression in CD4+ T cells, thus suggesting a direct involvement of Nef in this activation (53). In contrast, Koenen and coworkers reported that T-cell activation in CD2/Nef Tg mice is induced indirectly by lymphophenia (26). In that study, chimeric mice, which were generated from a mixture of non-Tg and Nef Tg bone marrow (BM) cells, were not lymphopenic, and the donor-derived Nef-expressing Tg T cells did not show an activated phenotype. However, the donor Nef Tg T cells constituted only 1 to 2% of peripheral T cells of these chimeric mice (26). Clearly, alternative experimental approaches are needed to study this phenotype in a more physiological context.In the previously described CD4C/HIVNef Tg mice (18), Nef expression begins early in life and is constitutively expressed throughout the life of the animal. The AIDS-like disease caused by this early expression of Nef best represents a model for pediatric AIDS. However, in these Tg mice, Nef may interfere with normal developmental processes and these latter defects may contribute to some of the phenotypes observed. To assess the effects of Nef in fully mature adult animals, and thus develop a model of adult AIDS, temporal regulation of Nef expression in adult mice using an inducible system is required.In the present study, we chose the tet-On (rtTA and rtTA2S-M2) system (13, 15, 25, 48) to induce expression of HIV-1 Nef in CD4+ T cells and cells of the macrophage/dendritic lineage of mice using the CD4C tissue-specific regulatory elements. These CD4C sequences were previously used to generate the constitutively Nef-expressing CD4C/HIVNef Tg mice (18). These inducible adult (TRE/HIVNef × CD4C/rtTA) and (TRE/HIVNef × CD4C/rtTA2S-M2) double-Tg (DTg) mice express Nef when treated with doxycycline (DOX) and develop an AIDS-like disease very similar to that seen in constitutively Nef-expressing CD4C/HIVNef Tg mice. We took advantage of this novel biological system to reassess the role of Nef in T-cell activation. Using a mixed chimera made with BM cells from these inducible Nef Tg mice and from non-Tg mice, we could document CD4+ T-cell activation only in donor-derived Nef-expressing Tg cells, but not in non-Tg cells, in the absence of lymphopenia. This result strongly suggests that this CD4+ T-cell activation phenotype is most likely driven by expression of Nef in these cells.  相似文献   

20.
A broad Gag-specific CD8+ T-cell response is associated with effective control of adult human immunodeficiency virus (HIV) infection. The association of certain HLA class I molecules, such as HLA-B*57, -B*5801, and -B*8101, with immune control is linked to mutations within Gag epitopes presented by these alleles that allow HIV to evade the immune response but that also reduce viral replicative capacity. Transmission of such viruses containing mutations within Gag epitopes results in lower viral loads in adult recipients. In this study of pediatric infection, we tested the hypothesis that children may tend to progress relatively slowly if either they themselves possess one of the protective HLA-B alleles or the mother possesses one of these alleles, thereby transmitting a low-fitness virus to the child. We analyzed HLA type, CD8+ T-cell responses, and viral sequence changes for 61 mother-child pairs from Durban, South Africa, who were monitored from birth. Slow progression was significantly associated with the mother or child possessing one of the protective HLA-B alleles, and more significantly so when the protective allele was not shared by mother and child (P = 0.007). Slow progressors tended to make CD8+ T-cell responses to Gag epitopes presented by the protective HLA-B alleles, in contrast to progressors expressing the same alleles (P = 0.07; Fisher''s exact test). Mothers expressing the protective alleles were significantly more likely to transmit escape variants within the Gag epitopes presented by those alleles than mothers not expressing those alleles (75% versus 21%; P = 0.001). Reversion of transmitted escape mutations was observed in all slow-progressing children whose mothers possessed protective HLA-B alleles. These data show that HLA class I alleles influence disease progression in pediatric as well as adult infection, both as a result of the CD8+ T-cell responses generated in the child and through the transmission of low-fitness viruses by the mother.Human immunodeficiency virus (HIV)-specific CD8+ T cells play a central role in controlling viral replication (12). It is the specificity of the CD8+ T-cell response, particularly the response to Gag, that is associated with low viral loads in HIV infection (7, 17, 34). Although immune control is undermined by the selection of viral mutations that prevent recognition by the CD8+ T cells, evasion of Gag-specific responses mediated by protective class I HLA-B alleles typically brings a reduction in viral replicative capacity, facilitating subsequent immune control of HIV (2, 20, 21). The same principle has been demonstrated in studies of simian immunodeficiency virus infection (18, 22).Recent studies showed that the class I HLA-B alleles that protect against disease progression present more Gag-specific CD8+ T-cell epitopes and drive the selection of more Gag-specific escape mutations than those alleles that are associated with high viral loads (23). These protective HLA-B alleles not only are beneficial to infected individuals expressing those alleles but also benefit a recipient following transmission, since the transmitted virus carrying multiple Gag escape mutations may have substantially reduced fitness (3, 4, 8). However, there is no benefit to the recipient if he or she shares the same protective allele as the donor because the transmitted virus carries escape mutations in the Gag epitopes that would otherwise be expected to mediate successful immune control in the recipient (8, 11).The sharing of HLA alleles between donor and recipient occurs frequently in mother-to-child transmission (MTCT). The risk of MTCT is related to viral load in the mother, and a high viral load is associated with nonprotective alleles, such as HLA-B*18 and -B*5802. This may contribute in two distinct ways to the more rapid progression observed in pediatric HIV infection (24, 26, 27). First, because infected children share 50% or more of their HLA alleles with the transmitting mother, they are less likely than adults to carry protective HLA alleles (16). Thus, infected children as a group carry fewer protective HLA alleles and more nonprotective HLA alleles. Second, even when the child has a protective allele, such as HLA-B*27, this allele does not offer protection if the maternally transmitted virus carries escape mutations within the key Gag epitopes that are presented by the protective allele (11, 19).However, it is clear that infected children who possess protective alleles, such as HLA-B*27 or HLA-B*57, can achieve durable immune control of HIV infection if the virus transmitted from the mother is not preadapted to those alleles (6, 10). HIV-specific CD8+ T-cell responses are detectable from birth in infected infants (32). Furthermore, as in adult infection (3, 8), HIV-infected children have the potential to benefit from transmission of low-fitness viruses in the situation where the mother possesses protective HLA alleles and the child does not share those protective alleles. MTCT of low-fitness viruses carrying CD8+ T-cell escape mutations was recently documented (28; J. Prado et al., unpublished data).In this study, undertaken in Durban, South Africa, we set out to test the hypothesis that HIV-infected children are less likely to progress rapidly to disease if either the infected child or the transmitting mother possesses a protective HLA allele that is not shared. The HLA alleles most strongly associated with low viral loads and high CD4 counts in a cohort of >1,200 HIV-infected adults in Durban are HLA-B*57 (-B*5702 and -B*5703), HLA-B*5801, and HLA-B*8101 (16; A. Leslie et al., unpublished data). These four alleles all present Gag-specific CD8+ T-cell epitopes, and in each case the escape mutations selected in these epitopes reduce viral replicative capacity (2-4, 8, 21, 23).Analyzing a previously described cohort of 61 HIV-infected children in Durban (24, 26, 32), South Africa, who were all monitored from birth, we first addressed the question of whether possession of any of these four alleles by either mother or child is associated with slower disease progression in the child and then determined whether sharing of protective alleles by mother and child affects the ability of the child to make the Gag-specific CD8+ T-cell responses restricted by the shared allele.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号