首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Gene》1997,184(2):215-219
The prion protein gene (PrP) encodes a cellular protein of unknown function. A conformational isoform of this protein is involved in the neurodegenerative prion diseases. To facilitate the identification of structurally and antigenically important regions within the PrP molecule, the rabbit PrP open reading frame (ORF) was cloned and characterised. There is 82–87% identity at the nucleotide sequence level and 88–93% identity at the amino acid (aa) sequence level, between the rabbit gene and PrP sequences of other mammals. The rabbit gene shares structural and organisational features common to all known PrP genes signifying that it is the rabbit PrP gene. Comparison of the rabbit PrP aa sequence with PrP aa sequences from different species revealed several potential epitopes. Two anti-ovine PrP peptide Ab raised in rabbits, 168-92 and 98-92, confirmed that two separate cross-reacting epitopes segregate with single aa differences between rabbit and sheep PrP at positions 43 and 99 of the rabbit PrP polypeptide. The presence of these epitopes correlates with the species recognition patterns of previously published Ab. The usefulness of the rabbit PrP gene sequence in predicting antigenic regions within the PrP proteins of various species is illustrated. The structure of the rabbit PrP protein in relation to rabbits' apparent resistance to infection by prions is discussed.  相似文献   

2.
We recently documented the co-purification of members of the LIV-1 subfamily of ZIP (Zrt-, Irt-like Protein) zinc transporters (LZTs) with the cellular prion protein (PrP(C)) and, subsequently, established that the prion gene family descended from an ancestral LZT gene. Here, we begin to address whether the study of LZTs can shed light on the biology of prion proteins in health and disease. Starting from an observation of an abnormal LZT immunoreactive band in prion-infected mice, subsequent cell biological analyses uncovered a surprisingly coordinated biology of ZIP10 (an LZT member) and prion proteins that involves alterations to N-glycosylation and endoproteolysis in response to manipulations to the extracellular divalent cation milieu. Starving cells of manganese or zinc, but not copper, causes shedding of the N1 fragment of PrP(C) and of the ectodomain of ZIP10. For ZIP10, this posttranslational biology is influenced by an interaction between its PrP-like ectodomain and a conserved metal coordination site within its C-terminal multi-spanning transmembrane domain. The transition metal starvation-induced cleavage of ZIP10 can be differentiated by an immature N-glycosylation signature from a constitutive cleavage targeting the same site. Data from this work provide a first glimpse into a hitherto neglected molecular biology that ties PrP to its LZT cousins and suggest that manganese or zinc starvation may contribute to the etiology of prion disease in mice.  相似文献   

3.
4.
Transmissible Spongiform Encephal-opathies (TSE) or prion diseases are a threat to food safety and to human and animal health. The molecular mechanisms responsible for prion diseases share similarities with a wider group of neurodegenerative disorders including Alzheimer disease and Parkinson disease and the central pathological event is a disturbance of protein folding of a normal cellular protein that is eventually accompanied by neuronal cell death and the death of the host. Prion protein (PrP) is a constituent of most normal mammalian cells and its presence is essential in the pathogenesis of TSE. However, the function of this normal cellular protein remains unclear. The prevention of PRNP gene expression in mammalian species has been undramatic, implying a functional redundancy. Yet PrP is conserved from mammals to fish. Recent studies of PrP in zebrafish have yielded novel findings showing that PrP has essential roles in early embryonic development. The amenability of zebrafish to global technologies has generated data indicating the existence of “anchorless” splice variants of PrP in the early embryo. This paper will discuss the possibility that the experimentalist''s view of PrP functions might be clearer at a greater phylogenetic distance.Key words: prion protein, zebrafish, gene expression, embryo development, neurogenesis  相似文献   

5.
The mammalian prion protein (PrPc) is a cellular protein of unknown function, an altered isoform of which (PrPsc) is a component of the infectious particle (prion) thought to be responsible for spongiform encephalopathies in humans and animals. The evolutionary conservation of the PrP gene has been reported in the genomes of many vertebrates as well as certain invertebrates. In the genome of nematode Caenorhabditis elegans, the sequence capable of hybridizing with the mammalian PrP cDNA probe has been demonstrated, predicting the presence of the PrP gene homologue in C.elegans. In this study, Southern analysis with the hamster PrP cDNA (HaPrP) probe confirmed the previous observation. Moreover, Northern analysis revealed that the sequence is actively transcribed in adult worms. Thus, we screened C.elegans cDNA libraries with the HaPrP probe and isolated a cDNA that hybridizes to the same sequence in C.elegans that hybridized with the HaPrP probe in the Southern and Northern analyses. The deduced amino acid sequence of this cDNA, however, is substantially homologous with heterogeneous nuclear ribonucleoprotein (hnRNP) core proteins rather than mammalian PrPc. The hnRNPs contain the glycine-rich domain in the C-terminal half of the molecule, which also seemed to be in PrPc at the N-terminal half of the molecule. Both of the glycine-rich domains are composed of tracts with high G + C content, indicating that these tracts may due to the hybridizing signals. These results suggest that this cDNA clone is derived from a novel hnRNP gene homologue in C.elegans but not from a predicted PrP gene homologue.  相似文献   

6.
The partial PrP gene sequence and the deduced protein of eight cetacean species, seven of which have never been reported so far, have been determined in order to extend knowledge of sequence variability of the PrP genes in different species and to aid in speculation on cetacean susceptibility to prions. Both the nucleotide and the deduced amino acid sequences have been analysed in comparison with some of the known mammalian PrPs. Cetacean PrPs present typical features of eutherian PrPs. The PrP gene from the species of the family Delphinidae gave identical nucleic acid sequences, while differences in the PrP gene were found in Balaenopteridae and Ziphidae. The phylogenetic tree resulting from analysis of the cetacean PrP gene sequences, together with reported sequences of some ungulates, carnivores and primates, showed that the PrP gene phylogenesis mirrors the species phylogenesis. The PrP gene of cetaceans is very close to species where natural forms of TSEs are known. From an analysis of the sequences and the phylogenesis of the PrP gene, susceptibility to or occurrence of prion diseases in cetaceans can not be excluded.  相似文献   

7.
The yeast Saccharomyces cerevisiae is a tractable model organism in which both to explore the molecular mechanisms underlying the generation of disease-associated protein misfolding and to map the cellular responses to potentially toxic misfolded proteins. Specific targets have included proteins which in certain disease states form amyloids and lead to neurodegeneration. Such studies are greatly facilitated by the extensive ‘toolbox’ available to the yeast researcher that provides a range of cell engineering options. Consequently, a number of assays at the cell and molecular level have been set up to report on specific protein misfolding events associated with endogenous or heterologous proteins. One major target is the mammalian prion protein PrP because we know little about what specific sequence and/or structural feature(s) of PrP are important for its conversion to the infectious prion form, PrPSc. Here, using a study of the expression in yeast of fusion proteins comprising the yeast prion protein Sup35 fused to various regions of mouse PrP protein, we show how PrP sequences can direct the formation of non-transmissible amyloids and focus in particular on the role of the mouse octarepeat region. Through this study we illustrate the benefits and limitations of yeast-based models for protein misfolding disorders.  相似文献   

8.
《朊病毒》2013,7(2):45-47
The study of fungal prion proteins affords remarkable opportunities to elucidate both intragenic and extragenic effectors of prion propagation. The yeast prion protein Sup35 and the self-perpetuating [PSI+] prion state is one of the best characterized fungal prions. While there is little sequence homology among known prion proteins, one region of striking similarity exists between Sup35p and the mammalian prion protein PrP. This region is comprised of roughly five octapeptide repeats of similar composition. The expansion of the repeat region in PrP is associated with inherited prion diseases. In order to learn more about the effects of PrP repeat expansions on the structural properties of a protein that undergoes a similar transition to a self-perpetuating aggregate, we generated chimeric Sup35-PrP proteins. Using both in vivo and in vitro systems we described the effect of repeat length on protein misfolding, aggregation, amyloid formation, and amyloid stability. We found that repeat expansions in the chimeric prion proteins increase the propensity to initiate prion propagation and enhance the formation of amyloid fibers without significantly altering fiber stability.  相似文献   

9.
《Animal biotechnology》2013,24(1):159-162
ABSTRACT

Quail and pigeon PrP genes were cloned and sequenced. Like mammalianPrP genes, quail and pigeon genes are encoded by a single exon of a single copy gene in the genome. All of the structural features of mammalian PrP genes were found in the quail and pigeon PrP gene. Compared with the nucleotide sequences of mammalian PrP, they display generally 30% similarity. When compared with chicken PrP's DNA sequence, they show a higher homology (90%), and an even higher homology (99%) when compared to each other. A phylogenetic tree was constructed to trace the evolution of the prion gene in animals.  相似文献   

10.
《朊病毒》2013,7(2):88-92
Transmissible Spongiform Encephalopathies (TSE) or prion diseases are a threat to food safety and to human and animal health. The molecular mechanisms responsible for prion diseases share similarities with a wider group of neurodegenerative disorders including Alzheimer disease and Parkinson disease and the central pathological event is a disturbance of protein folding of a normal cellular protein that is eventually accompanied by neuronal cell death and the death of the host. Prion protein (PrP) is a constituent of most normal mammalian cells and its presence is essential in the pathogenesis of TSE. However, the function of this normal cellular protein remains unclear. The prevention of PRNP gene expression in mammalian species has been undramatic, implying a functional redundancy. Yet PrP is conserved from mammals to fish. Recent studies of PrP in zebrafish have yielded novel findings showing that PrP has essential roles in early embryonic development. The amenability of zebrafish to global technologies has generated data indicating the existence of “anchorless” splice variants of PrP in the early embryo. This paper will discuss the possibility that the experimentalist’s view of PrP functions might be clearer at a greater phylogenetic distance.  相似文献   

11.
Oligopeptide repeats appear in many proteins that undergo conformational conversions to form amyloid, including the mammalian prion protein PrP and the yeast prion protein Sup35. Whereas the repeats in PrP have been studied more exhaustively, interpretation of these studies is confounded by the fact that many details of the PrP prion conformational conversion are not well understood. On the other hand, there is now a relatively good understanding of the factors that guide the conformational conversion of the Sup35 prion protein. To provide a general model for studying the role of oligopeptide repeats in prion conformational conversion and amyloid formation, we have substituted various numbers of the PrP octarepeats for the endogenous Sup35 repeats. The resulting chimeric proteins can adopt the [PSI+] prion state in yeast, and the stability of the prion state depends on the number of repeats. In vitro, these chimeric proteins form amyloid fibers, with more repeats leading to shorter lag phases and faster assembly rates. Both pH and the presence of metal ions modulate assembly kinetics of the chimeric proteins, and the extent of modulation is highly sensitive to the number of PrP repeats. This work offers new insight into the properties of the PrP octarepeats in amyloid assembly and prion formation. It also reveals new features of the yeast prion protein, and provides a level of control over yeast prion assembly that will be useful for future structural studies and for creating amyloid-based biomaterials.  相似文献   

12.
Mastrangelo P  Westaway D 《Gene》2001,275(1):1-18
The prion protein gene, Prnp, encodes PrP(Sc), the major structural component of prions, infectious pathogens causing a number of disorders including scrapie and bovine spongiform encephalopathy (or BSE). Missense mutations in the human Prnp gene cause inherited prion diseases such as familial Creutzfeldt-Jakob disease. In uninfected animals Prnp encodes a glycophosphatidylinositol (GPI)-anchored protein denoted PrP(C) and in prion infections PrP(C) is converted to PrP(Sc) by templated refolding. Though Prnp is conserved in mammalian species, attempts to verify interactions of putative PrP binding proteins by genetic means have proven frustrating and the ZrchI and Npu lines of Prnp gene-ablated mice (Prnp(0/0) mice) lacking PrP(C) remain healthy throughout development. This indicates that PrP(C) serves a function that is not apparent in a laboratory setting or that other molecules have overlapping functions. Current possibilities involve shuttling or sequestration of synaptic Cu(II) via binding to N-terminal octapeptide residues and/or signal transduction involving the fyn kinase. A new point of entry into the issue of prion protein function has emerged from identification of a paralogue, Prnd, with 24% coding sequence identity to Prnp. Prnd lies downstream of Prnp and encodes the doppel (Dpl) protein. Like PrP(C), Dpl is presented on the cell surface via a GPI anchor and has three alpha-helices: however, it lacks the conformationally plastic and octapeptide repeat domains present in its well-known relative. Interestingly, Dpl is overexpressed in the Ngsk and Rcm0 lines of Prnp(0/0) mice via intergenic splicing events. These lines of Prnp(0/0) mice exhibit ataxia and apoptosis of cerebellar cells, indicating that ectopic synthesis of Dpl protein is toxic to central nervous system neurons: this inference has now been confirmed by the construction of transgenic mice expressing Dpl under the direct control of the PrP promoter. Remarkably, Dpl-programmed ataxia is rescued by wild-type Prnp transgenes. The interaction between the Prnp and Prnd genes in mouse cerebellar neurons may have a physical correlate in competition between Dpl and PrP(C) within a common biochemical pathway that when mis-regulated leads to apoptosis.  相似文献   

13.
cDNA cloning of turtle prion protein   总被引:14,自引:0,他引:14  
Cloning of the cDNA coding for the 270-residue turtle prion protein is reported. It represents the most remote example thus far described. The entire coding region is comprised in a single exon, while a large intron interrupts the 5' UTR. The common structural features of the known prion proteins are all conserved in turtle PrP, whose identity degree to mammalian and avian proteins is about 40 and 58%, respectively. The most intriguing feature, unique to the turtle prion, is the presence of an EF-hand Ca(2+) binding motif in the C-terminal half of the protein.  相似文献   

14.
The prion protein PrP has a key role in transmissible spongiform encephalopathies but its biological function remains largely unknown. Recently, a related protein, Shadoo, was discovered. Its biological properties and brain distribution partially overlap that of PrP. We report that the Shadoo-encoding gene knockdown in PrP-knockout mouse embryos results in a lethal phenotype, occurring between E8 and E11, not observed on the wild-type genetic background. It reveals that these two proteins play a shared, crucial role in mammalian embryogenesis, explaining the lack of severe phenotype in PrP-knockout mammals, an appreciable step towards deciphering the biological role of this protein family.  相似文献   

15.
Quail and pigeon PrP genes were cloned and sequenced. Like mammalian PrP genes, quail and pigeon genes are encoded by a single exon of a single copy gene in the genome. All of the structural features of mammalian PrP genes were found in the quail and pigeon PrP gene. Compared with the nucleotide sequences of mammalian PrP, they display generally 30% similarity. When compared with chicken PrP's DNA sequence, they show a higher homology (90%), and an even higher homology (99%) when compared to each other. A phylogenetic tree was constructed to trace the evolution of the prion gene in animals.  相似文献   

16.
《朊病毒》2013,7(3):201-210
The yeast Saccharomyces cerevisiae is a tractable model organism in which both to explore the molecular mechanisms underlying the generation of disease-associated protein misfolding and to map the cellular responses to potentially toxic misfolded proteins. Specific targets have included proteins which in certain disease states form amyloids and lead to neurodegeneration. Such studies are greatly facilitated by the extensive ‘toolbox’ available to the yeast researcher that provides a range of cell engineering options. Consequently, a number of assays at the cell and molecular level have been set up to report on specific protein misfolding events associated with endogenous or heterologous proteins. One major target is the mammalian prion protein PrP because we know little about what specific sequence and/or structural feature(s) of PrP are important for its conversion to the infectious prion form, PrPSc. Here, using a study of the expression in yeast of fusion proteins comprising the yeast prion protein Sup35 fused to various regions of mouse PrP protein, we show how PrP sequences can direct the formation of non-transmissible amyloids and focus in particular on the role of the mouse octarepeat region. Through this study we illustrate the benefits and limitations of yeast-based models for protein misfolding disorders.  相似文献   

17.
Prion diseases induce neurodegeneration in specific brain areas for undetermined reasons. A thorough understanding of the localization of the disease-causing molecule, the prion protein (PrP), could inform on this issue but previous studies have generated conflicting conclusions. One of the more intriguing disagreements is whether PrP is synthesized by astrocytes. We developed a knock-in reporter mouse line in which the coding sequence of the PrP expressing gene (Prnp), was replaced with that for green fluorescent protein (GFP). Native GFP fluorescence intensity varied between and within brain regions. GFP was present in astrocytes but did not increase during reactive gliosis induced by scrapie prion infection. Therefore, reactive gliosis associated with prion diseases does not cause an acceleration of local PrP production. In addition to aiding in Prnp gene activity studies, this reporter mouse line will likely prove useful for analysis of chimeric animals produced by stem cell and tissue transplantation experiments.  相似文献   

18.
A hallmark of prion diseases in mammals is a conformational transition of the cellular prion protein (PrP(C)) into a pathogenic isoform termed PrP(Sc). PrP(C) is highly conserved in mammals, moreover, genes of PrP-related proteins have been recently identified in fish. While there is only little sequence homology to mammalian PrP, PrP-related fish proteins were predicted to be modified with N-linked glycans and a C-terminal glycosylphosphatidylinositol (GPI) anchor. We biochemically characterized two PrP-related proteins from zebrafish in cultured cells and show that both zePrP1 and zeSho2 are imported into the endoplasmic reticulum and are post-translationally modified with complex glycans and a C-terminal GPI anchor.  相似文献   

19.
The prion protein family: diversity, rivalry, and dysfunction   总被引:3,自引:0,他引:3  
The prion gene family currently consists of three members: Prnp which encodes PrP(C), the precursor to prion disease associated isoforms such as PrP(Sc); Prnd which encodes Doppel, a testis-specific protein involved in the male reproductive system; and Sprn which encodes the newest PrP-like protein, Shadoo, which is expressed in the CNS. Although the identification of numerous candidate binding partners for PrP(C) has hinted at possible cellular roles, molecular interpretations of PrP(C) activity remain obscure and no widely-accepted view as to PrP(C) function has emerged. Nonetheless, studies into the functional interrelationships of prion proteins have revealed an interesting phenomenon: Doppel is neurotoxic to cerebellar cells in a manner which can be blocked by either PrP(C) or Shadoo. Further examination of this paradigm may help to shed light on two prominent unanswered questions in prion biology: the functional role of PrP(C) and the neurotoxic pathways initiated by PrP(Sc) in prion disease.  相似文献   

20.
The molecular function of the cellular prion protein (PrPC) and the mechanism by which it may contribute to neurotoxicity in prion diseases and Alzheimer''s disease are only partially understood. Mouse neuroblastoma Neuro2a cells and, more recently, C2C12 myocytes and myotubes have emerged as popular models for investigating the cellular biology of PrP. Mouse epithelial NMuMG cells might become attractive models for studying the possible involvement of PrP in a morphogenetic program underlying epithelial-to-mesenchymal transitions. Here we describe the generation of PrP knockout clones from these cell lines using CRISPR-Cas9 knockout technology. More specifically, knockout clones were generated with two separate guide RNAs targeting recognition sites on opposite strands within the first hundred nucleotides of the Prnp coding sequence. Several PrP knockout clones were isolated and genomic insertions and deletions near the CRISPR-target sites were characterized. Subsequently, deep quantitative global proteome analyses that recorded the relative abundance of>3000 proteins (data deposited to ProteomeXchange Consortium) were undertaken to begin to characterize the molecular consequences of PrP deficiency. The levels of ∼120 proteins were shown to reproducibly correlate with the presence or absence of PrP, with most of these proteins belonging to extracellular components, cell junctions or the cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号