首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
S Fabijanski  M Pellegrini 《Biochemistry》1979,18(25):5674-5679
An affinity label has been prepared that is specific for the P site of a eucaryotic peptidyl transferase, that of Drosophila melanogaster. It has the sequence C-A-C-C-A-(Ac[3H]Leu) with a mercury atom added at the C-5 position of all three cytosine residues (referred to as the mercurated fragment). This label is an analogue of the 3' terminus of N-acetylleucyl-tRNA. The mercurated fragment binds specifically to the P site of peptidyl transferase. It participates fully in peptide bond formation as judged by its ability to transfer N-acetylleucine to puromycin with at least the same efficiency as a nonmercurated fragment. Once bound to the P site, the mercurated fragment reacts covalently with a ribosomal protein(s). This affinity-labeling process can be effectively competed by nonmercurated fragment, which indicates a site-specific reaction. The covalent attachment of the affinity label to a ribosomal protein(s) occurs through the formation of a mercury-sulfur bond, as judged by its lability in the presence of thiol reducing agents. The major ribosomal protein labeled at the P site of D. melanogaster was found to be a small, basic protein. The electrophoretic behavior of this protein parallels that of major P site proteins found in Escherichia coli ribosomes and in other eucaryotes. These results suggest conservation of some of the overall properties of the P site proteins from these organisms.  相似文献   

2.
We have examined the structural specificity of the puromycin binding sites on the Escherichia coli ribosome that we have previously identified [Nicholson, A. W., Hall, C. C., Strycharz, W. A., & Cooperman, B. S. (1982) Biochemistry 19, 3809-3817, and references cited therein] by examining the interactions of a series of adenine-containing compounds with these sites. We have used as measures of such interactions the inhibition of [3H]puromycin photoincorporation into ribosomal proteins from these sites, the site-specific photoincorporation of the 3H-labeled compounds themselves, and the inhibition of peptidyl transferase activity. For the first two of these measures we have made extensive use of a recently developed high-performance liquid chromatography (HPLC) method for ribosomal protein separation [Kerlavage, A. R., Weitzmann, C., Hasan, T., & Cooperman, B.S. (1983) J. Chromatogr. 266, 225-237]. We find that puromycin aminonucleoside (PANS) contains all of the structural elements necessary for specific binding to the three major puromycin binding sites, those of higher affinity leading to photoincorporation into L23 and S14 and that of lower affinity leading to photoincorporation into S7. Although tight binding to the L23 and S7 sites requires both the N6,N6-dimethyl and 3'-amino groups within PANS, only the N6,N6-dimethyl group and not the 3'-amino group is required for binding to the S14 site. Our current results reinforce our previous conclusion that photoincorporation into L23 takes place from the A' site within the peptidyl transferase center and lead us to speculate that the S14 site might be specific for the binding of modified nucleosides. They also force the conclusion that puromycin photoincorporation proceeds through its adenosyl moiety.  相似文献   

3.
The standard technique for determination of the ribosomal site location of bound tRNA, viz. the puromycin reaction, has been analyzed with regard to its applicability under tRNA saturation conditions. The criteria derived have been used to re-examine the exclusion principle for peptidyl-tRNA binding, which states that only one peptidyl-tRNA (AcPhe-tRNA) can be bound per ribosome although in principle two sites (A and P site) are available. The following results were obtained. The puromycin reaction is only appropriate for a site determination if the reaction conditions prevent one ribosome from performing more than one puromycin reaction. With an excess of AcPhe-tRNA over ribosomes, and in the absence of EF-G, this criterion is fulfilled at 0 degree C, where the P-site-bound material reacts with puromycin (quantitative reaction after 50 h), while the A-site-bound material does not. In contrast, at 37 degrees C the extent of the puromycin reaction can exceed the binding values by 2-4-fold ('repetitive reaction'). In the presence of EF-G a repetitive puromycin reaction is seen even at 0 degree C, i.e. EF-G can already promote a translocation reaction at 0 degree C. However, the extent of translocation becomes negligibly low for short incubation times (up to 60 min) at 0 degree C, if only catalytic amounts of EF-G are used. Using the criteria outlined above, the validity of the exclusion principle for Escherichia coli ribosomes was confirmed pursuing two different experimental strategies. Ribosomes were saturated with AcPhe-tRNA at one molecule per 70S ribosome, and a quantitative puromycin reaction demonstrated the exclusive P-site location of the AcPhe-tRNA. The same result was also found in the presence of viomycin, which blocks the translocation reaction. These findings also indicate that here nearly 100% of the ribosomes participate in AcPhe-tRNA binding to the P site. Precharging the P sites of 70S ribosomes with one Ac[14C]Phe-tRNA molecule per ribosome prevented additional Ac[3H]Phe-tRNA binding. In contrast, 70S particles carrying one molecule of [14C]tRNAPhe per ribosome were able to bind up to a further 0.64 molecule Ac[3H]Phe-tRNA per ribosome.  相似文献   

4.
In previous work we have shown that both puromycin [Weitzmann, C. J., & Cooperman, B. S. (1985) Biochemistry 24, 2268-2274] and p-azidopuromycin [Nicholson, A. W., Hall, C. C., Strycharz, W. A., & Coooperman, B. S. (1982) Biochemistry 21, 3809-3817] site specifically photoaffinity label protein L23 to the highest extent of any Escherichia coli ribosomal protein. In this work we demonstrate that L23 that has been photoaffinity labeled within a 70S ribosome by puromycin (puromycin-L23) can be separated from unmodified L23 by reverse-phase high-performance liquid chromatography (RP-HPLC) and further that puromycin-L23 can reconstitute into 50S subunits when added in place of unmodified L23 to a reconstitution mixture containing the other 50S components in unmodified form. We have achieved a maximum incorporation of 0.5 puromycin-L23 per reconstituted 50S subunit. As compared with reconstituted 50S subunits either containing unmodified L23 or lacking L23, reconstituted 50S subunits containing 0.4-0.5 puromycin-L23 retain virtually all (albeit low) peptidyl transferase activity but only 50-60% of mRNA-dependent tRNA binding stimulation activity. We conclude that although L23 is not directly at the peptidyl transferase center, it is sufficiently close that puromycin-L23 can interfere with tRNA binding. This conclusion is consistent with a number of other experiments placing L23 close to the peptidyl transferase center but is difficult to reconcile with immunoelectron microscopy results placing L23 near the base of the 50S subunit on the side facing away from the 30S subunit [Hackl, W., & St?ffler-Meilicke, M. (1988) Eur. J. Biochem. 174, 431-435].  相似文献   

5.
Puromycin inhibits the interaction of peptidyl-tRNA analogs AcPhe-tRNA Phe ox-red, AcPhe-tRNA Phe and FMet-tRNA f Met with the donor (P) site of Escherichia coli ribosomes. It affects both template-free and poly(U)-dependent systems. The inhibition is apparently due to direct competition for the P-site. On isolated 30S ribosomal subunits it was shown that the puromycin binding site is situated far from the peptidyl transferase center. Quantitative measurements of the inhibition revealed that the affinity constant of puromycin for the P-site is not less than its affinity for the A-moiety of the peptidyl transferase center [1.1 divided by 3.8) X 10(3) M-1).  相似文献   

6.
A puromycin analogue possessing a hydrophilic amino acid, 3′-N-[S-(6-hydroxyhexyl)-L-cysteinyl]puromycin aminonucleoside, has been prepared and examined as a substrate for ribosomal peptidyl transferase. Kinetic studies indicate that this non-aromatic aminoacyl analogue is 95.6% as efficient as the parent antibiotic in the transpeptidation reaction. In addition, the analogue is an effective inhibitor of poly (U) and poly (U,C) directed protein synthesis in an Escherichia coli cell free system.  相似文献   

7.
To study the mechanism by which chloramphenicol inhibits bacterial protein synthesis, we examined the kinetics of the puromycin-induced release of peptides from transfer ribonucleic acid (tRNA) in the presence and in the absence of chloramphenicol. Washed Escherichia coli ribosomes with nascent peptides which had been radioactively labeled in vivo were used for this study. When such ribosomes were incubated in the presence of 10 mug of puromycin per ml, approximately one-fourth of the radioactive peptide material was rapidly released from tRNA. This rapid, puromycin-dependent reaction is assumed to be equivalent to the peptidyl transferase reaction. Chloramphenicol inhibited the extent of the puromycin-induced release of peptides by only 50%, demonstrating that some of the peptide chains which are present on active ribosomes react with puromycin, even in the presence of chloramphenicol. The addition of the supernatant fraction and guanosine triphosphate (GTP) increased the extent of the puromycin-induced release; this additional release was completely inhibited by chloramphenicol. Peptidyl chains on washed ribosomes prepared from chloramphenicol-inhibited cells were not released by puromycin in the presence of chloramphenicol and reacted slowly with puromycin in the absence of chloramphenicol. The release of peptidyl groups from these ribosomes became largely insensitive to chloramphenicol after preincubation of the ribosomes with GTP and the supernatant fraction. We conclude that chloramphenicol does not inhibit the peptidyl transferase reaction as measured by the puromycin-induced release of peptides from tRNA, but rather inhibits some step in the peptide synthesis cycle prior to this reaction.  相似文献   

8.
When bound to Escherichia coli ribosomes and irradiated with near-UV light, various derivatives of yeast tRNA(Phe) containing 2-azidoadenosine at the 3' terminus form cross-links to 23 S rRNA and 50 S subunit proteins in a site-dependent manner. A and P site-bound tRNAs, whose 3' termini reside in the peptidyl transferase center, label primarily nucleotides U2506 and U2585 and protein L27. In contrast, E site-bound tRNA labels nucleotide C2422 and protein L33. The cross-linking patterns confirm the topographical separation of the peptidyl transferase center from the E site domain. The relative amounts of label incorporated into the universally conserved residues U2506 and U2585 depend on the occupancy of the A and P sites by different tRNA ligands and indicates that these nucleotides play a pivotal role in peptide transfer. In particular, the 3'-adenosine of the peptidyl-tRNA analogue, AcPhe-tRNA(Phe), remains in close contact with U2506 regardless of whether its anticodon is located in the A site or P site. Our findings, therefore, modify and extend the hybrid state model of tRNA-ribosome interaction. We show that the 3'-end of the deacylated tRNA that is formed after transpeptidation does not immediately progress to the E site but remains temporarily in the peptidyl transferase center. In addition, we demonstrate that the E site, defined by the labeling of nucleotide C2422 and protein L33, represents an intermediate state of binding that precedes the entry of deacylated tRNA into the F (final) site from which it dissociates into the cytoplasm.  相似文献   

9.
The peptidyl transferase reaction, as measured by the formation of peptidyl-puromycin, was compared for free ribosomes and ribosomes bound to two types of membrane, the endoplasmic reticulum and the outer nuclear membrane. In most respects the reaction catalyzed by the three types of ribosome was similar, demonstrating that interaction of the 60 S ribosomal subunit with the membrane has little effect on the functioning of peptidyl transferase, a 60 S protein. However, both the rate and extent of synthesis of peptidyl puromycin were lower for ribosomes bound to the nuclear membrane than for free or microsome-bound ribosomes. This difference appears to be a direct consequence of the ribosome-membrane interaction, since ribosomes stripped from the nuclear membrane could not be distinguished from the other classes of ribosome.  相似文献   

10.
An analog of the peptidyl transferase inhibitor sparsomycin was a competitive inhibitor (Ki = 1.8 microM) of peptidyl-puromycin synthesis on E. coli polysomes. Preincubation of polysomes with the compound enhanced the degree of inhibition of peptide bond formation. A model for the involvement of a histidine residue in peptidyl transferase activity is presented as a result of our observations which include direct association of [3H] labelled analog with 70S ribosomes. The correct oxidation state of sulfur in the compound was necessary for the "preincubation effect" and entry of the compound into bacterial cells.  相似文献   

11.
The photoincorporation of p-azido[3H]puromycin [6-(dimethylamino)-9-[3'-deoxy-3'-[(p-azido-L-phenylalanyl)amino]-beta-D-ribofuranosyl]purine] into specific ribosomal proteins and ribosomal RNA [Nicholson, A. W., Hall, C. C., Strycharz, W. A., & Cooperman, B. S. (1982) Biochemistry (preceding paper in this issue)] is decreased in the presence of puromycin, thus demonstrating that labeling is site specific. The magnitudes of the decreases in incorporation into the major labeled 50S proteins found on addition of different potential ribosome ligands parallel the abilities of these same ligands to inhibit peptidyltransferase. This result provides evidence that p-azidopuromycin photoincorporation into these proteins occurs at the peptidyltransferase center of the 50S subunit, a conclusion supported by other studies of ribosome structure and function. A striking new finding of this work is that puromycin aminonucleoside is a competitive inhibitor of puromycin in peptidyltransferase. The photoincorporation of p-azidopuromycin is accompanied by loss of ribosomal function, but photoincorporated p-azidopuromycin is not a competent peptidyl acceptor. The significance of these results is discussed. Photolabeling of 30S proteins by p-azidopuromycin apparently takes place from sites of lower puromycin affinity than that of the 50S site. The possible relationship of the major proteins labeled, S18, S7, and S14, to tRNA binding is considered.  相似文献   

12.
13.
The catalytic site of the ribosome, the peptidyl transferase centre, is located on the large (50S in bacteria) ribosomal subunit. On the basis of results obtained with small substrate analogues, isolated 50S subunits seem to be less active in peptide bond formation than 70S ribosomes by several orders of magnitude, suggesting that the reaction mechanisms on 50S subunits and 70S ribosomes may be different. Here we show that with full-size fMet-tRNA(fMet) and puromycin or C-puromycin as peptide donor and acceptor substrates, respectively, the reaction proceeds as rapidly on 50S subunits as on 70S ribosomes, indicating that the intrinsic activity of 50S subunits is not different from that of 70S ribosomes. The faster reaction on 50S subunits with fMet-tRNA(fMet), compared with oligonucleotide substrate analogues, suggests that full-size transfer RNA in the P site is important for maintaining the active conformation of the peptidyl transferase centre.  相似文献   

14.
Reaction of the affinity-labeling reagent N-bromoacetyl-[14C]phenylalanyl-tRNA with Escherichia coli ribosomes results in covalent labeling of 23 S ribosomal RNA in addition to the previously reported labeling of ribosomal proteins. The reaction with the 23 S RNA is absolutely dependent on the presence of messenger RNA. Covalent attachment of the affinity label to 23 S RNA was demonstrated by its integrity in strongly dissociating solvents, and the conversion of the labeled material to small oligonucleotides by ribonuclease treatment. After digestion of labeled 23 S RNA with T1 ribonuclease, the radioactivity is found mainly in two oligonucleotide fragments. These results support models in which both ribosomal RNA and ribosomal protein contribute to the structure of the region of the ribosome surrounding the peptidyl transferase center.  相似文献   

15.
Poly(U)-programmed 70S ribosomes can be shown to be 80% to 100% active in binding the peptidyl-tRNA analogue AcPhe-tRNA to their A or P sites, respectively. Despite this fact, only a fraction of such ribosomes primed with AcPhe-tRNA participate in poly(U)-directed poly(Phe) synthesis (up to 65%) at 14 mM Mg2+ and 160 mM NH4+. Here it is demonstrated that the apparently 'inactive' ribosomes (greater than or equal to 35%) are able to participate in peptide-bond formation, but lose their nascent peptidyl-tRNA at the stage of Ac(Phe)n-tRNA, with n greater than or equal to 2. The relative loss of early peptidyl-tRNAs is largely independent of the degree of initial saturation with AcPhe-tRNA and is observed in a poly(A) system as well. This observation resolves a current controversy concerning the active fraction of ribosomes. The loss of Ac(Phe)n-tRNA is reduced but still significant if more physiological conditions for Ac(Phe)n synthesis are applied (3 mM Mg2+, 150 mM NH4+, 2 mM spermidine, 0.05 mM spermine). Chloramphenicol (0.1 mM) blocks the puromycin reaction with AcPhe-tRNA as expected but, surprisingly, does not affect the puromycin reaction with Ac(Phe)2-tRNA nor peptide bond formation between AcPhe-tRNA and Phe-tRNA. The drug facilitates the release of Ac(Phe)2-4-tRNA from ribosomes at 14 mM Mg2+ while it hardly affects the overall synthesis of poly(Phe) or poly(Lys).  相似文献   

16.
The function of the highly conserved and accessible region of domain IV of 23S rRNA (positions 1900-1981 in Escherichia coli 23S rRNA) was investigated by subjecting it to a random mutagenesis procedure that produced single-site mutations efficiently. Nine single-site mutants were selected that were recessive lethal. High levels of mutated 23S rRNA were expressed in E. coli and extracted ribosomes were investigated for their content of mutated rRNA. The peptidyl transferase activity of the ribosomes was also estimated using a newly developed method involving selective inhibition of chromosome-encoded ribosomes by clindamycin. Two of the mutants, U1940A and U1955G, yielded 50S subunits that were defective in subunit-subunit association but active in peptidyl transferase activity and five, U1926C, U1946C, U1979C, U1982A and G1984A, produced 50S subunits that were defective in both subunit-subunit interactions and peptidyl transferase activity. We infer that the large conserved rRNA region generates a complex structure that plays an essential role in maintaining and modulating subunit-subunit interactions and argue that its involvement in the peptidyl transferase centre is secondary, possibly involving the correct alignment of protein L2.  相似文献   

17.
Treatment of rats with the aminonucleoside of puromycin, which increases the incorporation of labelled phenylalanyl-tRNA into polypeptide chains in liver ribosome preparations studied in vitro, did not change the factor-dependent binding of fMet-tRNA f Met to ribosomes nor the peptidyl transferase function of the ribosomes. Peptidyl transferase function, as measured by fMet-tRNA f Met-puromycin formation, was comparable in the free and bound ribosome preparations. Similarly, the factor-dependent binding of fMet-tRNA f Met to ribosomes was the same in free ribosome preparations obtained from rat liver as it was in bound ribosome preparations that had been freed of membranes by puromycin incubation and high salt wash.  相似文献   

18.
Peptide bond formation is the main catalytic function of the ribosome. The mechanism of catalysis is presumed to be highly conserved in all organisms. We tested the conservation by comparing mechanistic features of the peptidyl transfer reaction on ribosomes from Escherichia coli and the Gram-positive bacterium Mycobacterium smegmatis. In both cases, the major contribution to catalysis was the lowering of the activation entropy. The rate of peptide bond formation was pH independent with the natural substrate, amino-acyl-tRNA, but was slowed down 200-fold with decreasing pH when puromycin was used as a substrate analog. Mutation of the conserved base A2451 of 23 S rRNA to U did not abolish the pH dependence of the reaction with puromycin in M. smegmatis, suggesting that A2451 did not confer the pH dependence. However, the A2451U mutation alters the structure of the peptidyl transferase center and changes the pattern of pH-dependent rearrangements, as probed by chemical modification of 23 S rRNA. A2451 seems to function as a pivot point in ordering the structure of the peptidyl transferase center rather than taking part in chemical catalysis.  相似文献   

19.
Arginine inhibits the formation of acetylleucyl-puromycin from C(U)-A-C-C-A-LeuAc and puromycin ('fragment reaction'), catalized by Escherichia coli and yeast ribosomes. From 18 different L-amino acids assayed, arginine was the most effective in producing inhibition (50% inhibition at 20 mM, with 1 mM puromycin). L-Argininamide and D-arginine gave about the same inhibition as L-arginine. The inhibition by L-arginine is competitive with respect to puromycin. The plot of the slopes obtained in a Lineweaver and Burk representation versus [Arg]2, and the plot of 1/v versus [Arg]2 at a fixed concentration of puromycin, are linear, which seems to indicate that two arginine molecules must interact at the puromycin binding site to produce inhibition. In addition to the 'fragment reaction', arginine inhibits the non-enzymatic binding of AcPhe-tRNA, C(U)-A-C-C-A-Leu and C(U)-A-C-C-A-LeuAc to ribosomes. However, it does not inhibit poly(U)-directed polyphenylalanine synthesis or the reaction of puromycin with AcPhe-tRNA previously bound to the peptidyl site. The results agree with arginine binding to the acceptor site, and with a sequential mechanism for the 'fragment reaction', puromycin binding first.  相似文献   

20.
The peptidyl transferase activity of polysomes from Escherichia coli, rabbit reticulocytes and chick embryos, assayed in the fragment reaction, is 3- to 10-fold lower than the corresponding activity of single ribosomes. The polysomal peptidyl transferase activity is restored in full under conditions of in vitro protein synthesis that result in conversion of polysomes to single ribosomes. Thus, the peptidyl transferase center is masked in translating ribosomes. Unmasking of peptidyl transferase, however, does not require the release of ribosomes from messenger RNA: it is also seen upon treatment of polysomes with puromycin, under conditions in which polysomes remain intact. Apparently, release of nascent polypeptide chains is sufficient to allow access of formylmethionyl hexanucleotide substrate to the peptidyl transferase site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号